• Nie Znaleziono Wyników

Methods for detection of microparticles derived from blood and endothelial cells

N/A
N/A
Protected

Academic year: 2022

Share "Methods for detection of microparticles derived from blood and endothelial cells"

Copied!
14
0
0

Pełen tekst

(1)

Review/ Praca poglądowa

Methods for detection of microparticles derived from blood and endothelial cells

Metody oznaczania mikrocz ąstek pochodz ących z komórek krwi i śródbłonka

Małgorzata Gradziuk

1,

*, Piotr Radziwon

2

1JohnPaulIIRegionalBloodDonationandTransfusionCenterinSłupsk,21SzarychSzeregówSt.,76-200Słupsk, Poland

2RegionalBloodDonationandTransfusionCenterinBiałystok,23MariiSkłodowskiej-CurieSt.,15-950Białystok, Poland

Microvesicles are a heterogeneous group of membrane vesicles,measuring 0.1–1mm indiameter that are released fromthe cellsurfaceinresponsetoactivationorapoptosis [1–3].InphysiologicalconditionsMVsareformedduringcell maturationand aging,and increasednumber of circulating MVshasbeenassociatedwithmanypathologicalconditions [2, 4]. MVsare non-nucleated, cell-membrane coated vesi- cles containing the same surface antigens as their cell of origin[5].

Ourknowledgeon themorphologyand functionof MVs isstillincomplete.Thisisduetothedifficultiesinseparat- ing MVs from other types of cells, the inability of most

techniques tocapture particlesin a volumerange of MVs, and lowavailabilityof costlyandtime-consumingmethods for the detection of MVs [6]. The majorityof studies were performed on MVs originating from platelets, endothelial cells,andmonocytes[7].

Generation of microvesicles

The formation of MVs is a regulated process, leading to selective and concentrated release of cell contents to the surroundingenvironment.Boththeparentcellandatrigger

*Correspondingauthor.

E-mailaddress:gosiagra@op.pl(M.Gradziuk).

article info

Articlehistory:

Received:21.08.2016 Accepted:30.03.2017 Availableonline:05.08.2017

Keywords:

 Microparticles

 Methodsofmicroparticles detection

 Standarization

 Pre-analytics

abstract

Microparticles(MP-microparticles)–cellmembranevesicles0.1–1mmdiameter,released inresponsetoactivationorapoptosis,bothinphysiologicalandpathologicalconditions.

Theyrevealawidespectrumofbiologicalactivities,expresscellsurfaceantigenscharac- teristic for cells of their origin. In this article reviewed quantitative and qualitative methodsfordetectionofmicroparticles,presentspre-analyticalconditionsasanpoten- tialsourceofvariabilityintheanalysisofMP.Inconclusionthereare severalmethods for detectionofmicroparticlesbut theyare not standarized.Methodsofmicroparticles detectionneedtobestandarizedtobeclinicallyrelevant.

©2017PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiii Transfuzjologii.PublishedbyElsevierSp.zo.o.Allrightsreserved.

ContentslistsavailableatScienceDirect

Acta Haematologica Polonica

journal homepage:www.elsevier.com/locate/achaem

http://dx.doi.org/10.1016/j.achaem.2017.03.003

0001-5814/©2017PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiiiTransfuzjologii.PublishedbyElsevierSp.

zo.o.Allrightsreserved.

(2)

determinethenumber,size,andantigencompositionofthe releasedMVs[8].CirculatingMVsarereleasedtotheplasma fromthe surfaceofall typesof blood cells:red bloodcells, granulocytes,lymphocytes,monocytes,platelets,endothelial cells, and tumor cells. Thenumber of MVsin the blood is the result of a dynamic balance between the release of apoptoticand activated cells, andtheir clearancefrom the circulation [8–10]. In healthy subjects, the majority of detectedMVscomefromplatelets,whereasMVsoriginating fromerythrocytes,leukocytes,andendothelialcellsaremuch less abundant [7,11]. Cell membrane is the first structure involvedintheformationofthemicrovesicles.Underhome- ostatic conditions phospholipids, phosphatidylserine and phosphatidyloetanolamine,arearrangedontheinner(cyto- plasmic)layerof the membrane whilephosphatidylcholine and sphingomyelin are localized in the outer layer. The asymmetryisakeyfactorformaintainingcellhomeostasis and isregulated by anenzyme complex: flippase,floppase and scramblase. Flippase is responsible for keeping the phosphatidylserine and phosphatidyloetanolamine on the innersideofthemembrane,whilefloppasekeepsphosphati- dylcholineandsphingomyelinontheouterside.Scramblase, responsible for the transport of phospholipidsbetween the

two monolayers of the cell membrane, is inactive in the steadystate.Lossofphospholipidasymmetryandexternali- zation of phosphatidylserine trigger the formation of MVs [7, 9,12, 13].Not allMVs exhibitphosphatidylserine onthe surface, andtheir contents may varydependingon thecell of originaswellasthestimulustriggering theformationof MV[1].TheformationofMVsisdepictedinFig.1:apoptosis and cell activation cause a sudden release of calcium ions by endoplasmic reticulum. The increased calcium ions flux resultsfromenzymaticimbalancecausedbytheinactivation of theflippase,floppase andscramblase,leading tothe loss of lipid asymmetry in the cell membrane and exposure of phosphatidylserineonthesurfaceofthecell.Thereleaseof calciumactivatesproteinproteasese.g.calpainleadingtothe proteolysisofcytoskeletonresultinginsheddingofMVsfrom thesurfaceofthecellmembrane[7,9,12,13].

Microvesicles are formed in response to the activation inducedbyvariousstimuli(thrombin,collagen,epinephrine, diphosphoadenosine) and ex vivo during preparation and storage of blood products for transfusion [14, 15]. Approx.

70–90% of circulating MVs originate from platelets [9, 16], 10–15%fromendothelialcells[17],4–8%fromredbloodcells [18], and theirformation is anessential stageof red blood

•apoptosis

• cell activation

calcium ions release from ER

•enzymatic imbalance flipase inactivation

flopase activation scramblase activation

calpain activation

•loss of lipid assymetry in cell membrane

•phosphatidylserine exposure

•cytoskeleton proteolysis

formation and shredding of microvesicles from cell

membrane

Fig.1–Theformationofmicrovesicles

TableI–Thecharacteristicsofmicrovesicles

1. Formationtriggered Byactivationorapoptosisthroughblebblingofcellmembrane

2. Diameter 0.1–1mm

3. Nucleus No

4. Composition Lipidsandproteins,cancontainmRNA,miRNA

5. Structure Outerlayercontainsphosphatidylserine,whichinnormalconditionsis

localizedinthecytoplasmiclayer

6. Antigens Specificsurfaceantigensderivedfromtheparentcell

7. Origin Platelets,endothelialcells,erythrocytes,monocytes,lymphocytes,and

granulocytes

8. Number Dependsonthebalancebetweenreleaseandremovalfromthe

circulation

9. Presentinphysiologicalconditions Increasednumberinvariouspathologicalconditions

(3)

cell aging [19]. Basic characteristics of MVs are shown in TableI.

The role of microvesicles

Until recently the microvesicles wereconsidered cell frag- ments without any significant biological functions. Cur- rently, it is believedthat they exhibita wide spectrum of biologicalactivity.Thepresenceofthesurfaceantigensand various contents such as mRNAs, miRNAs, and proteins suggests, that MVs are able to exert wide variety of biological functions [20, 21]. Biological properties of MVs largely depend on the cell of origin and the trigger that stimulated their production [2, 10]. The first described property of MVs was procoagulative activity, dependent mainly on thepresence of phosphatidylserineand tissue factorontheirsurface.Forthisreason,MVswereinitially related to coagulation activation, atherosclerosis, cardio- vasculardiseaseorvenousthrombosis.

The MVs are involved in hemostasis due to their pro- and anticoagulative properties [4, 7, 8, 22]. As carriers of bioactive molecules such as mRNA, miRNA and proteins MVsplayakey roleinintercellularcommunication[20,21], mediate cell-to-cell signaling, regulate inflammatory pro- cesses, vasospasm, fibrinolysis, and angiogenesis [23]. An increasednumberofmicrovesicleswasobservedinpatholo- gical conditions, such as diabetes, cancer, autoimmune disease, and sepsis [9, 14, 24, 25]. Increased number of endothelial-derived microvesicles is observed in patients with antiphospholipid syndrome, bleeding disorders and hematological diseases. MVs can be released from mono- cytes in responseto various triggers, including proinflam- matorycytokines.Neutrophil-derivedmicrovesiclesoccurin healthyindividualsaswellasvariouspathologicalconditions [17].MVsareinvolvedintheresponsetohematopoieticstem cell transplant,cancer progression, and apoptosis induction [26].Studies ofmicrovesicleshavecontributedtotheunder- standingof themechanismsunderlyingthepathogenesisof manydiseasesi.e. sicklecelldisease,thromboticthrombocy- topenicpurpuraorparoxysmalnocturnalhemoglobinuria[4].

Increasedreleaseof MVswasobserved duringbloodcompo- nents storage [27, 28], which suggests that they may be responsible for some of the negative side effects observed afterbloodtransfusion[29,30].MVsderivedfromstoredblood components are able to modulate the activity of macro- phages,neutrophilsandTcells[29,31,32],andMV-activated neutrophilsmightbedirectlyinvolvedinthepathogenesisof TRALI[33].Storageofbloodcomponentsmayalsocontribute totheformationofMVsaftertransfusion[34].

Sample preparation

All preanalytical steps, regardless the method used, from blood sampling to sample freezing, should be considered a source of variationin MV analysis. To avoid the loss of MVsand artifacts, strictly defined rules of blood sampling andpreparationofsamplesmustbecomplied[35].MVscan beanalyzeddirectlyintheplatelet-poorplasmaobtainedby

serialcentrifugationofcitrate-treatedbloodorisolatedfrom the plasma byultracentrifugation. Preferably,MVsanalysis should be performed in freshly prepared plasma to avoid loss and damage of the MVs during freezing and thawing [10,36].

TherearethreekeypreanalyticalfactorsinfluencingMVs measurement:

(1) timetothefirstcentrifugationofthesample;

(2) shakingthesamplesduringtransport;

(3) centrifugationparameters[20,37].

In addition, the number and properties of MVs are affectedbysuchfactorsas:

(1) bloodsamplingmethod;

(2) thediameteroftheneedle;

(3) applicationofthetourniquet;

(4) anticoagulantused;

(5) the timebetweenblood samplingand plasmaisolation, whichisinpartdependentontheanticoagulantused.

Preparationofthesamples:

(1) Bloodsampling:

- onanemptystomach,between8and10a.m., - fromelbowflexureveins;

- useplastictubes,

- use large diameter needle (19–21G), to avoid hemolysis invitro,plateletactivation,andMVsformation;

- without theuse of the tourniquet;lightturniquet can be usedonlytolocatetheveins;

- usesodiumcitrateasananticoagulant,becauseofitslow ability to activate the cells and generate artifacts in comparison to EDTA and heparin (3.2%, 105–109mM or 129mM–3.8%), ACDand CTADmayalsobeused(CTAD inhibitsthe activation of platelets without affectingtheir function).ItisnotrecommendedtouseEDTA,heparin(as it induces activation and aggregation of platelets in the blood, does not chelate calcium ion chelates, does not prevent the generation of MVs after sampling), and hirudins.

- To avoid artifacts caused by vein damage during veni- puncture,thefirstfewmlaftersampling(2–7.5ml)should bediscarded[7,10,36–39].

Samplepreparationprocedure:

(1) Blood after sampling should be centrifuged as soon as possible(preferablywithin30minto1hfromsampling) to isolate the plasma. The maximum time from sam- pling tocentrifugation is2h [7,10, 36–39].If necessary, before processing blood samples should be stored at roomtemperature,withoutmixing.

(2) Transport: the samples should be transported at room temperature (20–258C), in the transport container in vertical position. Rapid shaking and freezing during transportarenotpermitted[37].

(3) Storage: due to the fact that, in most cases, samples must be stored before analysis, fast freezing of the samplesinliquidnitrogenat 808Candfurtherstorage at atemperaturebelow 808Cuntilanalysisare recom- mended.Suchconditionsprotectthestructureandfunc- tionoftheMVs.Maximumtimeforstorageofthefrozen samplesis1year. Asfaraspossible,all ofthe samples intendedfortheanalysisofMVsshouldbestoredforthe sameperiodoftime[10,36].

(4)

(4) Thawing: thaw the samples in a water bath at 378C, which reduces the formation of ice crystals [5, 10, 38–40].

(5) Centrifugation: the cells can be activated very easily during the preparation of test samples, so the optimal measurement of circulating MVs requires thorough removalof platelets,redand whiteblood cells.Erythro- cytes,platelets,andalargenumberofcellfragmentsare effectively removed during centrifugation at 1200– 2000g for 15–20min [37–39, 41]. Depending on the centrifugationspeed,MVsmightbelost inthepelletor supernatant.Thereisalsoariskofcontaminationofthe samples with the residual platelets, that forms during freezingand thawing cycle andcan leadtoan artificial increaseinMVsnumber.Toavoidgenerationof MVsex vivo two-step centrifugation should be performed. The first centrifugation is intended to remove cells and platelets(1500–10000gfor 5–20min).Thesecondcen- trifugation is intended to obtain MVs pellet (13000– 100000gfor30–60min).Itisrecommendedtoperform twocentrifugationsfor 15min at 2500g [39], followed by another centrifugation at 13000g for 2min to obtainplatelet-poorplasma.Thelargestnumberof MVs can be obtained during centrifugation at 20000g for 20–30min.Breaksshouldbeavoided.Afterthe centrifu- gationstepsplasmashouldbecollected gentlyto avoid thedamagetotheplateletlayer[36–38,41].

w?>Inordertoremovetheresidualplatelets,filtration using 0.8mm filters might be performed, however, the procedure may activate the platelets, induceMVs frag- mentation,andinconsequenceleadtosignificantlossof MVs[17].

Detection methods

Analysis of microvesicles includes four essential steps:

isolation, detection, typing and counting [10]. There are manymethodsof MVsdetectiondescribedintheliterature, aimed to determine their size, number, morphology, bio- chemical composition, origin, physical characteristics, and activity[42].Theindividualmethodsdifferinanalyticaland pre-analyticalconfoundingfactorsinfluencingthedifferences inMVsmeasurement.Themethodsusedforqualitativeand quantitativeMVsanalysisaretechnicallychallenging.One of the main issues is lack of internal validation [10, 43].

Microvesicles can be analyzed using optical and non- opticalmethods[42](TableII).

I.Opticalmethods

1. Opticalmicroscopy

In this method the sample is illuminated by visible light, and the light scattered on the MVs is collected through the lens of the microscope and focused on the CCD camera (charge-coupleddevice). Optical microscopy allows tomeasurethe size and morphologyof the MVs largerthan200nm.Quantificationofmicrovesiclesinthe specified volume is possible, but very time consuming.

This method does not provide any information on the biochemical composition or cell of origin. The time needed to analyze 10000 MVs is a couple of hours.

Therefore, it is a time consuming and low-throughput method[42]. Due to thesmall size of MVsand artifacts formed dueto Brownian motions,optical microscopy is usedinconjunctionwithimageanalysissoftwareinNTA method[44,45].

2. Fluorescentmicroscopy

It is a type of optical microscopy optimized for the detection of fluorescence. It detects surface proteins on MVsusingfluorescent-labeledprobes.Ifautofluorescence isused,MVssizecanbespecifiedasafluorescencesignal proportional to the size of the particles; however, if fluorescent probes are used, the amplitude of the probe fluorescenceisnotproportionaltothesizeoftheparticles.

Therefore,thismethoddoesnotallowtomeasurethesize of the MVs. Fluorescent microscopy enables quantitative evaluation of the MVs with specific properties, on the assumptionthatallMVs ofagiven typearestained.The methodistimeconsuming,low-throughputandtheaver- agemeasurementtimeis1h[42].

Highly Sensitive Fluorescent Microscopy (HSF) allows detection of submicro- and nano-MVs. This technique provideshighdetectionsensitivitydue tothehighexcita- tionand quantumefficiencyof fluorescence.Detection of smallMVsusingHSFseemstobepromising[46].Fluores- cence microscopy after FITC-labeled annexin V staining allows the observation of formation and shedding of microvesicles from the cell membrane [47]. Fluorescence microscopy, due to constant advances in optical ima- ging, is a promising technique for MVs characteristics;

however,itssensitivityinnano-MVsdetectionislimited

TableII–Methodsofmicrovesiclesdetection

Opticalmethods Non-opticalmethods

Opticalmicroscopy Transmissionelectronmicroscopy(TEM)

Fluorescentmicroscopy Atomicforcemicroscopy(AFM)

Dynamiclightscattering(DLS) Impedance-basedflowcytometry

Flowcytometry Westernblotting(WB)

NanoparticleTrackingAnalysis(NTA) Enzyme-linkedimmunosorbentassay(ELISA)

FluorescenceNTA(F-NTA) Functionalassays

Ramanspectroscopy Surfaceplasmonresonancebasedimagingmicroscopy(SPRi)

Stimulatedemissiondepletionmicroscopy(STED) Surface-assistedlaserdesorption/ionizationmassspectrometry(SALDI- MS)

Laserscanningconfocalmicroscopy(LSCM)

(5)

by fast Brownian motions of the small particles in the fluid[48].

3. Dynamiclightscattering(DLS)

DLSisbased onthe analysisof theintensity of light scatteredby particlesmoving due toBrownian motions.

Brownian motions are random, disordered, continuous movements of the particles in the fluid, caused by collisionswithparticlesofthesolvent.Speeddistribution of the particles depends on the temperature and the viscosityof the liquidand the diameterof theparticles.

In general, the smaller the particles, the faster the Brownianmotions.Ifthebeamfallsonthesurfaceofthe particle, the lightis scattered inall directions, which is measured by a detector positioned in an appropriate distance.Brownian movementscause fluctuationsinthe intensityofthescatteredlight.Therateofthechangesin theintensityofthescatteredlightdependsonthesizeof theparticlesandisusedtocalculatethesizeoftheMVs.

Thedataistransformedusingappropriatemathematical algorithmandinconsequencetheinformationregistered bythe detectorregardingthechangesintheintensityof the scattered light is converted into the particle size distribution graph (percentage of particles inrelation to their size). The result depends on the mathematical algorithmapplied.DLSallowstomeasureallparticlesat the same time, shows the average size and detects particlesmeasuring from 1nmto 6mm. MVssizedistri- bution measured using DLS favors the presence of asmallnumberoflargeparticles,whichscatterthelight more efficiently than the small ones [38, 49]. In a few minutes,thismethodisabletomeasuretherelativeand absolute size distribution of MVs in a small sample volume.Themethodissuitablefor thedeterminationof the particle size in monodisperse samples. Detection in polydisperse samples is less accurate and might be affected by the presence of a small number of larger particles, e.g. platelets or other pollutants. Two popula- tionsof particlescanbeanalyzedatthe sametimeonly whenthediameteroftheparticlesvariesatleasttwofold.

DLS does not provide information on the biochemical composition and the origin of MVs, and is targeted to detect larger particles, therefore can ignore smaller microvesicles[42,49–51].

4. Flowcytometry

Flow cytometry is the most common method of identification,quantification, and sizeassessmentof the MVs.Inflowcytometry,MVsaredetected intwostages:

based on the intensity of light scattering and using fluorescently-labeled antibodies against specific surface antigens.Flowcytometryallowssimultaneousanalysisof morphologyand subtype determination of thousandsof MVspersecond.Inthismethod,MVscausescatteringof thelaser light, whichismeasured bythe detectors: one detectorpositionedinlinewiththelaserbeammeasures the dispersion of the light (forward scatter, FSC), the second detector, perpendicular to the laser beam mea- sures the dispersion of the light (sidescatter, SSC). FSC indicates the size of the particle, while SSC provides informationabouttheinternalcomplexityofthecell.The intensity of the light scattering depends on the size of

theparticles,theirshape,refractiveindex,andabsorption.

The biochemical information is obtained by correlation betweenFSCand SSC.Proper determinationof structure andsizeofMVsrequirestheuseof fluorescently-labeled calibrationbeadsofknownsize.Identificationof thesize of the MVs is done by comparing the intensity of light scattering measured for MVs with intensity emitted by the beads of known size. Total number of MVs can be specified using commercially-available beads of known concentration,thatareaddedtoaspecificvolumeofthe sample [38, 41, 42, 50, 52]. Prior to flow cytometry analysis, platelet-poor plasma or microvesicles suspen- sion is labeled with fluorescent monoclonal antibodies against specific surface antigens of the cell of origin.

These fluorescent probes are usedto measurebiochem- ical and biological properties of the MVs as well as to quantify and assess the subtype of the vesicles. In addition, to confirm phospholipid properties of MVs, annexin V or lactadhedrin can be used. Annexin V is usuallylabeledwithphycoerythrin(PE),andantibodiesto identifytheoriginoftheMVsarelabeledwithfluorescein isothiocyanide(FITC)[36,53].Themainadvantageofflow cytometryisthe doublelabeling todetermine theorigin of the MVs. Using antibodies against several cellular antigens, it ispossibletocharacterizealargenumber of antigenson asingleMVs.Oneof theadvantages offlow cytometryisthe possibilitytoanalyzealargenumberof samples in a short time [35]. However, it has some limitations.Namely,itdoesnotprovidedetailedinforma- tion onthemorphologyof thecells[42],doesnotdetect the full range of MVs, particles of smaller size are detected with less effectiveness [54], and the obtained resultscan vary even whenanalysis isperformed using identical systems [50]. Microvesicles measuring 0.1–

0.4mm are too small to be detected by most of the available flow cytometers and clusters of small MVs mightbecountedasoneevent[42].Theresultsobtained using flow cytometry depend on the type of device, its settings,dataanalysis,aswellaspreparationandstorage ofthesample,whichmaydirectlyaffectthelevelofMVs.

Although the use of antibodies against the surface antigens usually allows youto specify the origin of the MVs,undercertainconditions,whentheparticlescontain a small amount of the antigen typically present in the cell, the ability to bind the antibody is limited, specific fluorescence is low, and inconsequence MVsmightnot be detected [35]. Flow cytometrydoes not require isola- tionofMVs,whichpreventslossandretainsthemorpho- logicalpropertiesoftheMVs[41].

5. NanoparticleTrackingAnalysis(NTA)

NTAisamethodof directdetectionandvisualization of particles in suspension, which allows you to specify the size and the number of particles in the studied sample. NTA enables you to specify the relative and absolutesize distribution of the particlesin thesample.

In this method, the particles are illuminated by a laser beam and lightdispersion caused by Brownian motions of theseparticlesisanalyzedbyopticalmicroscope. The particle motion is tracked using a microscope coupled withCCD camera.NTA relates the speed of movements

(6)

to the size of the particles. The average speed of the particles, the size and the total number of MVs is calculated by image analysis software [44, 45]. NTA measuresabsoluteparticle sizedistribution inthe range from 50nm to 1mm and is accurate for particles larger than50nm.Detectionofsmallerparticlesisnotpossible dueto microscopedetection limit. There isa possibility toobtain information on absolute particle size distribu- tion,aftercalibrationofthesystemusingbeadsofknown numberandsize[42,44].NTAcandetectparticlessmaller thanthosedetectedbyconventionalflowcytometer,and therefore it might be considered an alternative to flow cytometerforquantificationofMVs.Becausetheparticles areanalyzedinsuspension,thereisnoriskformorpho- logical changes during fixation. NTA can be used to analyze all MVs [44]. This method, however, has some limitations. Although it can measure the particle inthe sampleindetails,thepresenceof largeparticlesreduces the number of small particles detected by the software.

NTA hasa limiteduse for clinicalsamples, isslow and timeconsuming.Itdoesnotprovideanyinformationon the biochemical composition and the origin of MVs.

Moreover, it is not able to distinguish between cell- derivedMVsandotherparticlesi.e.high-densitylipopro- teins[38,51,55].

6. FluorescentNTA(F-NTA)

ThismethodissimilartotheNTA,butisbasedonthe fluorescenceof theparticlesintheliquid.Itmeasuresan absolute size distribution and the fluorescent signal of the molecules in the liquid. F-NTA is a very sensitive method, because fluorescence intensity is much higher than the intensity of white light scattering. Fluorescent particles are analyzed individually in real time. The labeledparticlesare quantifiedandmeasured. Thenum- berof labeledparticlesiscompared tothe totalnumber of particles measured in light scatter mode [44]. F-NTA seems to be adequate to fast measurement of size, number,biochemicalcomposition,andtheoriginofMVs.

It is specifically useful to identify the characteristics of MVsdirectly in biologicalfluids [42]. F-NTA enablesthe characterization of fluorescently-labeled MVs through identificationoftheirsurfacemarkers[49,56,57].

7. Ramanspectroscopy

It is a spectroscopic method, based on the inelastic scattering of monochrome, usually laser light, directly using fluorescent probes or indirectly using mono- and polyclonalantibodies[46,56].Inthismethodthesample is illuminated by monochromatic laser light. Thevibra- tions of the particles in the sample change the wave- length of the scattered light, which is detected by aspecialized and sensitive spectrometer.Thepattern of vibration is specific to the molecule, what allows to specifythebiochemicalcompositionofMVswithoutany staining.Ramanspectroscopyisaquantitativetechnique, where signal strength is linearly proportional to the numberofparticles.Inmicrovesiclesthatfitinthesizeof the probe, the intensity of the Raman signal is propor- tional to the volume of a single vesicle. The method allowstodistinguish MVsfrom lipid particlesof similar size, or small platelets. It can specify the size, number

and composition of a single MV, without labeling. The methodisexpensive,haslimitedavailabilityand isvery timeconsuming(analysisofasinglesampletakesafew hours)[42,56].Themainadvantageofthismethodisfast and non-invasive analysis of the biochemical composi- tionofMVs[46].

8. Stimulatedemissiondepletionmicroscopy(STED) STEDisatypeoffluorescentmicroscopycharacterized byhighspatialresolution,allowingtospecifythesizeof theMVs.HighresolutionSTEDandfluorescentlabelingof microvesicles canpotentially beusedtoobtaininforma- tion on the morphology and distribution of the labeled receptors on the surface of larger microvesicles. This method is very time consuming and requires several hourstodetectandcharacterizetheMVs.Themethodis stillbeingdeveloped[42,58].

9. Laserscanningconfocalmicroscopy(LSCM)

LSCMisamodernvariationoffluorescentmicroscopy usinglaser asthelightsourcetoincreasethe resolution of the obtained images. In this method the individual subtypes of MVs are identified on the basis of the expressionofspecificantigens.MVsobtainedbyultracen- trifugation are labeled with antibodies conjugated with fluorescein,andtopreventBrownianmotions,themicro- particles are fixed using annexin V. Similarly to other opticalmethods,theresultsdependonthespecificityand affinityoftheantibodiesagainstthetargetantigenaswell asthe density of theantigenon thesurfaceof the MVs.

LCSMenablestoobtainthemorphologicalinformationi.e.

thesizeandthestructureoftheMVs.Thismethodistime consuming,requires severalhours ofanalysispersample and is not suitable for direct determination of MVs in plasma.LSCMallowsdirectvisualizationandevaluationof the morphology of the MVs. One of the advantages is detectioninasmallvolumeofsample[38,48,59].

II.Non-opticalmethods

1. Transmissionelectronmicroscopy(TEM)

TEMvisualizesisolatedMVsandallowsyoutospecify their structure [49]. Transmission electron microscope uses electrons to obtain images. It is characterized by muchhigherresolution,allowingtospecifythe sizeand morphology of the MVs.TEM is notquantitative, but is mainly usedto assess the compositionand morphology of the MV membrane. It is not suitable for direct detection of MVs in plasma, as it requires fixation and dehydrationofthesample,whichhasadirectimpacton the size and morphology of MVs. In this method, it is necessaryto increasethenumber of MVsinthe sample by ultracentrifugation, and inconsequence the quantifi- cationof MVsintheoriginalsampleisnotpossible.The use of colloidal gold-labeledantibodies allows to obtain the informationon theantigen compositionof theMVs.

This method requires time-consuming sample prepara- tionandthemeasurementrequiresseveralhours[38,42, 54, 60]. It provides information on the morphological featuresof MVs,i.e.size,membranestructure,cytoskele- ton [50, 61]. It ismainly used to visualizethe MVs and validateothermeasurements[38].

(7)

Cryoelectromicroscopyis a variantof electron micro- scopyusedtoanalyzeMVsintemperaturesbelowminus 1008C. This method does not require staining and fixa- tionof samplesbeforeanalysis;however,theuse ofthis methodto study the MVs requires further investigation [46].

2. Atomicforcemicroscopy(AFM)

AFM allows to detect a single MV and specify their sizein3D[49].Atomicforcemicroscopeisequippedwith a cantilever with a precise, ultra fine tip that is a few mmlongandlessthan 100Ðindiameter,andisusedto scan the surface of the sample. In order to generate a three-dimensional,high-resolutionimage,themicroscope scans the surface of the sample while the detector equippedwith lasermeasuresthedeflectionofthecanti- levermovingalongthesample. Themeasurement of the deflectionallowstogeneratea3Dimageofthetopography ofthesurface.Thestrengthoftheinteractionbetweenthe tip and the sample depends on the distance between them.The advantageof this methodisthe possibilityto detecttheMVsdirectlyinliquid,whichallowstokeepthe sampleinaphysiological state. Todistinguish MVs from the surface, this method requires strong binding of the particlestoaflatsurfacewhatmayinfluencemorphology and hinder the determination of the correct diameter.

Mica, an insulating mineral, coated with antibodies, is usedtobindtheMVstothesurface.Thismethodrequires theisolationof theMVsfromtheplasma andconcentra- tion of the sample prior to the measurement, which affectsthemorphologyand thenumberof MVs. Fraction oftheisolatedMVsisincubatedtobindMVstothesurface coated with antibodies [62]. The number of MVs on the surfaceiscalculatedusinganimage processing software.

Asthe efficiency of bindingto thesurfaceof the MVs is notknown, thenumberof particlescannot beaccurately measured.AFMallowstodetectsmallMVsanddetermine the phenotype but cannot obtain information on func- tionalpropertiesof MVs[38,42,49,63,64].Themeasure- ment requires several hours (about 2h per sample), the methodisverylabor-intensive[50,64].

3. Impedance-basedflowcytometry

Itisafast,non-opticalmethodtoidentify,count,and determine the size of the MVs. It uses the Coulter principle to count and measure individual particles in a liquid within a few seconds, by detecting changes in electricalresistance produced byparticles insuspension [65].Itconsistsoftwochambersseparatedbyaninsulat- ingmembranecontainingasinglechannel.Thechambers are filled with electrolyte and an electrode is placed in each of them. The particles introduced to the channel inducereduction in electric current, which is measured asavoltagepulse.Thesizeoftheimpulseisproportional tothesizeofthedetectedparticles.MVscanbedetected directly in the platelet-poor plasma using fluorescent antibodies. The lower detection limit is 300nm, and in consequence MVs less than 300nm are detected less efficiently.Thismethoddoesnotprovideanyinformation onthemorphology,biochemicalcompositionororiginof the particle, but can be combined withfluorescent flow cytometry [42]. MVs size distribution can be assessed

usingfluorescein-labeledantibodies,assumingthatfluor- escentsignalamplitudeisproportionaltothevolumeor surfaceoftheparticles.TomeasuretheMVs,thesystem is calibratedusing fluorescent polystyrenebeads of uni- formsize.Thelimitofdetectiondependsonthediameter oftheflowchamber[38,56,65].

4. Westernblotting(WB)

WB is a methodthatallows tospecify the origin of theMVsdependingon thepresence ofvariousmarkers [6].Westernblotanalysisconsistsoffivestages:electro- phoreticseparationofproteins,transfer oftheproteins to the nitrocellulose or polyvinylidene fluoride mem- brane, labeling using primary antibodies against the specificantigen,incubationwiththesecondaryantibody against the primary antibody, and finally, visualization [57]. This method, however, requires the use of further complementary methodssuch asNTAor electronmicro- scopy[46].

AlargenumberofMVstoperformWBanalysis,what limitstheapplicabilityofthismethodforserumsamples [61, 66]. Moreover, WB allows tostudy specificsubtypes of MVs,but do notgive anyinformation about the size andnumberofMVs[44].

5. Enzyme-linkedimmunosorbentassay(ELISA)

ELISA assay is a simple and reproducible method to measure MVs. This method is based on the binding of microvesicles by monoclonal antibodiesconjugated with fluorescein in the multiwell plate. Annexin Vor antibo- dies againstsurface antigens (socalled catching antibo- dies) are used to specifically bind plasma MVs, and detection antibodies againstsurfaceantibodies are used for the detection of the “cought” antibodies [67]. ELISA allowsquantitativeanalysis of MVsindirectly,using the measurement of totalamount of phosphorusor anionic phospholipids. The advantages of MVs detection using ELISA are: the possibility toexamine a large number of samplesat the same time, no restrictions onsize, wide availability of the method, and quantitative assessment ofMVs.Thismethodhasalsosomedisadvantages:itdoes not analyze all types of MVs,detects soluble antigens, it does not provide information aboutthe size, and finally, non-specificbindingofannexinVlimitsitsusability[7,43, 50]. In this method, it is necessary touse fresh plasma, because the freezing and thawing causes anincrease in thenumberofannexin-bindingMVs[68].ELISAallowsyou to specify subtypes of MVs and is a high-throughput method[38,52].

6. Functionalassays

Functionalassays characterizemicrovesiclesbasedon their specific property. These methods are used for indirect determination of the number of MVs based on themeasurementoftheprocoagulantorprothrombinase activity.Themain disadvantageof thesemethodsisthe measurement of a single biological activity only. It is impossibletoanalyzethesizeofthestudiedMVs[49,50, 69–71]. The method is based on the measurement of thrombingenerationforindirectquantificationofprocoa- gulant MVs. The measurement of the total number of procoagulant MVs in plasma depends mainly on the exposure ofprocoagulantphosphatidylserineonthe sur-

(8)

face of MVs, which binds annexin V. MVs-TF activity assayquantifiesthelevelofcirculatingprocoagulantMVs coated with TF by measuring the formation of MVs-TF- dependent factor Xa [72]. Functional assays have two majorlimitations:theydonotassessthesizeandnumber ofMVsinthesample.Theadvantageofthemethodisthe measurementofallMVs,regardlessthesizeandorigin.In addition, the assays are easy to perform and allow to analyze large numberof samples. As of today,there are limitedand inconsistentdata onthe correlation between theflowcytometryandfunctionalassaysintermsofMVs analysis.The lackof apositivecorrelation isnot surpris- ing, considering the fact that highly sensitive method, AFM, is able to detect 1000-times more MVs than flow cytometry.Due tothe fact thatflow cytometrydoes not allow todetect small MVs, it is understandable why the resultsobtained infunctional assays or using flow cyto- metryarenotcorrelated[64].

7. Surface plasmon resonance based imaging microscopy (SPRi)

SPRiisaquantitativemethodallowingtoassess the size ofthebiological nanoparticles. Itcan be useful to solvethemajorityofproblemsinMVsanalysis[6].SPRi isa highlysensitive techniqueofbiochemical analysis thatdoesnotrequire anystaining.Plasmonresonance, the principle of the method, is associated with high resolution diffraction generated on the surface a thin metalsurface [64]. SPRiequipment consists of an optical partcontainingradiationsource,transformerthatconverts changesoccurringonthesurfaceofthemetaltochanges of the refractive index and a system processing and recording the data. SPRi apparatus is usually equipped with a CCD camera to capture the reflected light. High contrast signal between the cell edges and the surface makesit easier toidentify the edgesand thecells. This method do not allow to visualize the cells, however, makes it possible to count them [73, 74]. Quantitative interpretationof SPRiresultscanimprovetheanalysisof MVs and overcome the limitations of flow cytometry in termsoflowdetectabilityofsmallMVs.Simultaneoususe ofSPRiandfluorescentmicroscopyimprovesthesensitiv- ity and selectivity of the method, which may improve theidentification of smallMVs originatingfrom different cellsthathavebeenconsideredsofartobecellfragments [46,75,76].

8. Surface-assisted laser desorption/ionization mass spec- trometry(SALDI-MS)

SALDI-MS is a high-throughput technique capable to detect the analytes of low molecular weight, including MVs.Thebasic principleof MVsdetection usingSALDI- MSissimilar tomass spectrometry;however, SALDI-MS usesorganic matrixto preventinterferencebetweenthe sample and matrix molecules after application of laser pulses [57]. The main advantage of this method is the possibilityto analyze MVsfrom various biological fluids withoutspecial samplepreparation.SALDI-MS measures thesizeoftheMVswithlowerlimitofdetectionapprox.

10–30nmwhatallowtostudysmallmicrovesicles. How- ever, the role of SALDi-MS in the detection of MVs requiresfurtherinvestigation[6,46].

Identification of the origin of MVs

Lipid andprotein compositionof MVsissimilartothe cell of origin. Surface antigens allow to distinguish different subpopulationsofMVsandidentifytheoriginofthevesicle [3,7, 77].A listof antigens usedtoidentifythe subtype of MVs is shown in Table III. Identification of the origins of MVsisolatedfromplasmaispossibleusingflowcytometry, microscopy or WB. These methods provide detailed infor- mationaboutthepresenceorabsenceofspecificantigensin smallsamples[61,78].IdentificationoftheoriginofMVsis performed using fluorescently labeled monoclonal antibo- diesagainstspecificsurfaceantigens. Theseantibodiescan distinguish MVs derived from platelets, white blood cells, red blood cells,and endothelial cells[38]. Thefluorescence signal dependson the specificity and affinityof antibodies tothetargetantigenandthenumberofantigenspresenton thesurfaceofthemicrovesicle.Thecorrelationbetweenthe fluorescence and the scattered light is used to identify subtypes of MVs. Flow cytometry is the most commonly usedmethodforthedeterminationoftheoriginoftheMVs.

Fluorescence detectors in flow cytometry allow simulta- neousdetectionofmorethan twoantigensonasingleMV.

Platelet-derivedMVsare detectedbyasinglestainingusing antibodiesagainstplateletantigenssuchasCD41orCD42b, or using a combination of anti-CD41/CD42b. In additionto CD41 and CD42b, anti-CD31 antibody can be used for the detection of platelet-derived MVs. CD41 and CD42b are expressedon platelets only,while CD31ispresent inlarge amount on the endothelial cells and other cells such as monocytesandgranulocytes.Themostcommonmethodof endothelium-derivedMVsstainingisacombinationofCD31 and anti-CD41 or anti-CD42b antibodies. Because CD31 is a common marker of both platelets and endothelial cells, platelet-derivedMVsare CD31+/CD41+, while endothelium- derived MVs are CD31+/CD41 . The advantage of this combinationishighspecificity.Othercombinationscanalso beused,suchas:CD61 forplatelet-derivedMVsandCD144 for the endothelium-derived MVs. Detection of leukocyte- derived MVs is difficult due to the variability of surface markers in different populations. Leukocyte-derived MVs can come from neutrophils, monocytes as well as B and T cells. Leukocyte markers include CD11b/CD18, CD11a/

CD18, CD14, CD66, CD62L, or annexin[10, 35]. Anti-CD235a antibodiesareusedtodetecterythrocyte-derived-MVs[79].

Quantification of MVs

The total number of MVs can be specified using flow cytometry,usingcommercial,fluorescently-labeledbeadsof knownconcentration,thatareaddedtothespecificvolume ofthesample.ThenumberofMVsandbeadstogetherwith the volume of the sample are usedto determine the total numberofMVs[10,38,41,42,50,52].Flowcytometryusing fluorescein-conjugated antibodies against surface antigens and annexin Vallow efficient counting of MVs in suspen- sion [46]. Although notall MVsexpressphosphatidylserine on the surface, annexin V staining enables to distinguish

(9)

MVsfrom largefragments of cellmembrane and iswidely usedto measurethe total number of MVs.Staining of the MVs with annexin V depends on the concentration of calcium ionsand theamount of phosphatidylserineincell membrane. Instead of annexin V it is possible to use lactadherin, which is more sensitive to changes in the expression of phosphatidylserine and detects the MVs in the absence of calcium ions[80, 81]. Determination of the numberofMVsisalsopossibleusingAFM,NTA,andF-NTA.

Thesemethods,includingflowcytometry,are basedonthe useofspecificantibodiestothesurfaceantigensoftheMVs.

Quantificationof MVs usingF-NTA and AFM requireshigh affinityantibodies. Quantification ofMVswiththese meth- ods requires further development. Raman spectroscopy is a quantitative technique, where signal strength is linearly proportionaltothenumberofparticles.Thismethodisvery time consuming, expensive, and its availability is limited [42].ELISA assay for the measurementof totalphosphorus oranionicphospholipidscanbeconsideredanalternativeto flowcytometryfor quantificationof MVs[43].Thequantifi- cation of MVs requires correlation of the results with standardcurve.

Standardization of MVs research

Thegrowing interest in the role of microparticles requires standardization of methods used for their isolation and analysis. Standardization is necessary to measure and compare the number, origin and biological activity of MVs inphysiologicalandpathologicalconditions[82].Themeth- odsused for isolation, qualitativeand quantitative evalua- tion of the MVs has not been standardized so far [6, 83].

Standardizationisdifficultbecauseofsmallsizeandhetero- geneity of microvesicles. Moreover, new methods for the detectionof eventhe smallest MVsinbiological fluidsare constantly developed. These methods, employing modern flowcytometryassays,provideinformationonthemechan-

ismsinvolved inthegeneration andbiologicalfunctions of MVs. In thepast few years, a few attemptstostandardize cytometricmethodsforMVsstudieshavebeenmade.Ithas been shown,that toobtain consistent,reproducible results of MVsmeasurementstableanalyticalconditionsshouldbe maintained[79].

One of the attempts to standardize MVs measurement was madeby the International Society of Thrombosis and Haemostasis(ISTH).In2008,Robert,Ponceletandcolleagues describedareliableandreproduciblemethodformeasuring platelet-derived MVs using Beckman Coulter Cytomics FC500 flow cytometer. They used a mixtureof fluorescent beadsofknownsizeandshowedthatitispossibletocount the MVs reproducibly on different machines of the same type.ItwasthefirststeptowardthestandardizationofMVs measurement methods [41]. In 2010, ISTH Scientific and Standardization Subcommittees (SCC VascularBiology, DIC andHemostasis&Malignancy)attemptedtostandardizethe flow cytometry method for the measurement of platelet- derived MVs bigger than 0.5mm. In this project, various typesofcytometerswerecalibratedusingasetofsynthetic, sub-micronbeadsmeasuring0.5mm,0.9mm,and3mm.The study involved 40 laboratories from 14 countries. Each of themreceivedaplasmasamplewiththreedifferentconcen- trations of MVs and studied it using the same batch of antibodies for MVs staining. The results confirmed that calibrationstrategyusingbeadsisusefulandthequantifica- tion of MVs by flow cytometry is influenced not only by analytical factors(i.e.laser, antibodies,devicetype,calibra- tionofinstruments),butalsofactorsrelatedtotheprepara- tion and storageof the sample.These studieshave shown thatthe standardizationof platelet-derivedMVsquantifica- tion usingflow cytometryispossible,butdependsonboth theintrinsiccharacteristicsoftheflowcytometeraswellas calibration strategy. The calibration beads are useful stan- dards thatallow for the qualification of thedevice, but do notconstituteauniversalstandardinquantificationofMVs.

The attempts to standardize quantification of MVs using TableIII–AntigensusedtoidentifyspecificMVssubsetsaccordingtocelloforigin

MVsubtype Antigen Alternativename

CD41 GPIIb

Platelet-derivedMVs CD42a GPIX

CD42b GPIba

CD61a GPIIIa

CD62Pa P-selectin

Eythrocyte-derivedMVs CD235a GlycophorinA

Leukocyte-derivedMVs CD45 Pan-lymphocyteantigen

Monocyte-derivedMVs CD14a LPSreceptor

Neutrophil-derivedMVs CD66b

Lymphocyte-derivedMVs CD4a

CD8a CD19 CD20

Endothelium-derivedMVs CD31a PECAM-1

CD62E E-selectin

CD105a Endoglin

CD144 VE-cadherin

CD146a Muc18

a Sharedantigenwithothercelltype.

(10)

TableIV–TheadvantagesanddisadvantagesofthemethodsusedtodetectMVs

Method Advantages Disadvantages

Opticalmicroscopy -sizeassessment

-morphologyassessment -numberofMVs

-timeconsuming -lowthroughput

-itisnotpossibletomeasurethesizeand morphologyofMVsoflessthan200nm Fluorescentmicroscopy -sizeassessment

-numberofMVs

-timeconsuming -lowthroughput

DLS -sizeassessment

-measurementoftherelativeand absoluteMVssizedistribution -fast

-itdoesnotprovideinformationonthe biochemicalcompositionandcellorigin -lessaccurateinthepolydispersionsamples -mayexcludesmallMVs

Flowcytometry -allowsanalysisofalargenumberof MVsinashortperiodoftime -numberassessment -determinationoforigin -sizeassessment -availability

-smallsamplevolume

-analysisofdifferentsubtypesofMVsat thesametime

-possibilitytousemultiplemarkersfor thedeterminationoftheoriginofthe MVs

-inaccuratefor100–400nmparticles -smallMVsmaycountasone

-doesnotprovidedetailedinformationonthe morphologyofthecells

-determinationoftheoriginoftheMVs dependsonthespecificityoftheantibody

NTAandF-NTA -precisemeasurements

-assessmentofthenumberofMVs -determinationoftheabsoluteandthe relativedistributionofMVs

-detectionofsmallparticles -analysisofsamplesinsuspension -fast

-incombinationwithdetectionof fluorescenceallowstoassesstheorigin oftheMVs

-limitedavailability -timeconsuming

-requiresclean-upofthesamplefromcell debrisandplasmaproteins

Ramanspectroscopy -sizeassessment

-assessmentofthenumberofMVs -determinationofthebiochemical compositionwithoutstaining

-limitedavailability -timeconsuming -expensive

STED -sizeassessment

-morphologyassessment

-limitedavailability -timeconsuming -requiresimprovement

LSCM -determinationoforigin

-sizeassessment

-timeconsuming

-itisnotsuitableforthedeterminationofMVs inplasma

TEM -highresolution

-sizeassessment -morphologyassessment

-phenotypeassessmentusingcolloidal goldlabeling

-limitedavailability

-inabilitytodeterminethenumberofMVs -requiresdehydrationandfixationofthe sample,

-notsuitablefordirectdetectionofMVsin plasma

-timeconsuming

AFM -assessmentofthenumberofMVs

-determinationoforigin

-accuratemeasuringwithathree- dimensionalviewoftheMVstructure, -highresolution

-detectionofsingleMVs

-detectioninliquidallowingtokeepthe sampleinphysiologicalcondition

-limitedavailability

-determinationoftheoriginoftheMVs requiresusingthesurfacecoatedwith antibodies

-requiresisolationofthesamplebeforethe analysis

-artifactsduetoimpuritiesandplasma proteins

-lowthroughput -timeconsuming Impedance-basedflowcytometry -fast

-assessmentofthenumberofMVs -sizeassessment

-measurementdirectlyintheplasma

-doesnotprovidebiochemicalinformation -MVslessthan300nmaredetectedwith lowerefficacy

WB -determinationoforigin

-semi-quantitativemethod

-inabilitytodeterminethenumberofMVs -requiresalargesamplesize

(11)

flow cytometry failed [82]. In 2014, ISTH SSC Vascular Biology ISTH launched a new initiative to standardize the cytometricmethod,however,theresultsofthis studyhave notbeenannouncedyet[55].ThenextstepmadebyISTHis to standardize quantification of MVs smaller than 300nm [84].

Toanalyze MVsinclinical diagnosticsit isnecessaryto standardizenotonlydevice settingsbut alsopre-analytical conditions[79].Despitesignificantprogressintheanalytical phase, many pre-analytical variables may have a critical impact on the determination of MVs, i.e. blood collection, centrifugation conditions, the use of fresh/frozen samples [37, 38]. Therefore, themain priorityis tostandardize pre- analytical conditions. In 2015, in addition to attempts to standardize the analytical conditions, ISTH attempted to standardizepre-analytical conditionsfor the determination of platelet-derived MVs [85]. Two pre-analytical protocols have been used: any protocol used by the laboratory or a specific protocol common for all laboratories. In the common protocol, the blood was taken on an empty stomach in themorning from 08:00to11:00, byvenipunc- ture at ulnar flexion with 21 gauge needle and light tourniquet.Thebloodwasdrawntoaplastictubescontain- ingcitrate (3.2%)at aminimumvolumeof 3.5ml.Thefirst 2–3mlofbloodwerediscardedandthesamplesweregently mixed. The samples were transported in a transport con- tainer, in a stable vertical position and stored at room temperature(20–248C).Time tothefirstcentrifugationwas maximum2h.Thesampleswerespundownat2500g,at room temperature, for 15min. The plasma was collected gently toa plastic tubeleaving 1cm,and then centrifuged

for a second time at 2500g, at room temperature, for 15min.Theplasmawasfrozeninliquidnitrogenandstored at 808Cuntilanalysis.Theuse ofthisprotocolallowedto reduce interlaboratoryvariability, however,itstillremained too high to implement the method into routine clinical practice.Lowreproducibilityof theresultsisobservedeven in cases when a specific pre-analytical protocol is strictly implemented,whatsuggeststhatthereareother, unidenti- fied parametersinfluencing the number of MVs. Moreover, thereisaneedtostandardizespecificpre-analyticalcondi- tions for varioussubpopulations ofMVs,includingerythro- cyte-,leukocyte-andendothelium-derivedMVs[82,85].

Inthelast5years,2methodsofreproducibledetermina- tion of platelet-derived MVs in plasma samples werepre- sented. Both methods are based on flow cytometry with reference beads of various sizes. Both systems provide reproducible method for the analysis of platelet-derived MVs. However, these methods work only on certain cyt- ometers, which is incompatible with the requirements of standardization[84].

Conclusions

Various methods are used to analyze MVs, and each of them has some pros and cons – see Table IV. These methodsare oftendifficulttoaccess,low-throughputor do not provide both qualitative and quantitative data. The exactmeasurementoftheMVsisdifficultduetothelackof standardizedtestingmethods.TheresultsofMVsmeasure- mentsvarybetweendifferentlaboratories,notonlybecause TableIV (Continued)

Method Advantages Disadvantages

ELISA -determinationoforigin

-assessmentofthenumberofMVs -availability

-highthroughput

-therearenolimitstothesizeofthe measuredparticles

-measurementdirectlyintheplasma

-inabilitytodeterminethenumberofMVs -doesnotallowtheanalysisofallMVs -detectssolubleantigens

-requiretheuseoffreshplasma

-doesnotgiveinformationonthesizeand totalnumberofMVsinplasma

-quantitativeassessmentbasedonthe presenceofasingleantigen

Functionalassays -availability

-theassessmentofbiologicalactivity -determinationoftherelativenumberof MVs

-easytoperform

-measurementofallMVsregardlessof thesizeandorigin

-possibletostudyalargenumberof samples

-inabilitytodeterminethesizeofMVs -inabilitytodeterminetheoriginofMVs -indirectquantification

-measuresasignlebiologicalactivity

SPRI -quantitativeassay

-sizeassessment

-noneedtpstainthesample -detectssmallMVs

-doesnotprovidedetailedinformationonthe morphologyofthecells

-identificationofsmall-sizedMVspossible whilesimultaneouslyusingfluorescent microscopy

SALDI-MS -highthroughput

-allowstoassesssmallsizeMVs -thepossibilitytoanalyzeMVsin variousbiologicalfluids,

-nosamplepreparation -determinationoforigin

-inabilitytodeterminethenumberofMVs -requiresimprovementtobeusedinthe assessmentoftheMVs

(12)

of thediscrepancies inthe pre-analyticalsteps,but alsoin the analytical methods used to measure the MVs [10].

Reviewoftheliteratureclearlyindicatestheneedforfurther development of the MVs studies. Measuring the MVs in reproducible way is still a challenge. Characterization of MVsremainsdifficultduetothesmallsizeanddiversityof the particles in terms of their phospholipid content and antigen profile. In addition, there is still no agreement regardingthebestmarkerstodefinesubpopulationsofMVs derived from vascular endothelium, leukocytes or tumor, which has the highest predictive value [8]. Considering all themethodsmentionedabove,flowcytometryseemstobe thebest techniqueto studyMVsbecauseof the possibility of multiparametric analysis. It provides notonly quantita- tive, but also qualitative information, thereby it allows to identify the origin of cell-derived MVs and despite many limitationsitstillremainsthemostcommonlyusedtechni- quefor the detectionand analysisof the MVs[50]. Micro- scopic methods, ELISA, and functional tests are routinely used, although they do not offer the same high-quality informationasflowcytometry.MeasurementofMVscanbe crucialinthediagnosis andtherapyof manydiseases,and the ability to comparethe obtained data isa necessary to explorethefullpotentialoftheMVs.However,standardiza- tionof methods usedtoanalyze MVsisrequiredtoimple- mentMVsassessmentintoclinicalpractice.

Authors’ contributions/ Wkład autorów

Accordingtoorder.

Conflict of interest/ Konflikt interesu

Nonedeclared.

Financial support/ Finansowanie

Nonedeclared.

Ethics/ Etyka

Theworkdescribedinthis articlehave beencarriedout in accordance with TheCode of Ethics of the World Medical Association(Declaration of Helsinki)for experimentsinvol- ving humans; EU Directive 2010/63/EU for animal experi- ments;UniformRequirementsformanuscriptssubmittedto Biomedicaljournals.

references/ pi smiennictwo

[1] MooberyMJ,KeyNS.Microparticleanalysisindisordersof hemostasisandthrombosis.Cytometry2016;89:111–122.

[2] BudajM,PoljakZ,ĎurišI,KaškoM,ImrichR,KopániM, etal.Microparticles:acomponentofvariousdiseases.Pol ArchMedWewn2012;122:24–29.

[3] PaudelKR,PanthN,KimDW.Circulatingendothelial microparticles:akeyhallmarkofatherosclerosis

progression.Scientifica2016.http://dx.doi.org/10.1155/2016/

8514056.9pp.,ArticleID8514056.

[4] MaślankaK.Fizjologicznaipatogennaaktywność

mikrocząstekbłonkomórkowych.JTransfusMed2010;1:9–

17.

[5] GeldermanMP,SimakJ.Flowcytometricanalysisofcell membraneparticles.MethodsMolBiol2008;484:79–93.

[6] BerezinAE.Thebiosensingofmicroparticles:benefitsand perspectives.JDiabetesEndocrinol2015;1:31–34.

[7] PiccinA,MurphyWG,SmithOP.Circulatingmicroparticles:

pathophysiologyandclinicalimplications.BloodRev 2007;21:157–171.

[8] LacroixR,DuboisC,LeroyerAS,SabatierF,Dignat-GeorgeF.

Revisitedroleofmicroparticlesinarterialandvenous thrombosis.JThrombHaemost2013;11:24–35.

[9] BurnierL,FontanaP,KwakBR,Angelillo-ScherrerA.Cell- derivedmicroparticlesinhaemostasisandvascular medicine.ThrombHaemost2009;101:439–451.

[10] SalehHA,KabeerBS.Microparticles:biomarkersand effectorsinthecardiovascularsystem.GlobCardiolSci Pract2015;38.http://dx.doi.org/10.5339/gcsp.2015.38.

[11] NavasiolavaNM,Dignat-GeorgeF,SabatierF,LarinaIM, DemiotC,FortratJO,etal.Enforcedphysicalinactivity increasesendothelialmicroparticlelevelsinhealthy volunteers.AmJPhysiolHeartCircPhysiol2010;299:H248–

H256.

[12] MorelO,JeselL,FreyssinetJM,TotiF.Cellularmechanisms underlyingtheformationofcirculatingmicroparticles.

ArteriosclerThrombVascBiol2011;31:15–26.

[13] MaślankaK,MichurH,Smoleńska-SymG.Mikrocząstki błonkomórkowych.ActaHaematolPol2009;40:481–491.

[14] CognasseF,Hamzeh-CognasseH,LaradiS,ChouML, SeghatchianJ,BurnofT,etal.Theroleofmicroparticlesin inflammationandtransfusion:aconcisereview.Transfus ApherSci2015.http://dx.doi.org/10.1016/j.

transci.2015.10.013.

[15] ShetAS.Characterizingbloodmicroparticles:technical aspectsandchallenges.VascHealthRiskManag2008;4:769–

774.

[16] MaceyMG,EnniksN,BevanS.Flowcytometricanalysisof microparticlephenotypeandtheirroleinthrombin generation.Cytometry2011;80B:57–63.

[17] SierkoE,SokółM,WojtukiewiczMZ.Mikropęcherzyki pochodzeniaśródbłonkowego(EMP)rolawfizjologiii patologii.PostępyHigMedDośw2015;69:925–932.

[18] RubinO,CanelliniG,DelobelJ,LionN,TissotJD.Redblood cellmicroparticles:clinicalrelevance.TransfusMed Hemother2012;39:342–347.

[19] KozumaY,SawahataY,TakeiY,ChibaS,NinomiyaH.

Procoagulantpropertiesofmicroparticlesreleasedfromred bloodcellsinparoxysmalnocturnalhaemoglobinuria.BrJ Haematol2011;152:631–639.

[20] GyörgyB,SzabóTG,PásztóiM,PálS,MisjákP,AradiB,etal.

Membranevesicles,currentstate-of-the-art:emergingrole ofextracellularvesicles.CellMolLifeSci2011;68:2667–2688.

[21] LaffontB,CorduanA,PléH,DuchezAC,CloutierN,Boilard E,etal.ActivatedplateletscandelivermRNAregulatory Ago2microRNAcomplexestoendothelialcellsvia microparticles.Blood2013;122(2):253–263.

[22] Pérez-CasalM,DowneyC,FukudomeK,MarxG,TohCH.

ActivatedproteinCinducesthereleaseofmicroparticle- associatedendothelialproteinCreceptor.Blood 2005;105:1515–1522.

[23] StępieńE,Targosz-KoreckaM.Mikrocząstkiwregulacji funkcjiśródbłonka.PostBiochem2013;59(4):395–404.

[24] BuzasEI,GyörgyB,NagyG,FalusA,GayS.Emergingroleof extracellularvesiclesininflammatorydiseases.NatRev

(13)

Rheumatol2014.http://dx.doi.org/10.1038/

nrrheum.2014.19.

[25] ReidVL,WebsterNR.Roleofmicroparticlesinsepsis.BrJ Anaesth2012;1–12.http://dx.doi.org/10.1093/bja/aes32.

[26] NomuraS,OzakiY,IkedaY.Functionandroleof microparticlesinvariousclinicalsettings.ThrombRes 2008;123:8–23.

[27] BosmanG,LasonderE,LutenM,Roerdinkholder-

StoelwinderB,NovotnýV,BosH,etal.Theproteomeofred cellmembranesandvesiclesduringstorageinbloodbank conditions.Transfusion2008;48:827–835.

[28] CauwenberghsS,FeijgeM,HarperA,SageS,CurversJ, HeemskerkJ.Sheddingofprocoagulantmicroparticlesfrom unstimulatedplateletsbyintegrin-mediated

destabilizationofactincytoskeleton.FEBSLett 2006;580:5313–5320.

[29] SadallahS,EkenC,SchifferliJA.Erythrocyte-derived ectosomeshaveimmunosuppressiveproperties.JLeukBiol 2008;84:1316–1325.

[30] MorrellCN.Immunomodulatorymediatorsinplatelet transfusionreactions.ASHEducBook2011;1:470–474.

http://dx.doi.org/10.1182/asheducation-2011.1.470.

[31] BelizaireRM,PrakashPS,RichterJR,RobinsonBR,Edwards MJ,CaldwellCC,etal.Microparticlesfromstoredredblood cellsactivateneutrophilsandcauselunginjuryafter hemorrhageandresuscitation.JAmCollSurg 2012;214:648–657.

[32] MuszynskiJ,NateriJ,NicolK,GreathouseK,HansonJ,Hall M.Immunosuppressiveeffectsofpackedredbloodcellson monocytesarerelatedtobothstoragetimeandstorage solution.Transfusion2012;52:794–802.

[33] BartenevaN,GengJ,HartwigJH,MaguirePB,WagnerDD.

Differentialstimulationofmonocyticcellsresultsin distinctpopulationsofmicroparticles.JThrombHaemost 2009;7:1019–1028.

[34] BurgerP,KostovaE,BloemE,Hilarius-StokmanP,Meijer AB,vandenBergTK,etal.Potassiumleakageprimesstored erythrocytesforphosphatidylserineexposureand sheddingofpro-coagulantvesicles.BrJHaematol 2013;160:377–386.

[35] BurgerD,SchockS,ThompsonCS,MontezanoAC,Hakim AM,TouyzRM.Microparticles:biomarkersandbeyond.Clin Sci2013;124:423–441.http://dx.doi.org/10.1042/CS20120309.

[36] JyW,HorstmanLL,JimenezJJ,AhnYS.Measuring circulatingcell-derivedmicroparticles.JThrombHaemost 2004;2:1842–1851.

[37] LacroixR,JudiconeC,PonceletP,RobertS,ArnaudL, SampolJ,etal.Impactofpre-analyticalparametersonthe measurementofcirculatingmicroparticles:towards standardizationofprotocol.JThrombHaemost 2011;10:437–446.

[38] YuanaY,BertinaRM,OsantoS.Pre-analyticaland analyticalissuesintheanalysisofbloodmicroparticles.

ThrombHaemost2011;105:396–408.

[39] MullierF,BaillyN,ChatelainC,DognéJM.Pre-analytical issuesinthemeasurementofcirculatingmicroparticles:

currentrecommendationsandpendingquestions.J ThrombHaemost2013;11:693–696.

[40] PonceletP,RobertS,BaillyN,Garnache-OttouF,BouricheT, DevaletB,etal.Tipsandtricksforflowcytometry-based analysisandcountingofmicroparticles.TransfusApherSci 2015.http://dx.doi.org/10.1016/j.transci2015.10.008.

[41] RobertS,PonceletP,LacroixR,ArnaudL,GiraudoL, HauchardA,etal.Standardizationofplatelet-derived microparticlescountingusingcalibratedbeadsanda CytomicsFC500routineflowcytometer:afirststeptowards multicenterstudies?JThrombHaemost2008;7:190–197.

[42] vanDerPolE,HoekstraAG,SturkA,OttoC,vanLeeuwen TG,NieuwlandR.Opticalandnon-opticalmethodsfor

detectionandcharacterizationofmicroparticlesand exosome.JThrombHaemost2010;8:2596–2607.

[43] NomuraS,ShimizuM.Clinicalsignificanceofprocoagulant microparticles.JIntensiveCare2015;3:2.http://dx.doi.org/

10.1186/s40560-014-0066-z.

[44] DragovicRA,GardinerC,BrooksAS,TannettaDS,Ferguson DJ,DobsonPJ,etal.Sizingandphenotypingofcellular vesiclesusingNanoparticleTrackingAnalysis.

Nanomedicine2011;7:780–788.

[45] FilipeV,HaweA,JiskootW.Criticalevaluationof

NanoparticleTrackingAnalysis(NTA)byNanoSightforthe measurementofnanoparticlesandproteinaggregates.

PharmRes2010;27:796–810.

[46] BerezinAE,MoknachRE.Theapproachestonone-invasive detectionofcell-derivedextracellularvesicles.BiolMark GuidedTher2016;3(1):155–175.http://dx.doi.org/10.12988/

bmgt.2016.6516.

[47] NguyenDB,LyTB,WesselingMC,HittingerM,TorgeA, DevittA,etal.Characterizationofmicrovesiclesreleased fromhumanredbloodcells.CellPhysiolBiochem 2016;38:1085–1099.

[48] BriensA,GaubertiM,ParcqJ,MontanerJ,VivienD,Martinez deLizarrondoS.Nano-zymographyusinglaser-scanning confocalmicroscopyunmasksproteolyticactivityofcell- derivedmicroparticles.Theranostics2016;6:610–626.

[49] BurnoufT,GoubranHA,ChouML,DevosD,RadosevicM.

Plateletmicroparticles:detectionandassessmentoftheir paradoxicalfunctionalrolesindiseaseandregenerative medicine.BloodRev2014;28:155–166.

[50] LacroixR,RobertS,PonceletP,Dignat-GeorgeF.

Overcominglimitationsofmicroparticlemeasurement byflowcytometry.SeminThrombHaemost2010;36 (8):807–818.

[51] vanderPolE,CoumansF,VargaZ,KrumreyM,Nieuwland R.Innovationindetectionofmicroparticlesandexosomes.

JThrombHaemost2013;11:36–45.

[52] LynchSF,LudlamCA.Plasmamicroparticlesandvascular disorders.BrJHaematol2007;137:36–48.

[53] ShantsilaE,Montoro-GarcíaS,GallegoP,LipG.Circulating microparticles:challengesandperspectivesofflow cytometricassessment.ThrombHaemost2014;111:1009–

1014.

[54] vanderPolE,vanGemertMJ,SturkA,NieuwlandR,van LeeuwenTG.Singleversusswarmdetectionof

microparticlesandexosomesbyflowcytometry.JThromb Haemost2012;10:919–930.

[55] vanderPolE,BöingAN,GollEL,NieuwlandR.Recent developmentsinthenomenclature,presence,isolation, detectionandclinicalimpactofextracellularvesicles.J ThrombHaemost2016;14:48–56.

[56] Momen-HeraviF,BalajL,AlianS,TiggesJ,ToxavidisV, EricssonM,etal.Alternativemethodsofcharacterizationof extracellularvesicles.FrontPhysiol2012;3:35.

[57] BerezinAE,MoknachRE.Thepromises,methodological discrepanciesandpitfallsinmeasurementofcell-derived extracellularvesiclesindiseases.JBiotechnolBiomater 2016;6:2.http://dx.doi.org/10.4172/2155-952X.1000232.

[58] HeinB,WilligKI,HellSW.Stimulatedemissiondepletion (STED)nanoscopyofafluorescentprotein-labeledorganelle insidealivingcell.ProcNatlAcadSciUSA2008;105:14271–

14276.

[59] DaleGL,RemenyiG,FrieseP.Quantitationofmicroparticles releasedfromcoated-platelets.JThrombHeamost 2005;3:2081–2088.

[60] BernimoulinM,WatersEK,FoyM,SteeleBM,SullivanM, FaletH,etal.Quantitationofmicroparticlesreleasedfrom coated-platelets.JThrombHaemost2005;3:2081–2088.

[61] BartenevaNS,Fasler-KanE,BernimoulinM,SternJ, PonomarevED,DuckettL,etal.Circulatingmicroparticles:

(14)

squarethecircle.BMCCellBiol2013;14:23.http://dx.doi.org/

10.1186/1471-2121-14-23.

[62] GyörgyB,MódosK,PállingerÉ,PálócziK,PásztóiM,Misják P,etal.Detectionandisolationofcell-derived

microparticlesarecompromisedbyproteincomplexes resultingfromsharedbiophysicalparameters.Blood 2011;117:39–48.

[63] HooCM,StarostinN,WestP,MecartneyML.Acomparison ofatomicforcemicroscopy(AFM)anddynamiclight scattering(DLS)methodstocharacterizenanoparticlesize distributions.JNanopartRes2008;10:89–96.

[64] YuanaY,OosterkampTH,BahatyrovaS,AshcroftB,Garcia RodriguezP,BertinaRM,etal.Atomicforcemicroscopy:a novelapproachtodetectnanosizedbloodmicroparticles.J ThrombHaemost2009;8:315–323.

[65] ZwickerJ,LiebmanHA,NeubergD,LacroixR,BauerKA, FurieBC,etal.Tumor-derivedtissuefactor-bearing microparticlesareassociatedwithvenousthromboembolic eventsinmalignancy.ClinCancerRes2009;15:6830–6840.

[66] StreetJM,BarranPE,MackayL,WeidtS,BalmforthC,Walsh TS,etal.Identificationandproteomicprofilingofexosomes inhumancerebrospinalfluid.JTranslMed2012;10:5.http://

dx.doi.org/10.1186/1479-5876-10-5.

[67] NomuraS.Measuringcirculatingmicroparticles.JThromb Haemost2004;2:1847–1848.

[68] NomuraS,ShouzuA,TaomotoK,ToganeY,GotoS,Ozaki Y,etal.AssessmentofanELISAKitforplatelet-derived microparticlesbyjointresearchatmanyinstitutesinJapan.

JAtherosclerThromb2009;16:878–887.

[69] Al-MassaraniG,Vacher-CoponatH,PaulP,ArnaudL, LoundouA,RobertS,etal.Kidneytransplantation decreasesthelevelandprocoagulantactivityofcirculating microparticles.AmJTransplant2009;9:550–557.

[70] HugelB,ZobairiF,FreyssinetJM.Measuringcirculatingcell- derivedmicroparticles.JThrombHaemost2004;2:1846–1847.

[71] Al-MassaraniaG,Vacher-CoponataH,PaulaP,ArnaudaL, LoundoudA,RobertaS,etal.Kidneytransplantation decreasesthelevelandprocoagulantactivityofcirculating microparticles.AmJTransplant2009;9:550–557.

[72] ThalerJ,AyC,PabingerJ.Clinicalsignificanceofcirculating microparticlesforvenousandthrombo-embolismincancer patients.Hamostaseologie2012;32:127–131.

[73] PetersonAW,HalterM,TonaA,PlantAL.Highresolution surfaceplasmonresonanceimagingforsinglecells.BMC CellBiol2014;15:35.

[74] PetersonAW,HalterM,TonaA,BhadrirajuK,PlantAL.

Usingsurfaceplasmonresonanceimagingtoprobe

dynamicinteractionsbetweencellsandextracellular matrix.Cytometry2010;77A:895–903.

[75] ShpacovitchV.Applicationofsurfaceplasmonresonance (SPR)forthedetectionofsinglevirusesandsinglebiological nano-objects.JBacteriolParasitol2012;3:e110.

[76] ZybinA,KuritsynYA,GurevichEL,TemchuraVV,ÜberlaK, NiemaxK.Real-timedetectionofsingleimmobilized nanoparticlesbysurfaceplasmonresonanceimaging.

Plasmonics2010;5:31–35.

[77] MauseSF.Microparticlesasintercellularcarriersofthe microRNAsignal:insightsfornoveldiagnosticand therapeuticapproaches.ThrombHaemost2016;115:236.

http://dx.doi.org/10.1160/TH16-01-0013.

[78] RubinO,CrettazD,CanelliniG,TissotJD,LionN.

Microparticlesinstoredredbloodcells:anapproachusing flowcytometryandproteomictools.VoxSanguinis 2008;95:288–297.

[79] PiccinA,VanSchilfgaardeM,SmithO.Theimportanceof studyingredbloodcellsmicroparticles.BloodTransfus 2015;13:172–173.

[80] ShiJ,HeegaardCW,RasmussenJT,GilbertGE.Lactadherin bindsselectivelytomembranescontainingphosphatidyl-L- serineandincreasedcurvature.BiochemBiophysActa 2004;1667:82–90.

[81] Perez-PujolS,MarkerPH,KeyNS.Plateletmicroparticlesare heterogeneousandhighlydependentontheactivation mechanism:studiesusinganewdigitalflowcytometer.

CytometryA2007;71:38–45.

[82] LacroixR,RobertS,PonceletP,KasthuriRS,KeyNS,Dignat- GeorgeF.Standardizationofplatelet-derivedmicroparticle enumerationbyflowcytometrywithcalibratedbeads:

resultsoftheInternationalSocietyonThrombosisand HaemostasisSSCCollaborativeworkshop.JThromb Haemost2010;8:2571–2574.

[83] ChristerssonC,JohnellM,SiegbahnA.Evaluationof microparticlesinwholebloodbymulticolourflow cytometryassay.ScandJClinLabInvest2013;73:229–239.

[84] PonceletP,RobertS,BouricheT,BezJ,LacroixR,Dignat- GeorgeF.Standardizedcountingofcirculating

microparticlesusingcurrentlyavailableflowcytometers andscatter-basedtriggering:forwardorsidescatter.

Cytometry2016;89A:148158.

[85] LacroixR,JudiconeC,MooberryM,BoucekineM,KeyNS, Dignat-GeorgeF.Standardizationofpre-analytical variablesinplasmamicroparticledetermination:resultsof theInternationalSocietyonThrombosisandHaemostasis SSCCollaborativeworkshop.JThrombHaemost2015.

Cytaty

Powiązane dokumenty

Na podstawie uzyska- nych wyników rozpoczęły się badania III fazy — Check- Mate-026, porównujące skuteczność niwolumabu do dowolnego schematu chemioterapii I linii (495 chorych)

Toczą się także badania kliniczne III fazy u chorych na zaawansowanego raka nerki (CALGB 90206) oraz niedrobnokomórkowego raka płuca [36, 42].. Wstępne wyniki badania ECOG 4599

Biorąc pod uwagę powyższe, celem pracy była ocena aktywności enzymu TP w cytozolu komórek endometrium prawidłowego i nowotworowego oraz skorelowanie tej aktywno- ści z

Nagłe pogorszenie się stanu zdrowia (np. w postaci ostrej niewydolności nerek) u chorego na MGUS może wskazywać nie tylko na progresję MGUS do PCM, ale także rozwój amyloidozy,

For AP antigen, the frequency of elevated antibody concentration was 14% among intermittently infected patients (Group 2) and 62% among chronically infected

Platelet surface expression of CD62P did not differ significantly between platelets in direct con- tact with simvastatin or atorvastatin pre-incubated endothelial cells compared

Nasze dotychczasowe do świadczenia wskazuj ą, że dla krwinek czerwonych przechowywanych jako jednostki KKCz lub UKKCz trzeba opracować własne procedury izolacji ich od

Safety and efficacy of ofatumumab, a fully human monoclonal anti‑CD20 antibody, in patients with relapsed or refractory B‑cell chronic lymphocytic