• Nie Znaleziono Wyników

Prof. Krzysztof Turzyński: Zrozumiały Wszechświat – Nobel 2019 | Zapytaj Fizyka

N/A
N/A
Protected

Academic year: 2021

Share "Prof. Krzysztof Turzyński: Zrozumiały Wszechświat – Nobel 2019 | Zapytaj Fizyka"

Copied!
35
0
0

Pełen tekst

(1)

Zrozumiały

Wszechświat

NOBEL 2019

(2)

Mikołaj Kopernik

1473 – 1543

1514

De Hypothesibus motuum coelestium… rozprawa

odnotowana w inwentarzu Macieja z Miechowa

1532

W zasadzie gotowy opis świata

1539-41

Wizyta Georga Joachima von Lauchena (Retyka),

który opracował streszczenie (wyd. 1540, Gdańsk) i zawiózł

rękopis do Norymbergi

1543

De revolutionibus orbium coelestium wychodzi drukiem

Ja w każdym razie mniemam, że ciężkość nie jest niczym innym,

jak tylko naturalną dążnością, którą boska opatrzność Stwórcy

wszechświata nadała częściom po to, żeby łączyły się w jedność

i całość, skupiając się razem w kształt kuli. A jest rzeczą godną

wiary, że taka dążność istnieje również w Słońcu, Księżycu

i innych świecących planetach, po to, by na skutek jej działania

trwały w tej krągłości, w jakiej nam się przedstawiają;

a niezależnie od tego w wieloraki sposób wykonują one swe ruchy

krążące.

Rys. B. Dwużnik, M. Szypuła

(3)

Galileusz

1564 – 1642

(Galileo Galilei)

1589

stanowisko profesora matematyki na uniwersytecie w Pizie

1590

De Motu, doświadczenia ze spadkiem ciał

1592

przenosiny do Padwy

1609

obserwacje nieba własnoręcznie wykonaną lunetą

góry na Księżycu

gwiazdy Drogi Mlecznej

księżyce Jowisza

plamy na Słońcu, kształt Saturna, fazy Wenus

Sidereus Nuncius

12 III 1610

1623

Il Saggiatore – polemika z antagonistami

Filozofia zapisana jest w tej ogromnej księdze, którą

mamy stale otwartą przed naszymi oczami; myślę

o wszechświecie; jednakże nie można jej zrozumieć, jeśli

się wpierw nie nauczymy rozumieć języka i pojmować

znaki, jakimi została zapisana. Zapisana zaś została

w języku matematyki, a jej literami są trójkąty, koła

i inne figury geometryczne…

1610

nadworny matematyk Wielkiego Księcia Toskanii

ilustracje: Wikipedia

(4)

James Peebles

ur. 1935

2019

Nagroda Nobla z fizyki

za odkrycia teoretyczne w zakresie kosmologii fizycznej

(5)

Zrozumiały

Wszechświat

(6)
(7)
(8)

= a(t)

0

E = hc/

⇥ =

0

a(t)

4

Podstawowe prawo ewolucji Wszechświata

(równanie Friedmanna-Lemaitre’a)

Względne tempo rozszerzania

się Wszechświata

gęstość energii

wypełniającej Wszechświat

jest tym większe,

im większa jest

własności czasoprzestrzeni

materia/energia

R

µ⌫

1

2

Rg

µ⌫

=

8⇡G

c

4

T

µ⌫

E

= 3mc

2

V

= V

0

0

= E/V

E

= 3mc

2

V

= a(t)

3

V

0

=

0

a(t)

3

pył (materia)

t

a t

“rozmiar”

Wszechświata

g¸esto´s´c

1

rozmiar

3

promieniowanie

g¸esto´s´c

1

rozmiar

4

(9)

D. Wilkinson

J. Peebles

R. Dicke

(10)

Bell Telephone Laboratories, ok. 1959

J. Pe eb le s, w yk ład n ob lo w sk i

(11)
(12)

Koncepcja Wielkiego Wybuchu

w połowie lat 60. – pytania

• 

Skąd we Wszechświecie wzięły się

poszczególne pierwiastki chemiczne?

• 

Czy mikrofalowe promieniowanie tła ma jakąś

szczególną strukturę?

• 

Z czego zbudowany jest Wszechświat?

• 

Jak powstały galaktyki i gromady galaktyk?

(13)

Cząstki we Wszechświecie

••

^ +

^

••

!

_ +

••

_

••

zazdrość

••

_ +

_

••

!

^ +

••

^

••

Schadenfreude

••

_ +

^

••

!

^ +

••

_

••

zazdrość/ Schadenfreude

••

_

••

^

••

_

••

_

••

_

••

_

••

_

••

^

••

^

••

^

••

^

••

^

••

^

••

^

••

^

••

^

••

_

••

_

N = N

^

••

+ N

_

••

H = N

^

••

N

_

••

P (

⇥ nr 1

••

!

⇤) = (N

••

••

^

1)

P (

⇤ nr 1

••

!

⇥) = (N

••

••

_

1)

N

^••

t

=

1

2

N

^••

P (

••

!

⇥) +

••

1

2

N

_••

P (

••

!

••

)

H

t

(N

2

••

^

N

2

••

_

) =

N H

t H

(14)

••

^ +

^

••

!

_ +

••

_

••

••

_ +

^

••

!

^ +

••

_

••

zazdrość

••

_ +

_

••

!

^ +

••

^

••

Schadenfreude

zazdrość/ Schadenfreude

••

_

••

_

••

^

N = N

^

••

+ N

_

••

H = N

^

••

N

_

••

P (

⇥ nr 1

••

!

⇤) = (N

••

••

^

1)

N

^••

t

=

1

2

N

^••

P (

••

!

⇥) +

••

1

2

N

_••

P (

••

!

••

)

H

t

=

↵N

2

••

^

=

4

(N + H)

2

H

! N

Cząstki we Wszechświecie

(15)

••

^ +

^

••

!

_ +

••

_

••

••

_ +

_

••

!

^ +

••

^

••

••

_ +

^

••

!

^ +

••

_

••

zazdrość

Schadenfreude

zazdrość/ Schadenfreude

••

_

••

_

••

^

N = N

^

••

+ N

_

••

H = N

^

••

N

_

•• t H

Uwzględnienie zmniejszającej się

w czasie gęstości i energii cząstek.

duża gęstość,

szybkie cząstki

wiele oddziaływań

mała gęstość,

powolne cząstki

brak oddziaływań

Cząstki we Wszechświecie

(16)

Nukleosynteza

powstanie pierwiastków

G. Gamov

F. Hoyle

(17)

Nukleosynteza

(18)

1 MeV

0.1 MeV

T

t

1s

2’

n

p

spada z 1/6 do 1/7

0.03 MeV

i wiele innych reakcji

neutrony trafiają do jąder

4

He

bariera

kulombowska

Nukleosynteza

n + ⌫

$ p

+

+ e

p

+

+ n

! D +

2,2 MeV

p

+

+ n

! D +

2,2 MeV

(19)

Nukleosynteza

Peebles 1966

(20)

Mikrofalowe promieniowanie tła

13,6 eV

0,000235 eV 2,73 K

(21)

52

SCIENTIFIC AMERICAN FEBRUARY 2004

BRYAN

CHRISTIE

DESIGN

GRAVITATIONAL MODULATION

INFLUENCE OF DARK MATTER

modulates the acoustic signals in

the CMB. After inflation, denser regions of dark matter that

have the same scale as the fundamental wave (represented as

troughs in this potential-energy diagram) pull in baryons and

photons by gravitational attraction. (The troughs are shown in

red because gravity also reduces the temperature of any

escaping photons.) By the time of recombination, about

380,000 years later, gravity and sonic motion have worked

together to raise the radiation temperature in the troughs

(blue) and lower the temperature at the peaks (red).

AT SMALLER SCALES,

gravity and acoustic pressure sometimes

end up at odds. Dark matter clumps corresponding to a

second-peak wave maximize radiation temperature in the troughs long

before recombination. After this midpoint, gas pressure pushes

baryons and photons out of the troughs (blue arrows) while

gravity tries to pull them back in (white arrows). This tug-of-war

decreases the temperature differences, which explains why the

second peak in the power spectrum is lower than the first.

Dark matter concentration Sonic motion Sonic motion Gravitational attraction Dark matter concentration Photon Baryon Gravitational attraction Photon Baryon

FIRST PEAK

Gravity and sonic motion

work together

SECOND PEAK

Gravity counteracts

sonic motion

JUST AFT

ER INFLAT

ION

na podst. Hu & White, Sci. Am. 2004

silniejsza

grawitacja

przyciąganie

grawitacyjne

ruch

cząstek

POCZĄTEK

temperatu

ra

foton

barion

Korelacje temperatury na

określonych skalach kątowych

REKOMBIN

ACJA

zimniej

cieplej

MOO J1142+1527

(22)

1970ApJ...162..815P

(23)

2013

Planck

T = 2,73 K

T

T

⇠ 10

5

T

T

< 0,64

· 10

3

Bracewell & Conklin 1967

(24)

D. Shane

et al.

Groth & Peebles 1977

(25)

Ciemna materia

(26)

Ciemna materia

Vera C. Rubin

390 VERA C. RUBIN AND W. KENT FORD, JR.

24 kpc are 1.66 X ll11 Mo (low minimum) and 1.67 X 1111 Mo (higher minimum); those for the mass in the nucleus to = 1 kpc are 5.2 X 109 Mo and 6.2 X 109 Mo, respectively. When these values are increased 10 percent to compensate for the assump- tion of a flat disk (Brandt 1960), the total mass is 1.8 X 1011 Mo out to 24 kpc. Also shown in Figure 10 are the variation in the mass surface density as a function of distance from the center, and the variation in the angular velocity, F/jR, as a function of R. Note that the solution with the high inner minimum has a positive mass density every- where. The solution with the low minimum has a negative surface density near 2? = 1 kpc. We take this to mean only that the density at this distance is vanishingly small for the low-minimum model.

Fig. 9.—Rotational velocities for OB associations in M31, as a function of distance from the center. Solid curve, adopted rotation curve based on the velocities shown in Fig. 4. For R < 12', curve is fifth- order polynomial; for R > 12', curve is fourth-order polynomial required to remain approximately flat near R — 120'. Dashed curve near i? = 10' is a second rotation curve with higher inner minimum. Various other rotation curves for the data in Figures 3 and 4 have been formed, all from least-squares solutions, with polynomials of third, fourth, or sixth order. In Figure 11 we show, superimposed, the fourteen rotation curves from the polynomial representa- tions. The various mass determinations from these rotation curves are listed in Table 4. Successive columns list the order of the polynomial, the resulting total mass, 1.1 times the mass, and the value of the maximum distance to which the mass has been deter- mined. The final columns list the depth of the inner minimum, and notes concerning the solutions.

It is apparent from the calculations that there is only a small spread in total mass out to i? = 24 kpc from all fourteen solutions. The shaded regions in Figure 12 indicate the range of masses which results from the fourteen rotation curves, as well as the range of surface densities. For the mass out to Æ = 24 kpc, a value of M = (1.68 ± 0.1) X ll11 Mg lies midway between all values. When this is increased 10 percent to compensate for the disk approximation, we obtain a mass M = (1.85 ± 0.1) X ll11 Mg out to

Æ = 24 kpc; the error is estimated from the total range in values. For the entire galaxy,

© American Astronomical Society • Provided by the NASA Astrophysics Data System

(27)

Ciemna materia

(28)

Ciemna materia

Vera C. Rubin

390 VERA C. RUBIN AND W. KENT FORD, JR.

24 kpc are 1.66 X ll11 Mo (low minimum) and 1.67 X 1111 Mo (higher minimum); those for the mass in the nucleus to = 1 kpc are 5.2 X 109 Mo and 6.2 X 109 Mo, respectively. When these values are increased 10 percent to compensate for the assump- tion of a flat disk (Brandt 1960), the total mass is 1.8 X 1011 Mo out to 24 kpc. Also shown in Figure 10 are the variation in the mass surface density as a function of distance from the center, and the variation in the angular velocity, F/jR, as a function of R. Note that the solution with the high inner minimum has a positive mass density every- where. The solution with the low minimum has a negative surface density near 2? = 1 kpc. We take this to mean only that the density at this distance is vanishingly small for the low-minimum model.

Fig. 9.—Rotational velocities for OB associations in M31, as a function of distance from the center. Solid curve, adopted rotation curve based on the velocities shown in Fig. 4. For R < 12', curve is fifth- order polynomial; for R > 12', curve is fourth-order polynomial required to remain approximately flat near R — 120'. Dashed curve near i? = 10' is a second rotation curve with higher inner minimum. Various other rotation curves for the data in Figures 3 and 4 have been formed, all from least-squares solutions, with polynomials of third, fourth, or sixth order. In Figure 11 we show, superimposed, the fourteen rotation curves from the polynomial representa- tions. The various mass determinations from these rotation curves are listed in Table 4. Successive columns list the order of the polynomial, the resulting total mass, 1.1 times the mass, and the value of the maximum distance to which the mass has been deter- mined. The final columns list the depth of the inner minimum, and notes concerning the solutions.

It is apparent from the calculations that there is only a small spread in total mass out to i? = 24 kpc from all fourteen solutions. The shaded regions in Figure 12 indicate the range of masses which results from the fourteen rotation curves, as well as the range of surface densities. For the mass out to Æ = 24 kpc, a value of M = (1.68 ± 0.1) X ll11 Mg lies midway between all values. When this is increased 10 percent to compensate for the disk approximation, we obtain a mass M = (1.85 ± 0.1) X ll11 Mg out to

Æ = 24 kpc; the error is estimated from the total range in values. For the entire galaxy,

© American Astronomical Society • Provided by the NASA Astrophysics Data System

Rubin & Ford 1966

(29)

Figure 4: Two diagrams from 1974 that plot the relation between the mass and the radius of

galactic systems.

Left: the mass of spiral galaxies as a function of radius by Ostriker, Peebles

and Yahil (1974), as determined by various methods. Mass is in units of 10

12

M

J

.

Right:

the relation between mass and radius of Einasto, Kaasik and Saar (1974). The dots represent

the observed values obtained from pairs of galaxies, on the basis of data of Page (1970) and

Karachentsev (1966). The dashed line represents the mass function of known stellar populations;

the dotted line is the implied mass distribution of the ‘dark’ corona; the solid line is the total mass

distribution. Reproduced from ref. 15, AAS/IOP (left); and ref. 16, Macmillan Publishers Ltd

(right).

faint stars”. In this scenario, galaxies accounted for at least one-fifth of the critical

den-sity, ⌦

galaxies

0.2

. This value was sufficiently close to ⌦ = 1 to suggest agreement

with a closed universe, the authors implied. This somewhat generous extrapolation by

a factor of five is suggestive of the desirability of that cosmological scenario, which

was ”believed strongly by some”, the authors argued, ”for essentially nonexperimental

reasons”.

15

Motivated by similar arguments, an Estonian group at Tartu Obervatory,

consist-ing of Jaan Einasto, Ants Kaasik and Enn Saar, likewise concluded that the total mass

density of matter in galaxies is 20 percent of the critical cosmological density.

16

For

their influential paper (sent to Nature a few weeks before Ostriker et al. would

sub-mit their work—both articles came out months later), the Estonians used rotation curve

data of Roberts,

58

and masses of pairs of galaxies due to Thornton Page

94

and Igor

Karachentsev

38

, among others. From these data and their own, Einasto and his

co-workers constructed a diagram that plotted galaxy mass to radius similar to that of the

Princeton group, which showed the value of the extra mass a dark corona surrounding a

galaxy should have (see Fig. 4).

The Estonian group, just like its Princeton counterpart, was interdisciplinary in

interest and background: astronomers and theoretical physicists joined efforts to study

a problem that was now shared between galactic dynamics and cosmology. So, the

10

Ostriker, Peebles, Yahil 1974

świecąca materia

OPY: gigantyczne halo słąbych gwiazd

dziś: halo ciemnej materii

Ciemna materia

(30)

52

SCIENTIFIC AMERICAN

FEBRUARY 2004

BRYAN

CHRISTIE

DESIGN

GRAVITATIONAL MODULATION

INFLUENCE OF DARK MATTER

modulates the acoustic signals in

the CMB. After inflation, denser regions of dark matter that

have the same scale as the fundamental wave (represented as

troughs in this potential-energy diagram) pull in baryons and

photons by gravitational attraction. (The troughs are shown in

red because gravity also reduces the temperature of any

escaping photons.) By the time of recombination, about

380,000 years later, gravity and sonic motion have worked

together to raise the radiation temperature in the troughs

(blue) and lower the temperature at the peaks (red).

AT SMALLER SCALES,

gravity and acoustic pressure sometimes

end up at odds. Dark matter clumps corresponding to a

second-peak wave maximize radiation temperature in the troughs long

before recombination. After this midpoint, gas pressure pushes

baryons and photons out of the troughs (blue arrows) while

gravity tries to pull them back in (white arrows). This tug-of-war

decreases the temperature differences, which explains why the

second peak in the power spectrum is lower than the first.

Dark matter

concentration

Sonic

motion

Sonic

motion

Gravitational

attraction

Dark matter

concentration

Photon

Baryon

Gravitational

attraction

Photon

Baryon

FIRST PEAK

Gravity and sonic motion

work together

SECOND PEAK

Gravity counteracts

sonic motion

(31)

Rozkład materii

we

Wszechświecie

Pierwotna

nukleosynteza

promieniowanie

Mikrofalowe

tła

Materii

we Wszechświecie

jest więcej niż

„zwykłej” materii

barionowej.

Materii

we Wszechświecie

jest więcej niż

materii świecącej.

Potrzebne

dodatkowe źródło

przyciągania

grawitacyjnego.

(32)

Te same

małe, pierwotne zagęszczenia materii dały początek

zarówno

niejednorodnościom

temperatury mikrofalowego promieniowania tła, jak i galaktykom oraz gromadom galaktyk.

(33)

James Peebles

ur. 1935

2019

Nagroda Nobla z fizyki

za odkrycia teoretyczne w zakresie kosmologii fizycznej

w tym:

Przekonujące argumenty,

że obecna,

złożona

struktura Wszechświata

powstała:

• 

z

prostego

stanu początkowego

• 

w wyniku ewolucji opisywanej

(34)
(35)

Obraz

Fig. 9.—Rotational velocities for OB associations in M31, as a function of distance from the center
Fig. 9.—Rotational velocities for OB associations in M31, as a function of distance from the center
Figure 4: Two diagrams from 1974 that plot the relation between the mass and the radius of galactic systems

Cytaty

Powiązane dokumenty

Aspecten die aan de orde komen, zijn de ruimtebehoefte van jeugdigen voor spelactiviteiten en andere vrijetijdsbezigheden, eisen en ruimte- lijke voorwaarden die

Consequently, an accurate near field solution, obtained with mesh adaptation, is sufficiently far from the aircraft when the pressure variation decreases in pR/L and could be used

[r]

The DarkSide (DS) project is designed for direct detection of dark matter particles, using a dual phase liquid argon time projection chamber (LAr-TPC)2. DS is deployed at Gran

»  Could derive limit on DM-induced neutrino diffuse flux and total self- annihilation cross section &lt;σv&gt;. (and DM decay lifetime) under a few DM galactic halo

Konden corporaties in het verleden nog behoorlijk naar eigen inzicht hun prioriteiten en doelstellingen formuleren en op basis daarvan de strategie bepalen om tot een wensportefeuille

Co roku w Centrum odbywają się obwodowe olimpiady z języka polskie- go, literatury oraz kultury Polski dla uczniów 8—9 klasy.. W nagrodę zwy- cięzcy dostają książki