• Nie Znaleziono Wyników

A benchmark study of the multiscale and homogenization methods for fully implicit multiphase flow simulations

N/A
N/A
Protected

Academic year: 2021

Share "A benchmark study of the multiscale and homogenization methods for fully implicit multiphase flow simulations"

Copied!
13
0
0

Pełen tekst

(1)

A benchmark study of the multiscale and homogenization methods for fully implicit

multiphase flow simulations

Hajibeygi, Hadi; Olivares, Manuela Bastidas; HosseiniMehr, Mousa; Pop, Sorin; Wheeler, Mary

DOI

10.1016/j.advwatres.2020.103674

Publication date

2020

Document Version

Final published version

Published in

Advances in Water Resources

Citation (APA)

Hajibeygi, H., Olivares, M. B., HosseiniMehr, M., Pop, S., & Wheeler, M. (2020). A benchmark study of the

multiscale and homogenization methods for fully implicit multiphase flow simulations. Advances in Water

Resources, 143, [103674]. https://doi.org/10.1016/j.advwatres.2020.103674

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

A

benchmark

study

of

the

multiscale

and

homogenization

methods

for

fully

implicit

multiphase

flow

simulations

Hadi

Hajibeygi

a,∗

,

Manuela

Bastidas

Olivares

b

,

Mousa

HosseiniMehr

a

,

Sorin

Pop

b

,

Mary

Wheeler

c

a Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands b Faculty of Sciences, Hasselt University, Diepenbeek, Belgium

c Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, ACE 5.324, Campus Mail C0200, Austin, TX 78712 US

a

r

t

i

c

l

e

i

n

f

o

Keywords: Multiscale Homogenization

Algebraic dynamic multilevel Adaptive mesh refinement Flow in porous media Fully implicit simulation

a

b

s

t

r

a

c

t

Accuratesimulationofmultiphaseflowinsubsurfaceformationsischallenging,astheformationsspanlarge lengthscales(km)withhigh-resolutionheterogeneousproperties.Todealwiththischallenge,differentmultiscale methodshavebeendeveloped.Suchmethodsconstructcoarse-scalesystems,basedonagivenhigh-resolution fine-scalesystem.Furthermore,theyareamenabletoparallelcomputingandallowfora-posteriorierrorcontrol. Themultiscalemethodsdifferfromeachotherinthewaythetransitionbetweenthedifferentscalesismade. Multiscale(finiteelementandfinitevolume)methodscomputelocalbasisfunctionstomapthesolutions(e.g. pressure)betweencoarseandfinescales.Instead,homogenizationmethodssolvelocalperiodicproblemsto determineeffectivemodelsandparameters(e.g.permeability)atacoarserscale.Itisyetunknownhowthesetwo methodscomparewitheachother,especiallywhenappliedtocomplexgeologicalformations,withnoclearscale separationinthepropertyfields.Thispaperdevelopsthefirstcomparisonbenchmarkstudyofthesetwomethods andextendstheirapplicabilitytofullyimplicitsimulationsusingthealgebraicdynamicmultilevel(ADM)method. Ateachtimestep,onthegivenfine-scalemeshandbasedonanerroranalysis,thefullyimplicitsystemissolvedon adynamicmultilevelgrid.Theentriesofthissystemareobtainedbyusingmultiscalelocalbasisfunctions (ADM-MS),and,respectively,byhomogenizationoverlocaldomains(ADM-HO).Bothsetsoflocalbasisfunctions (ADM-MS)andlocaleffectiveparameters(ADM-HO)arecomputedatthebeginningofthesimulation,withnofurther updatesduringthemultiphaseflowsimulation.Thetwomethodsareextendedandimplementedinthesame open-sourceDARSim2simulator(https://gitlab.com/darsim2simulator),toprovidefairqualitycomparisons.The resultsrevealinsightfulunderstandingofthetwoapproaches,andqualitativelybenchmarktheirperformance.It isre-emphasizedthatthetestcasesconsideredhereincludepermeabilityfieldswithnoclearscaleseparation.The developmentofthispapershedsnewlightsonadvancedmultiscalemethodsforsimulationofcoupledprocesses inporousmedia.

1. Introduction

Geologicalformationsspanlarge(km)lengthscales,having hetero-geneousproperties characterizedathighresolutions(cmandbelow). Asfortheuncertaintywithintheintegratedfielddata,typically, sev-eralequiprobable realizationsoftheproperty fieldsaregeneratedto studyandsimulatethefluidflowandtransport.Classicalsimulation ap-proachesaretooexpensiveforsuchstudies.Therefore,advanced sim-ulationmethodsarerequiredtoallowforanaccuraterepresentation of theheterogeneousproperties.Atthesame time,they should

pro-∗Correspondingauthor.

E-mail addresses: H.Hajibeygi@tudelft.nl (H. Hajibeygi), manuela.bastidas@uhasselt.be (M.B. Olivares), S.Hosseinimehr@tudelft.nl (M. HosseiniMehr), sorin.pop@uhasselt.be(S.Pop),mfw@ices.utexas.edu(M.Wheeler).

videanefficientsimulationframeworktostudymultiplerealizations

Jansenetal.(2009);Wachspress(1966).

Modelorderreductiontechniqueshavebeendevelopedtoprovidea meaningfulapproximatesimulationframework.Suchtechniqueshave tobefastenoughtobeappliedtolarge-scalecomputationaldomains. Inthissense, anyadvancedmethodof thistypecanbe seenasfield applicable onlyifitallowsforreducingtheerror belowanydesired thresholdvalueHajibeygietal.(2012).

Here we only consider numerical model order reduction tech-niques,among whichmultiscale EfendievandHou (2009); Hou and

Wu (1997) andhomogenization Weinan (2011)methods stand very

promising.

https://doi.org/10.1016/j.advwatres.2020.103674

Received10October2019;Receivedinrevisedform17June2020;Accepted2July2020 Availableonline3July2020

(3)

These approaches are different in the sense that the multi-scale method deals with crossing the solution, e.g., the pressure, across the scales Aarnes and Hou (2002); Jenny et al. (2003);

Hajibeygi et al. (2008); Chung et al. (2015), whereas in the latter effective, lower-resolution parameters andfunctions like the perme-ability or the transmissibility, arederived Weinan andYue (2004);

Abdulleetal.(2012);Weinanetal.(2007);Lietal.(2020);Singhand Wheeler(2018);Vasilyevaetal.(2020).Moreover,whilethemultiscale basisfunctionshavebeenexpressedinapurelyalgebraicformulation

Wangetal.(2014),thesamedoesnotholdforthehomogenization ap-proach.Speciallytheintegrationofhomogenizedparameterswithinthe fullyimplicitframeworkinanalgebraicmannerhasnotyetbeen devel-opedsofar.Thepresentworkisafirststepinthisdirection.

Atthesametime,thetwomethodshavemanysimilarities.Bothfind theirmappingstrategyvialocalsolutionsoftheoriginalgoverning equa-tionswithlocalboundaryconditions.Multiscalebasisfunctionsoften employreduced-dimensionalboundaryconditionsTeneetal.(2015);

MøynerandLie(2016), whilehomogenization schemesimpose peri-odic boundaryconditionsonlocal problems,andconsiderlocal rep-resentative micro-structures even in the case of non-periodic prop-erties Allaire (1992); Abdulle and Weinan (2003); Arbogast and Xiao(2013);Bastidas etal.(2019);Brownetal.(2013).Both meth-ods are effective for global equations within the fully coupled sys-tem of local-global unknowns, e.g., the global pressure and the lo-calsaturation.Bothhavebeenextendedtononlinearandgeologically complexmodelsAmanbeketal.(2019a);HosseiniMehretal.(2018);

Singhetal.(2019a).Recentdevelopmentsofthesetwoclassesof ap-proacheshaveintroducedafully-implicitdynamic multilevel simula-tion framework(ADM) in which heterogeneousdetailed geo-models aremappedintoadaptivedynamiccoarsermeshCusinietal.(2018);

Faigleetal.(2014);Klemetsdaletal.(2020);Carciopoloetal.(2020). TheADMmethoddevelopsafully-implicitdiscretesystemfor cou-pled flow and transport system of equations, in which each equa-tion can be represented at a different resolution than the defined fine-scale one. More importantly, the procedure can be done fully algebraic, with the dynamic mesh resolution defined based on a front-tracking strategy. In contrast to the rich existing literature of Adaptive MeshRefinement(AMR) methodsPauet al.(2009,2012);

BergerandOliger(1984);SchmidtandJacobs(1988);Edwards(1996);

Sammon(2003);KlemetsdalandLie(2020),ADMcanbedefinedasan adaptivemeshcoarseningstrategywhichisconvenientlyapplicablefor heterogeneousandnonlinearcoupledsystemsCusinietal.(2016).

Irrespectiveof the choiceof thedynamic meshstrategy, it is al-waysachallenge toconstruct adaptive multiscaleentriesof the im-plicitsystems.TheADMmethodsofarhasincludedmultiscalebasis functionsCusini etal. (2016). Inaddition,homogenization methods havealsobeendevelopedformultiphasesimulationsondynamicgrids

Amanbeketal.(2019a);Cusinietal.(2019).Inthiscontext,twoaspects canbeofinterest:thestudyofthehomogenization-basedcoarsersystem entriesandthedevelopmentofabenchmarkstudyofthequalityofthe twoapproachesofADM-multiscale(ADM-MS)andADM-homogenized (ADM-HO)forcoupledimplicitmultiphaseflowscenarios.

ThispaperdevelopssuchaunifiedframeworkinwhichtheADM methodisextendedtoaccountforbothmultiscaleandhomogenization schemesformultiphaseflow simulations.Thisdevelopment makesit possibletoallowfordifferentcoarse-scaleentriesfordynamic simula-tions,andimportantlytobenchmarkthetwoclassesofmultiscaleand homogenizationstrategies.Noteworthyis that,oncetheeffective pa-rametersarecomputed,allotherhomogenizationproceduresare imple-mentedalgebraically.Thisisdonebyintroducingconstantunitylocal basis,withthesupportofprimal(non-overlapping)coarse-scale parti-tions.ThemultiscaleADMisimplemented fullyalgebraicsincelocal basisfunctionsarealsosolvedalgebraicallyovertheoverlapping(dual) coarsegriddomainsZhouandTchelepi(2012).Theoutcomeofthis de-velopmentismadeavailabletothepublicviaanopen-sourceDARSim2 simulator,https://gitlab.com/darsim2simulator.

Numericaltestcasesareconsideredforthechallenging,highly het-erogeneousSPE10ChristieandBlunt(2001).Thenumberofactivegrid cells,pressureandsaturationerrors,andthesolutionmapsareall re-portedindetail.Thedevelopmentofthispapershedsnewlightsinthe applicationofmultiscaleandhomogenizationapproachesinadvanced next-generationenvironmentsforfield-relevantsimulationscenarios.

Thepaperisstructuredasfollows.Next,inSection2,the mathe-matical modelis statedbriefly.Section3presentsthecomputational framework for both multiscale and homogenization ADM methods.

Section4presentsthetestcases,andconclusionsaredrawninSection5. TheAppendixgivesmoredetailsonthemultiscaleandthe homogeniza-tionapproaches.

2. Governingequations

Weconsiderflowoftwoimmiscibleandincompressiblephasesof

𝛼 and𝛽 throughaheterogeneousporousmedium.AttheDarcyscale, massbalanceforthephasei∈{𝛼,𝛽}reads

𝜕

𝜕𝑡(𝜙𝜌𝑖𝑆𝑖)−∇⋅ (𝜌𝑖𝜆𝑖⋅ (∇𝑝𝜌𝑖𝑔∇𝑧))=𝜌𝑖𝑞𝑖. (1)

Here,𝜙 istheporosityofthemedium,𝜌i[kg/m3]andSiarethedensity andsaturationofthephasei,respectively.Thephasemobilitytensor

𝜆iisequalto𝐾𝐾𝑟𝑖𝜇𝑖,whereK[m2]istherockabsolutepermeability tensor,and𝐾𝑟𝑖=𝐾𝑟𝑖(𝑆𝑖)isthesaturation-dependentrelative permeabil-ityofphasei.Moreover,𝜇 [Pa.s]isthephaseviscosity.Fortheease ofpresentation,thetwophasepressuresareassumedequal,𝑝=𝑝𝛼=𝑝𝛽 [Pa](seee.g.AzizandSettari(2002)).However,theextensionto mod-elsinvolvingasaturationdependentcapillarypressureisalsopossible. Inaddition,g[m/s2]isthegravitationalaccelerationwhichactsonz

direction,andq[1/s]isthephasesourceterm.

Hereitisassumedthatthetwofluidsareoccupyingcompletelythe porespace,andnootherfluidphaseispresent.Thisgivestheconstraint

𝑆𝛼+𝑆𝛽=1,whichreducesthenumberofunknownsintheabove equa-tionstotwo:S𝛼(inshortfromhereon,S)andp.Finally,themodelis completedbyinitialconditionsforthesaturation,andwithboundary conditions.Wedonotspecifythemexplicitlysincenoneofthemplaya roleinthemultiscalestrategy.

The fully-implicit coupled simulation approach Aziz and Set-tari (2002)estimates alltheparametersatnexttimestep (𝑛+1). As such,thesemi-discretenonlinearresidualforthephasei∈{𝛼,𝛽}reads

𝑟𝑛+1 𝑖 =[𝜌𝑖𝑞𝑖]𝑛+1− ( 𝜙𝜌𝑖𝑆𝑖)𝑛+1−(𝜙𝜌𝑖𝑆𝑖)𝑛 Δ𝑡 +∇⋅ ( 𝜌𝑖𝜆𝑖⋅(∇𝑝𝜌𝑖𝑔∇𝑧))𝑛+1. (2) For finding thesolution pair (𝑝𝑛+1,𝑆𝑛+1) one needs toemploy a

linearization scheme. Here we restrict thediscussion totheNewton scheme,whichis2nd-orderconvergentbutrequiresastartingpointthat iscloseenoughtothesolution.Inotherwords,thetimestepmaybe sub-jecttorestrictionsalsodependingonthemeshsize.Alternatively,one mayconsiderapproacheslikethemodifiedPicardCeliaetal.(1990)or theL-SchemeRaduetal.(2017),whicharelessdemandingfromthe computationalpointof view,ormorerobust w.r.t.thestartingpoint and meshresolution, butconverge slowerthan theNewton scheme

Bastidasetal.(2019).Appliedto(2),theNewtonlinearizationreads

𝑟𝑛+1𝑟𝜈+𝜕𝑟

𝜕𝑝|𝜈𝛿𝑝𝜈+1+𝜕𝜕𝑆𝑟|𝜈𝛿𝑆𝜈+1, (3)

whichcanbeexpressedalgebraicallyas𝐉𝜈𝛿𝐱𝜈+1=𝐫𝜈,i.e., ⎡ ⎢ ⎢ ⎣ 𝜕𝑟𝛼 𝜕𝑝 𝜕𝑟𝜕𝑆𝛼 𝜕𝑟𝛽 𝜕𝑝 𝜕𝑟𝛽 𝜕𝑆 ⎤ ⎥ ⎥ ⎦ ⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟ 𝐉 𝜈[ 𝛿𝑝 𝛿𝑆 ] ⏟⏟⏟ 𝛿𝐱 𝜈+1 =− [ 𝑟𝛼 𝑟𝛽 ] ⏟⏟⏟ 𝐫 𝜈 . (4)

Ineachtimestep,thelinearEq.(4)issolvediteratively(innerloop) severaltimesuntilnonlinearconvergence(outerloop)isreached.The

(4)

Fig.1. ExampleofanADMgrid(4thfromthetop),obtainedbycombining fine-scale(top)andcoarserresolutionsoflevel1(2ndfromthetop)andlevel 2(3rdfromthetop).Alsoshownisthesaturationprofilecorrespondingtothe ADMgrid(bottom).

overallcomputationalcomplexityofthesimulationdependshighlyon thecomplexityofthesolutionofthislinearsystem.Advancedmultiscale andhomogenizationmethodsaimatsolvingthislinearsystemona dy-namicmultilevelmesh.Notethat,asshownbeforeCusinietal.(2018), theoverallefficiencyofanyadvancedmethodshouldincludenotonly thespeedupofsolvingthelinearEq.(4)butalsothecountoftheNewton (outer)loops.Next,theADMmethodbasedonmultiscaleand homoge-nizationformulationsispresented.

3. Dynamicmultilevelsimulationbasedonmultiscaleand homogenizationmethods

3.1. ADMFrameworkformulation

Thefully-implicitlinearsystem(4)istooexpensivetobesolvedfor realfieldscenarios.Amultileveldynamicmesh,asshowninFig.1,is generatedwithintheADMframework,basedonanerrorestimate strat-egy.Theerrorestimateisdevelopedbasedonafronttrackingcriterion, whichappliesfine-scalegridsonlyatsub-regionswithsharpgradients. Thefine-scalesystemisthenalgebraicallyreducedintothismultilevel grid,throughsequencesofrestrictionandprolongationoperators.To obtaintheADMgrid,first,setsof𝑁𝑙=𝑁𝑥𝑙×𝑁𝑦𝑙hierarchicallynested coarsegridsareimposedonthefinemesh.Here,lindicatesthe

coars-eninglevel.Moreover,𝛾listhecoarseningratiowhichisdefinedas 𝛾𝑙=(𝛾𝑙 𝑥,𝛾𝑦𝑙)= ( 𝑁𝑙−1 𝑥 𝑁𝑙 𝑥 , 𝑁 𝑙−1 𝑦 𝑁𝑙 𝑦 ) , (5)

fortwo-dimensional(2D)domains.TheADMgridisconstructedby as-semblingacombinationofcellsatdifferentresolutionswithinthe com-putationaldomain.Byusingthesequenceofrestriction(R)and prolon-gation(P)operators,onecanexpresstheADMsystemas

̂𝐑𝑙−1 𝑙 … ̂𝐑01𝐉𝟎̂𝐏 1 0… ̂𝐏𝑙𝑙−1 ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ 𝐉ADM 𝛿 ̂𝑥ADM=−̂𝐑𝑙−1𝑙 … ̂𝐑01𝑟0 ⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟ ̂𝐫ADM . (6)

Here, ̂𝐑𝑙−1𝑙 is therestrictionoperatorwhichmapsthepartsof the solutionvectorthatareatlevel(𝑙−1)tolevell.Similarly,the prolonga-tionoperator̂𝐏𝑙𝑙−1mapsthepartsofthesolutionvectorthatareatlevel

ltolevel𝑙−1.OncetheADMsystem(6)issolved,theapproximated fine-scalesolution𝛿𝑥

0canbeacquiredbyprolongingtheADMsolution

𝛿 ̂𝑥ADM,i.e.

𝛿𝑥0≈𝛿𝑥′0=̂𝐏 1

0… ̂𝐏𝑙𝑙−1𝛿𝑥ADM. (7)

TheADMRestriction ̂𝐑𝑙−1𝑙 andprolongation ̂𝐏𝑙𝑙−1operatorsare as-sembledusingthestaticmultilevelmultiscalerestriction𝐑𝑙−1

𝑙 and pro-longation𝐏𝑙

𝑙−1operators,respectively.Theyareconstructedonlyatthe beginningofthesimulationandarekeptunchangedthroughoutthe en-tiresimulation.

Thestaticprolongationoperator𝐏𝑙

𝑙−1isconstructedasanassembly ofthelocallycomputedbasisfunctionsateachcoarseninglevelland reads 𝐏𝑙 𝑙−1= ( (𝑃𝑝)𝑙𝑙−1 0 0 (𝑃𝑆)𝑙𝑙−1 ) 𝑁𝑙−1×𝑁𝑙 . (8)

Here,(𝑃𝑝)𝑙𝑙−1and(𝑃𝑆)𝑙𝑙−1 arethetwomaindiagonalblocks corre-spondingtomainunknowns(i.e.,pressurepandsaturationS).Inthe caseofusingthehomogenizationscheme,i.e.ADM-HO,aswillbe de-scribedinSection3.3),constantbasisfunctionsforpressureareused. However,forthemultiscale-basedADM,i.e.ADM-MS,aswillbe de-scribedinSection3.2,locally-computedbasisfunctionsareused.Note thatthesaturationprolongationoperatorforbothapproachesis con-stantunityfunctionatallcoarseninglevels,whichrepresentsthe con-servativefinite-volumeintegration.

Thestaticrestrictionoperator𝐑𝑙−1 𝑙 reads 𝐑𝑙−1 𝑙 = ( (𝑅)𝑙−1𝑙 0 0 (𝑅)𝑙−1𝑙 ) 𝑁𝑙×𝑁𝑙−1 . (9)

Inthiswork,afinite-volumerestrictionoperatorisusedtoguarantee localmassconservation,i.e.

𝑅𝑙−1 𝑙 (𝑖,𝑗)=

{

1 ifcelliisinsidecoarsercellj,

0 otherwise. (10)

3.2. ADMUsingmultiscale(ADM-MS)

IntheADM-MS method,theprolongationoperatorforpressureis foundbasedonmultiscalebasisfunctions.Theselocalbasisfunctions arecomputedalgebraicallyWangetal.(2014),basedonthesteady-state pressureequation.Inthisstudy,theincompressibleflowequation (ellip-ticpressureequation)isusedtoconstructthemultiscalebasisfunctions

Teneetal.(2015).AnexampleofabasisfunctionisshowninFig.2. Thecoarse grid constructionandcomputationof multiscalebasis functionsareexplainedinmoredetailsinAppendixA.

3.3. ADMUsinghomogenization(ADM-HO)

Homogenizationisanothermethodthatcanbeappliedtoproblems involvingmultiplescales.Inthismethod,oneusesthemathematical modelsat micro(fine) scale(1) toderive effectiveupscaled models

(5)

Fig.2. Anexampleofabasisfunctionbelongingtothemiddlecoarsenodeof aheterogeneous2Ddomain.

Fig.3. SketchofthecoarsepartitionofΩwhenusingtwocoarseninglevels.

andparametersinwhichtherapidlyoscillating charactersticsare av-eragedout.Indoingso,theupscaledmodelmayhaveadifferent struc-turethantheonesatthefinescale.WerefertoAmazianeetal.(2017);

Bourgeatetal.(1996);Hornung(1997);vanDuijnetal.(2007)for the-oreticaldetails.

ThegoalofthisworkistobuildaunifiedADMplatformwherethe multiscaleandhomogenizationmethodscanbecompared.Therefore, here,thehomogenization methodis usedonly toconstructeffective propertiesatthedynamicmultilevelmesh.Inthissetup,the homoge-nizedpropertiesofADM-HOatmultilevelmesharefoundasinADM-MS bysolvinglocalflow(pressure)equationsbasedonanincompressible (elliptic)equation.

Moreprecisely,oneassumesthatascaleseparationholdsand dou-blesthespatialvariableintoafastandaslowone.Themethodrelieson thehomogenizationansatz,meaningthatallquantitiesin(1)canbe ex-pandedregularlyintermsofascaleseparationparameter.Suchideasare employedinBastidasetal.(2019);AbdulleandNonnenmacher(2009);

Amanbeketal.(2019b);Amazianeetal.(1991);Singhetal.(2019b);

Szymkiewiczetal.(2011);Henningetal.(2015,2013)todevelop ef-fectivenumericalsimulationschemesevenincaseofnon-periodic me-dia.Moredetailsaboutthehomogenizationprocedurecanbefoundin

AppendixB.

Inthepresentcontext,foragivenfine-scaleeffectivepermeability

Kandforeachcoarseninglevell,aneffectivepermeabilitytensorKlis computedlocallyinapre-processingstep.FirstthedomainΩ⊂ ℝ2 is

dividedintocoarsecellsΩlthatcorrespondtoapartitionofthedomain ΩasshowninFig.3.

Fig.4. Exampleofthelocalsolutions𝜔1 (topright,forx-direction)and𝜔2 (bottomright,fory-direction)foracoarsecellinsidea2Ddomain.The hetero-geneouspermeabilityfieldisalsoshownfortheentiredomain(left).

ForeachcoarsecellΩl atlevell,thecomponentsoftheeffective permeabilitytensorarecalculateas

𝐊𝑙 𝑖,𝑗|||| Ω𝑙 = ∫Ω𝑙 ( 𝐾(𝐞𝑗+∇𝜔𝑗))⋅ 𝐞𝑖𝑑y. (11) for𝑖,𝑗=1,2.Here𝜔jaretheperiodicsolutionsofthepressureequation onlocaldomains(knownasmicro-cellequationinHOliterature),i.e. −∇⋅(𝐾(∇𝑦𝜔𝑗+𝐞𝑗))=0,forally∈ Ω𝑙. (12) Weremarkthat{𝐞𝑗}2

𝑗=1isthecanonicalbasisofdimension2andKisthe abovementionedpermeabilitytensor.Toguaranteetheuniquenessof thesolution𝜔joneassumesthatitsaveragevalueoverthelocalcoarse cellΩlis0.

Todeterminethevalueoftheeffectivepermeabilitytensorateach coarsecellΩl,twolocal(micro-cell)problems(12)aresolvedforeach spatialdirectionin2D.Fig.4providesanillustrationoftheselocal so-lutionsforacoarseelement.

Notethatthelocalproblems(12)capturetherapidlyoscillating char-acteristicswithinacoarse element,completelydecoupledfromother coarse elements.Thehomogenizedparameters,like multiscalebases, arecomputedatthebeginningofthesimulation.Fig.5illustratesthe calculationoftheeffectivepermeabilityatdifferentlevels.

Thehomogenizedparametersareusedtoconstructthecoarse sys-tementries.Moreprecisely,thehomogenizedvalueinacoarsecellis distributedequallytothefinecellsconstructingit.Thenthefine-scale Jacobianandresidualarecomputedwiththefine-scalesaturationfield. ThissystemisthenmappedtotheADMresolutionbysetting prolonga-tionoperatorsin(6)tounity.Thisisaconvenientprocedure,developed inthiswork,tointegratethenumericalhomogenizationmethodwith anexistingadvancedsimulator.

NoticethatbasedonthefeaturesofthepermeabilitytensorK,the resulting effectiveparameter Kmaydependonthemacro-scale loca-tion andthesizeof thecoarse-scalepartition. Nevertheless, onecan showthatinpractice,theadaptiverefinementofthemeshisan impor-tantaspectthatimprovethecalculationoftheeffectiveparameters(see

Bastidasetal.(2019)andFig.5).

TheADMprocedureissketchedinFig.6.Moredetailsabouttherole ofthehomogenizationintheofflinestageandthecompletealgorithm ofADM-MSandADM-HOcanbefoundinAlgorithm1.

4. Simulationresults

Tobenchmarkthehomogenizationandmultiscalebasedsolutions forthedynamicmeshonheterogeneousmedia,twoheterogeneous non-periodicpermeabilityfieldsfromthetopandbottomlayersoftheSPE 10thComparativeSolutionProjectChristieandBlunt(2001)are con-sidered.Forbothtestcases,thecomputationaldomainentails216×54 gridcellsatfine-scalewithΔ𝑥𝑦=1[m].Ano-flowconditionis im-posedonallboundaries.Initiallythereservoircontainsonly the2nd phase(e.g.oil),i.e.𝑆=0.The1stphase(e.g.water)isinjectedfroman

(6)

Fig.5.Exampleoffourdifferentlevelsofhomogenizedpermeabilityvalues:finescale(bottomright),coarselevel1(bottomleft),coarselevel2(topright)and coarselevel3(topleft).

Algorithm 1 The ADM algorithm using multiscale basis functions (ADM-MS)orhomogenization(ADM-HO).

Startofthesimulation;

Readtheinputfilesandscanthekeywords;

Givenafinescalepermeability(𝐾)andthenumberofcoarseninglevels (𝐿):

ifMultiscalethen for𝑙=0to𝐿do

ComputethemultiscalebasisfunctionsΦ𝑙𝑀𝑆;

end else

Homogenizationischosen.

for𝑙=0to𝐿do

Computethehomogenized𝐊𝑙;

ComputetheconstantbasisfunctionsΦ𝑙𝐶𝑜𝑛𝑠𝑡;

end end

fortimestep𝑡𝑛do

SelectADMgridresolution;

BuildADMprolongationandrestrictionoperators; Take𝑖𝑡𝑒𝑟=1anduseinitialpressureandsaturation;

whileerrortolerance&notconvergeddo

Assemblefinescalesystem; SolvetheADMsystem;

Prolongsolutionbacktofinescale; Updateproperties;

iferrortolerancethen

Converged. else Notconverged. end Nextiteration𝑖=𝑖+1 end

Nexttimestep(𝑡=𝑡𝑡)

end

Table1

Inputparametersoffluidandrockproperties.

Property value

Porosity ( 𝜙) 0.2

Water density ( 𝜌w ) 1000 [Kg/m 3 ]

Oil density ( 𝜌o ) 1000 [Kg/m 3 ]

Water viscosity ( 𝜇w ) 10 −3 [Pa · s]

Oil viscosity ( 𝜇o ) 10 −3 [Pa · s]

Initial pressure ( p 0 ) 10 7 [Pa] Connate water saturation ( S wc ) 0 [-]

Residual oil saturation ( S or ) 0 [-]

Injection pressure ( p inj ) 2 × 10 7 [Pa]

Production pressure ( p prod ) 0 [Pa]

injectionwell,whilethereservoirfluidisproducedfromtheproduction well.Thelocationsoftheinjectionandproductionwellsarespecified ineachtestcase.

Table1showstheinputparametersofthefluidandrockproperties usedinalltestcases.Notethatthedensityandviscosityratiosare as-sumedtobe1.Sincecompressibilityandgravitationalforcesareboth neglected,thedensityvalueshavenoinfluenceontheresults.

ThenumericalresultsprovidedbytheADM-MSandADM-HO meth-odsarecomparedtothoseobtainedfromsimulationatfinescale (ref-erence).BothADMmethodsemploythecoarseningratioof3×3with twocoarseninglevels.Thisissetaccordingtothesizeofthedomain.

4.1. Testcase1:SPE10toplayer

In thistest case,one injection welland oneproduction well are placed inthebottomleftcornerandtop rightcornerofthedomain, respectively.Thesimulationtimeis𝑡=1000[days]andtheresultsare reportedon100equidistanttimeintervals.Thepermeability distribu-tionoftheSPE10toplayerisshowninFig.7.

Fig.8showsthehomogenizedversionofthepermeabilityattwo dif-ferentlevels.Wehighlightthatthehomogenizedpermeabilityatboth coarselevelspreservesthestructureoftheoriginalfine-scale permeabil-ity.Thehighandlowpermeablezonesremainclearlydetectable.

(7)

Fig.6. SchematicdescriptionofADMreservoirsimulation.

Fig.7. Fine-scalepermeability(Log10scale)fromtoplayeroftheSPE10dataset.

Fig.8.HomogenizedpermeabilityofthetoplayeroftheSPE10withcoarsening ratio3.

Fig.9. Saturationprofilesat2000days.Thethresholdvalueforthefront track-ingcriterionisΔ𝑆=0.3.

Thesaturationandpressurefieldsatthefinaltimestepareshown inFig.9andFig.10,respectively.

Fromtheseresults,itisunderstoodthatADM-HOonacoarsecell containinghighandlowpermeablefinecellscanleadtoahigherflow leakage,ascomparedtofine-scaleandADM-MSapproaches.Thiseffect canbeseeninFig.9.Fig.11,illustratingtheadaptivemeshat2000days afterinjection.Noticethattherefinementofthepermeabilityismost dominantatthesaturationfront,duetothechosenmeshrefinement criterion.Forthisfigure, thecoarseningthresholdvalueisΔ𝑆=0.3, i.e.,acellissuccessivelycoarsenedifΔSislowerthan0.3.

TheerrorhistorymapsforbothADM-MSandADM-HOareshown in Fig.12.Therelative errors,presented inFig.12 andFig.14, are expressedintermsoftheL2normovertheentiremedium,calculated

withrespecttothefine-scalesolutionas

𝐸𝑟𝑟𝑜𝑟(𝑆)=‖𝑆ref−𝑆ADM‖2 ‖𝑆ref‖2 (13) 𝐸𝑟𝑟𝑜𝑟(𝑃)=‖𝑃ref−𝑃ADM‖2 ‖𝑃ref‖2 . (14)

(8)

Fig.10. Pressureprofilesat2000days.Thethresholdvalueforthefront track-ingcriterionisΔ𝑆=0.3.

Fig.11. AdaptivemeshandhomogenizedpermeabilityfortheSPE10toplayer testcase.ThethresholdvalueforthefronttrackingcriterionisΔ𝑆=0.3.

Theresultsindicatethatthehomogenization-basedsimulationshave higher errors compared withthe multiscale-based simulations.They bothhavesimilaraverageusageofactivegridcells,withADM-MS hav-ingslightlyfewergrid cells.Thisis shown inFig.13.Note thatthe gridcellsaroundwellsarekeptatthefine-scaleresolutionpermanently. Furthermore,fortightererrortolerancevalues,thequalityofboth ap-proachesbecomecomparable.

Fig.14providestheaveragepressureandsaturationerrorstogether withtheaveragepercentageofactivegridcellsduringthewhole simu-lationtimeasfunctionsofthecoarseningcriterionthreshold.

4.2. Testcase2:SPE10bottomlayer

InthesecondtestcasethepermeabilitydistributionoftheSPE10 bottomlayer,presentedinFig.15,is considered.Thelocationofthe injectionandproductionwellsarethetopleftandthebottomright cor-ners,respectively.Thesimulationtimeis20[days].Allothersimulation parametersremainunchanged.

Fig.16showsthehomogenizedpermeabilityvaluesattwodifferent levels.Duetothemanyhighcontrastchannels,moreactivecellsare employedcomparedwiththeSPEtoplayer,asshowninFig.17.

Thesaturationandpressuremapsatthefinaltimestepareshownin

Fig.18andFig.19,respectively.

Similartotheprevioustestcases,Fig.20comparestheerrorbetween thetwoADMapproaches.Moreover,inFig.21,thepercentageofactive gridcellspereachtime-stepisshown.

Fig.12. ComparisonofthesaturationandpressureerrorusingADM-MSand ADM-HOand3differentvaluesforthefronttrackingcriterion.

Fig.13. ComparisonoftheactivegridcellsusingADM-MSandADM-HOand 3differentvaluesforthefronttrackingcriterion.

Fig.22illustratestheaveragevalues oftheerrorsin thepressure andthesaturation,andthepercentageoftheactivegridcellsforeach coarseningcriterionthreshold.

Theresults indicateanoticeabledifferenceintheerrorsof ADM-MSandADM-HO.ThepressureerrorinADM-HOissignificantlyhigher sinceADM-HOuseshomogenizedeffectiveparameters.Thisaspectcan be improvedbyemployingfirstordercorrections.However,suchan

(9)

Fig.14. Averageerrorsforthepressureandsaturationandaverageactivegrid cellsforeachstrategy(ADM-MSandADM-HO).

Fig.15. Fine-scalepermeability(Log10scale)frombottomlayeroftheSPE10 testcase.

Fig.16. HomogenizedpermeabilityoftheSPE10bottomlayerwithcoarsening ratio3.

Fig.17. RefinementofthepermeabilityofthebottomlayeroftheSPE10using ADM-HOafter20days.Thethresholdvalueforthefronttrackingcriterionis Δ𝑆=0.3.

Fig.18. Saturationprofilesat20days.Thethresholdvalueforthefront track-ingcriterionisΔ𝑆=0.3.

Fig.19. Pressureprofilesat20days.Thethresholdvalueforthefronttracking criterionisΔ𝑆=0.3.

approachwoulddeviatefromtheADMframework,andrequiresmore computationaleffort,thereforeitisnotadoptedhere.ADM-MSinstead employsmultiscalebasisfunctions.Duetothemoreaccuratepressure calculations, theADM-MS saturationerror isalso lowerthanthatof ADM-HO.Thedifferenceinthepercentageofactivegridcellsusedin thetwoapproachesislessnoticeablethanthedifferenceintheerrors. However,theADM-HO usesmoreactivegridcells,especiallyinthis SPE10bottomlayertestcase.

(10)

Fig.20. ComparisonofthesaturationandpressureerrorusingADM-MSand ADM-HOand3differentvaluesforthefronttrackingcriterion.

Fig.21. ComparisonoftheactivegridcellsusingADM-MSandADM-HOand 3differentvaluesforthefronttrackingcriterion.

Fig.22. Averageerrorsforthepressureandsaturationandaverageactivegrid cellsforbothapproaches(ADM-MSandADM-HO).

5. Conclusion

Homogenizationandmultiscalemethodshavebeendevelopedand evolvedduringthepastdecadeaspromisingadvancedsimulation ap-proachesforlarge-scaleheterogeneoussystems.Inthiswork,thetwo methodswereinvestigated,extendedintoaunifiedfully-implicit frame-work,andbenchmarkedforsimulationofmultiphaseflowinporous me-dia.Itwasshownthatthetwomethodsallowtheconstructionofcoarser levelsystems,andbothrelyonlocalsolutionstofindtheir correspond-ingmaps.Whilehomogenizationmethodsdelivereffectivemodelsand parameters, multiscalemethods findaninterpolation ofthe solution (pressure)across scales.Thisisthemaindifferencebetween thetwo approaches.

Forhighlyheterogeneoustestcases,itwasshownthatthetwo ap-proachesprovideaccuratesolutions.Withthedevelopedmultiscale nu-mericalstrategies,theADM-MSsolutionsaremoreaccuratewhen com-paredtoADM-HO.Theuse ofaconstanteffectiveparameterinstead oflocalmultiscalebasisfunctionsresultsinrelativelyhighererrors.In addition,usingconstantunityprolongationoperatoralongwiththe ef-fectivecoarse-scaleparametersallowsforstraightforward implementa-tionoftheADM-HOmethodfordomainswithnon-periodic permeabil-ityfields.Thestudyofthis papershedsnewlighton theapplication ofmultiscaleandhomogenizationmethodsforreal-fieldsimulationof multiphaseflowinporousmedia.Notethatthecomputationalcostsof thetwoapproacheswerecomparable,astheyappliedalmostthesame activecellsduringthesimulation.Ongoingstudyincludesbenchmark studiesof ADM-HOandADM-MSfor3D fracturedporousmedia,on compilablesimulationplatform,whichallowsscientificCPU compari-sonstudy.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

CRediTauthorshipcontributionstatement

HadiHajibeygi:Conceptualization,Supervision,Writing-original draft.ManuelaBastidasOlivares:Methodology,Software,Writing -originaldraft.MousaHosseiniMehr:Methodology,Software,Writing -originaldraft.SorinPop:Conceptualization,Writing-review& edit-ing,Supervision.MaryWheeler:Conceptualization,Writing-review& editing.

(11)

Acknowledgements

Hadi Hajibeygi was sponsored through the Dutch Science Foun-dation (NWO) grant 17509, under Innovational Research Incentives Scheme Vidi (project “ADMIRE”). Sorin Pop and Manuela Bastidas acknowledge the Research Foundation-Flanders (FWO) through the Odysseusprogram(projectGOG1316N).AllauthorsacknowledgeT.U. Delft DARSim group members for the fruitful discussions, specially MatteoCusiniandJeroenRijntjes,fortheirhelpregardingthe DAR-Sim2simulator.DARSim2open-sourcesimulatorcanbe accessedvia

https://gitlab.com/darsim2simulatorlink.

AppendixA. ADMbasedonmultiscalemethod

IntheADM-MSapproach,multiscalefinitevolumemethod(MSFV)

Jennyetal.(2003);CortinovisandJenny(2014)isusedtocompute lo-calbasisfunctionsatmultiplecoarseninglevels.Thecomputationof ba-sisfunctionsΦisdonebysolvingtheincompressiblefluidflowequation (ellipticpartofthemassbalance)CortinovisandJenny(2017)which reads

−∇⋅(𝜆 ⋅ ∇Φ)=0. (15)

Theincompressiblebasisfunctionsarefoundtobethemostefficient ones,comparedwiththecompressibleandmorecomplexformulations

Teneetal.(2015).Thefirststepistoimposecoarsegridsontopofthe finemesh,forthecoarselevel1.Here,tosimplifythevisualization,a 2D15×15discretedomainisconsidered(seeFig.23).Byconnecting thecentersofthecoarsecells,thedual-coarsegridisobtained.Thedual gridmakesanoverlappingpartitioningofthefine-scaledomain,with3 categoriesofinterior(white),edge(green),andvertex(blue)cells.The coarseningratiointheillustratedexampleofFig.23is5×5.

TheEq.(15)issolvedateachdualcoarsegridhandforeachcoarse node(vertex)k,i.e.,−∇⋅ (𝜆 ⋅ ∇Φℎ𝑘)=0.Inordertosolvethislocal sys-tem,Dirichletboundaryconditionsof1.0(forthecorrespondingcoarse node)and0.0(fortheotherthreecoarse nodes)areimposed.These Dirichletvaluesallowtosolvethebasisfunctionsontheedges,ifa re-duceddimensional(1D)ellipticproblemisconsidered.Thesolutionat theedgeandvertexcellsarethenimposedasDirichletboundary con-ditionforthefull2Dproblem.Thesolutionofthiswell-posedsystemis thebasisfunctionofthecorrespondingcoarsenodeatthe correspond-ingdualcoarsegrid.Fig.24showsaschematicofthementioneddual coarsegridhandanexampleofabasisfunctionbelongingtothebottom leftcoarsenode(Φ1).

Fig.25showsall thefourbasisfunctionsforthementioned dual coarsegridh.

Thecombinationofthebasisfunctionsatallthedualcoarse grid cellssurroundingthecorrespondingcoarsenodeformsthebasis func-tionbelongingtothatcoarsenode.Fig.26illustratesanexampleofa

Fig.23. Constructionofthecoarseanddual-coarsegridsonthefine-scale dis-cretedomain.Finecellsarepartitionedw.r.t.thedualcoarsemeshas:interior, edgeandvertexcells.

Fig.24. Illustrationofadualcoarsegridandabasisfunctionbelongingtothe bottomleftcoarsenode.Asitcanbeseen,thevalueofthebottomleftcoarse nodeissettobe1.0,whiletheotherthreevertexcellsaresetto0.

Fig.25. Allthefourbasisfunctionsbelongingtothedualcoarsegridh.Shown beloweachplotistheDirichletvalueatthecornerofeachdualcoarsecellfor theplottedbasisfunction.

Fig.26. Anexampleofabasisfunctionbelongingtothebottomleftcoarse nodeofaheterogeneousdomainwith27×27gridcells.Thecoarseningratio hereis9×9.

basisfunctionbelongingtothebottomleftcoarsenodeofanexample heterogeneous2Ddomai.

Toobtainthebasisfunctionsathighercoarseninglevels,the hierar-chicallynestedcoarsegridisconstructedonthesamedomain.Thesame procedureisfollowedtocomputethebasisfunctionsathigher coarsen-inglevels.Fig.27showsthecoarsegridconstructionat2consequent coarseninglevels,fora2Ddomainwith75×75finecells.

Notethat,accordingtothevastmultiscaleliterature,construction ofbasisfunctionscanbedonepurelyalgebraic,oncethewire-basket decompositionofthefinecellsintoVertex,Edge,Face,andInterioris known Teneetal. (2016). Apartitioning methodshould be applied for complex mesh MøynerandLie (2016); Parramoreet al.(2016);

Shah et al. (2016); Gulbransen et al. (2010); Bosma et al. (2017);

Mehrdoost(2019);MehrdoostandBahrainian(2016).

AppendixB. ADMbasedonhomogenizationtheory

ThemainideaoftheADM-HOistouseahomogenizedversionof thepermeabilityKinsteadofvolume-averagedpermeabilitiesat

(12)

differ-Fig.27. Coarsegridconstructionat2consequentcoarseninglevelsfora2D domainwith75finecells.Thecoarseningratioof5×5ischosen.Thegridsizes ofcoarselevel1and2are15×15and3×3,respectively.

entcoarselevels.Indoingso,twoassumptionsarecommonlymade:the permeabilityisperiodicateachofthecoarseninglevels,andthescales arewellseparated.WerefertoAllaire(1992)fortherigorous mathemat-icalsupportofthisapproach.Althoughthetestcasesconsideredheredo notsatisfythetwoassumptionsstatedbefore,thehomogenizationidea canstillbeconsideredfordevelopingmultiscalesimulationtools,and inthissensewerefertoBastidasetal.(2019);Amanbeketal.(2019a);

Singhetal.(2019a);Amanbeketal.(2019b);Singhetal.(2019b). Ateachcoarseninglevell,wecallmicro-scalecell(i.e.,localcoarse cell)theregionΩlwhereintheparameterschangerapidly.ForeachΩl, thecharacteristiclengthis𝓁,whereListhecharacteristiclengthforthe macro-scaledomainΩ.Thefactor𝜀∶= 𝓁𝐿 reflectsthescaleseparation. Toidentifythefastchangesintheparameterswedoublethevariables anddefinethefastvariabley∶= x𝜀.Inthenon-dimensionalsetting,Ω canbewrittenasthefiniteunionofthelocalcellsΩl.WeletΩ =∪Ω𝑙 forsomesetofindices.

Forcalculatingthehomogenizedpermeabilityweconsideran auxil-iaryellipticproblem:Auxiliaryproblem.Givenafine-scale permeabil-ityK,findafunctionu𝜖thatsatisfies

∇⋅ (𝐾⋅ ∇𝑢𝜖)=0 inΩ,

𝑢𝜖=0 on𝜕Ω. (16)

Heretheboundaryconditionsarespecifiedforcompleteness.

Weemploythehomogenizationansatz,meaningthattheunknownu𝜖

canbewrittenas

𝑢𝜖(𝑥)=̂𝑢

0+𝜖 ̂𝑢1+𝜖2̂𝑢2+…, (17)

whereeacĥ𝑢𝑖(x,y)isperiodic.

Duetothedoublingofvariables,thegradientanddivergence oper-atorsbecome

∇=∇𝑥+1

𝜖𝑦 and div=div𝑥+1𝜖div𝑦.

Inserting(17)andthetwoscaleoperatorsaboveintheauxiliaryproblem

(16),onegets ( div𝑥+1 𝜖div𝑦 )(( ∇𝑥+1 𝜖𝑦 )( ̂𝑢0+𝜖 ̂𝑢1+(𝜖2) )) =0, ̂𝑢0+𝜖 ̂𝑢1+(𝜖2)=0.

Collectingthetermswithfactor𝜖−2weobtainforeachdomainΩ

l𝑦⋅(𝐾∇̂𝑢0

)

=0forally∈ Ω𝑙, (18)

Clearly,any𝑢0=𝑢0(x)which doesnotdependonthefastvariabley

isasolutionoftheproblem(18).Thus,onecanprovethatallsolutions dependonlyonx.Thefunctionu0isinfactthemacro-scaleapproximation

oftheoriginalunknownu𝜖.

Ontheotherhand,forthe𝜖−1termsonehas

𝑦⋅(𝐾(∇𝑥̂𝑢0+∇𝑦̂𝑢1

))

=0forally𝑌.

Onecandetermine ̂𝑢1asafunctionof ̂𝑢0andeliminateitfromthe

system.Tothisend, ̂𝑢1 iswrittenasalinearcombinationoffunctions

𝜔j,andwith𝜕̂𝑢0 𝜕𝑥𝑗 ascoefficients ̂𝑢1(x,y)= dim ∑ 𝑗=1 𝜕̂𝑢0(x) 𝜕𝑥𝑗 𝜔 𝑗(x,y).

Thefunctions𝜔jaresolutionsofthemicro-cell(localdomain) prob-lemsdefinedoneachΩl:

−∇𝑦⋅ ( A(∇𝑤𝑗𝑦+⃗𝑒𝑗 )) =0 forally𝑌, 𝑤𝑗isperiodicin𝑌.

Here,{⃗𝑒𝑗}d𝑗=1isthecanonicalbasisofdimension2.Toguarantee the uniquenessofthesolutiononerequiresthat

∫Ω𝑙𝜔

𝑗=0𝑑y,forallΩ 𝑙.

Thehomogenizedpermeabilityintheauxiliaryproblemisobtained byconsideringthetermsoforder 𝜖0,inwhich ̂𝑢

2 appears.Averaging

thesetermsandusingtheperiodicityofthefunctionsontherighthand sideof (17),oneobtains thattheauxiliaryunknown ̂𝑢0(x)solvesthe

homogenizedproblem ∇⋅ (𝐊𝑙⋅ ∇̂𝑢0)=0 inΩ,

̂𝑢0=0 on𝜕Ω. (19)

Herethematrixvaluedfunction𝐊𝑙Ω→ ℝ2×2hastheelements

𝐊𝑙 𝑖,𝑗|||Ω𝑙=∫Ω

𝑙

(

𝐾(⃗𝑒𝑗+∇𝑦𝜔𝑗))⋅ ⃗𝑒𝑖𝑑y.

Notethatthesestepsarecarriedoutonlytodeterminetheeffective permeabilitytensorKl.Thesolution̂𝑢

0oftheeffectiveproblem(19)is

notofinteresthere.Inotherwords,weusetheauxiliaryproblemfor thesolepurposeofdefininganeffectiveparameterthatcouldbeused ateachlevelofthedynamicmultilevelalgorithm.

Supplementarymaterial

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.advwatres.2020.103674.

References

Aarnes, J. , Hou, T.Y. , 2002. Multiscale domain decomposition methods for elliptic prob- lems with high aspect ratios. Acta Math. Appl. Sinica 18 (1), 63–76 .

Abdulle, A. , Nonnenmacher, A. , 2009. A short and versatile finite element multiscale code for homogenization problems. Comput. Method. Appl. Mech. Eng. 198, 2839–2859 . Abdulle, A. , Weinan, E. , 2003. Finite difference heterogeneous multi-scale method for

homogenization problems. J. Comput. Phys. 191 (1), 18–39 .

Abdulle, A. , Weinan, E. , Engquist, B. , Vanden-Eijnden, E. , 2012. The heterogeneous mul- tiscale method. Acta Numer. 21, 1–87 .

Allaire, G. , 1992. Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (6), 1482–1518 .

Amanbek, Y. , Singh, G. , Wheeler, M.F. , van Duijn, H. , 2019. Adaptive numerical homoge- nization for upscaling single phase flow and transport. J. Comput. Phys. 387, 117–133 . Amanbek, Y. , Singh, G. , Wheeler, M.F. , van Duijn, H. , 2019. Adaptive numerical homoge- nization for upscaling single phase flow and transport. J. Comput. Phys. 387, 117–133 . Amaziane, B. , Bourgeat, A. , Koebbe, J. , 1991. Numerical simulation and homogenization of two-phase flow in heterogeneous porous media. In: Mathematical Modeling for Flow and Transport Through Porous Media. Springer, pp. 519–547 .

Amaziane, B., Pankratov, L., Piatnitski, A., 2017. An improved homogenization result for immiscible compressible two phase flow in porous media. Netw. Heterogen. Media 12 (1), 147–171. https://doi.org/10.3934/nhm.2017006 .

Arbogast, T. , Xiao, H. , 2013. A multiscale mortar mixed space based on homogenization for heterogeneous elliptic problems. SIAM J. Numer. Anal. 51 (1), 377–399 . Aziz, K. , Settari, A. , 2002. Petroleum Reservoir Simulation. Blitzprint Ltd., Cagary, Alberta . Bastidas, M. , Bringedal, C. , Pop, S. , Radu, F. , 2019. Adaptive numerical homogenization

of non-linear diffusion problems. arXiv preprint arXiv:1904.10665 .

Berger, M. , Oliger, J. , 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 .

Bosma, S., Hajibeygi, H., Tene, M., Tchelepi, H.A., 2017. Multiscale finite volume method for discrete fracture modeling on unstructured grids (ms-dfm). J. Comput. Phys. 351, 145–164. https://doi.org/10.1016/j.jcp.2017.09.032 .

(13)

Bourgeat, A., Luckhaus, S., Mikelic, A., 1996. Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27 (6), 1520–1543. https://doi.org/10.1137/S0036141094276457 .

Brown, D.L. , Efendiev, Y. , Hoang, V.H. , 2013. An efficient hierarchical multiscale finite element method for stokes equations in slowly varying media. Multiscale Model. Sim- ulat. 11 (1), 30–58 .

Carciopolo, L.D., Cusini, M., Formaggia, L., Hajibeygi, H., 2020. Adaptive multilevel space- time-stepping scheme for transport in heterogeneous porous media (adm-lts). J. Com- put. Phys. 6, 100052. https://doi.org/10.1016/j.jcpx.2020.100052 .

Celia, M.A. , Bouloutas, E.T. , Zarba, R.L. , 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26 (7), 1483–1496 . Christie, M.A. , Blunt, M. , 2001. Tenth SPE comparative solution project: a comparison

of upscaling techniques. SPE reservoir simulation symposium. Society of Petroleum Engineers .

Chung, E.T. , Efendiev, Y. , Lee, C.S. , 2015. Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simulat. 13 (1), 338–366 .

Cortinovis, D. , Jenny, P. , 2014. Iterative galerkin-enriched multiscale finite-volume method. J. Comp. Phys. 277, 248–267 .

Cortinovis, D. , Jenny, P. , 2017. Zonal multiscale finite-volume framework. J. Comp. Phys. 337, 84–97 .

Cusini, M. , Fryer, B. , van Kruijsdijk, C. , Hajibeygi, H. , 2018. Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media. J. Comput. Phys. 354, 593–612 .

Cusini, M. , Gielisse, R. , Groot, H. , van Kruijsdijk, C. , Hajibeygi, H. , 2019. Incomplete mixing in porous media: todd-longstaff upscaling approach versus a dynamic local grid refinement method. Comput. Geosci. 23 (2), 373–397 .

Cusini, M. , van Kruijsdijk, C. , Hajibeygi, H. , 2016. Algebraic dynamic multilevel (adm) method for fully implicit simulations of multiphase flow in porous media. J. Comput. Phys. 314, 60–79 .

van Duijn, C. , Eichel, H. , Helmig, R. , Pop, I. , 2007. Effective equations for two-phase flow in porous media: the effect of trapping at the micro-scale. Transp. Porous. Media 9, 411–428 .

Edwards, M.G. , 1996. A higher-order godunov scheme coupled with dynamic local grid refinement for flow in a porous medium. Comput. Method. Appl. Mech. Eng. 131 (3–4), 287–308 .

Efendiev, Y. , Hou, T.Y. , 2009. Multiscale Finite Element Methods: Theory and Applica- tions, 4. Springer Science & Business Media .

Faigle, B. , Helmig, R. , Aavatsmark, I. , Flemisch, B. , 2014. Efficient multiphysics modelling with adaptive grid refinement using a mpfa method. Comput. Geosci. 18 (5), 625–636 .

Gulbransen, A.F., Hauge, V.L., Lie, K.-A., 2010. A multiscale mixed finite element method for vuggy and naturally fractured reservoirs. SPE J. 15 (02), 395–403.

https://doi.org/10.2118/119104-PA .

Hajibeygi, H. , Bonfigli, G. , Hesse, M.A. , Jenny, P. , 2008. Iterative multiscale finite-volume method. J. Comput. Phys. 227 (19), 8604–8621 .

Hajibeygi, H. , Lee, S.H. , Lunati, I. , 2012. Accurate and efficient simulation of multiphase flow in a heterogeneous reservoir with error estimate and control in the multiscale finite-volume framework. SPE J. 17 (04), 1–071 .

Henning, P., Ohlberger, M., Schweizer, B., 2013. Homogenization of the degenerate two-phase flow equations. Math. Model. Method. Appl. Sci. 23 (12), 2323–2352.

https://doi.org/10.1142/S0218202513500334 .

Henning, P. , Ohlberger, M. , Schweizer, B. , 2015. Adaptive heterogeneous multiscale meth- ods for immiscible two-phase flow in porous media. Comput. Geosci. 19 (1), 99–114 . Hornung, U. , 1997. Homogenization and porous media, 6. Springer Science & Business

Media .

HosseiniMehr, M. , Cusini, M. , Vuik, C. , Hajibeygi, H. , 2018. Algebraic dynamic multi- level method for embedded discrete fracture model (f-adm). J. Comput. Phys. 373, 324–345 .

Hou, T.Y. , Wu, X.-H. , 1997. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1), 169–189 .

Jansen, J.-D., Brouwer, R., Douma, S.G., 2009. Closed loop reservoir manage- ment. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.

https://doi.org/10.2118/119098-MS .

Jenny, P. , Lee, S. , Tchelepi, H.A. , 2003. Multi-scale finite-volume method for elliptic prob- lems in subsurface flow simulation. J. Comput. Phys. 187 (1), 47–67 .

Klemetsdal, Ø.S., Lie, K.-A., 2020. Dynamic coarsening and local reordered nonlinear solvers for simulating transport in porous media. SPE J. Preprint (Preprint), 20.

https://doi.org/10.2118/201089-PA .

Klemetsdal, Ø.S. , Møyner, O. , Lie, K.-A. , 2020. Accelerating multiscale simulation of com- plex geomodels by use of dynamically adapted basis functions. Comput. Geosci. 24 (2), 459 —–476 .

Li, H., Leung, W.T., Wheeler, M.F., 2020. Sequential local mesh refinement solver with separate temporal and spatial adaptivity for non-linear two-phase flow problems. J. Comput. Phys. 403, 109074. https://doi.org/10.1016/j.jcp.2019.109074 . Mehrdoost, Z., 2019. Unstructured grid adaptation for multiscale finite volume method.

Comput. Geosci. 23 (6), 1293–1316. https://doi.org/10.1007/s10596-019-09878-9 .

Mehrdoost, Z. , Bahrainian, S.S. , 2016. A multilevel tabu search algorithm for balanced partitioning of unstructured grids. International Journal for Numerical Methods in Engineering 105 (9), 678–692 . 10.1002/nme.5003

Møyner, O. , Lie, K.-A. , 2016. A multiscale restriction-smoothed basis method for high con- trast porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 . Parramore, E. , Edwards, M.G. , Pal, M. , Lamine, S. , 2016. Multiscale finite-volume

cvd-mpfa formulations on structured and unstructured grids. SIAM Multiscale Model. Simul. 14, 559–594 .

Pau, G.S. , Almgren, A.S. , Bell, J.B. , Lijewski, M.J. , 2009. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media. Philos. Trans. R. Soc. 367 (1907), 4633–4654 .

Pau, G.S.H. , Bell, J.B. , Almgren, A.S. , Fagnan, K.M. , Lijewski, M.J. , 2012. An adaptive mesh refinement algorithm for compressible two-phase flow in porous media. Com- put. Geosci. 16 (3), 577–592 .

Radu, F.A. , Kumar, K. , Nordbotten, J.M. , Pop, I.S. , 2017. A robust, mass conservative scheme for two-phase flow in porous media including hölder continuous nonlineari- ties. IMA J. Numer. Anal. 38 (2), 884–920 .

Sammon, P.H. , 2003. Dynamic grid refinement and amalgamation for compositional sim- ulation. SPE reservoir simulation symposium. Society of Petroleum Engineers . Schmidt, G. , Jacobs, F. , 1988. Adaptive local grid refinement and multi-grid in numerical

reservoir simulation. J. Comput. Phys. 77 (1), 140–165 .

Shah, S. , Moyner, O. , Tene, M. , Lie, K.-A. , Hajibeygi, H. , 2016. The multiscale restriction smoothed basis method for fractured porous media (f-msrsb). J. Comput. Phys. 318, 36–57 .

Singh, G. , Leung, W. , Wheeler, M.F. , 2019. Multiscale methods for model order reduction of non-linear multiphase flow problems. Comput. Geosci. 23 (2), 305–323 . Singh, G. , Leung, W. , Wheeler, M.F. , 2019. Multiscale methods for model order reduction

of non-linear multiphase flow problems. Comput. Geosci. 23, 305–323 .

Singh, G., Wheeler, M.F., 2018. A space time domain decomposition approach using enhanced velocity mixed finite element method. J. Comput. Phys. 374, 893–911.

https://doi.org/10.1016/j.jcp.2018.08.013 .

Szymkiewicz, A. , Helmig, R. , Kuhnke, H. , 2011. Two-phase flow in heterogeneous porous media with non-wetting phase trapping. Transp. Porous Media 86, 27–47 . Tene, M. , Al Kobaisi, M.S. , Hajibeygi, H. , 2016. Algebraic multiscale method for flow in

heterogeneous porous media with embedded discrete fractures (f-ams). J. Comput. Phys. 321, 819–845 .

Tene, M. , Wang, Y. , Hajibeygi, H. , 2015. Adaptive algebraic multiscale solver for com- pressible flow in heterogeneous porous media. J. Comput. Phys. 300, 679–694 .

Vasilyeva, M., Leung, W.T., Chung, E.T., Efendiev, Y., Wheeler, M., 2020. Learn- ing macroscopic parameters in nonlinear multiscale simulations using non- local multicontinua upscaling techniques. J. Comput. Phys. 412, 109323.

https://doi.org/10.1016/j.jcp.2020.109323 .

Wachspress, E.L. , 1966. Iterative Solution of Elliptic Systems: and Applications to the Neutron Diffusion Equations of Reactor Physics. Prentice-Hall .

Wang, Y. , Hajibeygi, H. , Tchelepi, H.A. , 2014. Algebraic multiscale solver for flow in heterogeneous porous media. J. Comput. Phys. 259, 284–303 .

Weinan, E. , 2011. Principles of Multiscale Modeling. Cambridge University Press . Weinan, E. , Engquist, B. , Li, X. , Ren, W. , Vanden-Eijnden, E. , 2007. Heterogeneous multi-

scale methods: a review. Commun. Comput. Phys. 2 (3), 367–450 .

Weinan, E. , Yue, X.Y. , 2004. Heterogenous multiscale method for locally self-similar prob- lems. Commun. Math. Sci. 2 (1), 137–144 .

Zhou, H. , Tchelepi, H.A. , 2012. Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. SPE J. 17 (02), 523–539 .

Cytaty

Powiązane dokumenty

Although ℓVMS is an attractive method for a variety of reasons, a major disadvan- tage of discontinuous Galerkin methods in general is the high computational cost due the large

Po uzy- skaniu tytułu doktora habilitowanego, w 1981 roku został kierownikiem Katedry Literatury Międzytestamentalnej i Nauk Pomocniczych, natomiast tytuł profeso- ra

Sesja ku czci Romana Ingardena. Studia Philosophiae Christianae

Бабен- ко підтримують думку про те, що „кожен текст, по суті, є інтертекстом: у ньому наявні інші тексти (на різних рівнях або в майже невпізнаних формах)” 17.

the course should consist of 3 years of basic civil engineering, followed by 1,5 years of water resources engineering, covering the basic aspects of hydraulic engineering,

Literature as a sociologist's comrade-in-arms - the front troop of the humanities' army, at the heels of which innumerable platoons, companies, battalions, regiments and

It can be concluded that clear changes in the fluxes of the primary, cytosolic carbon metabolism of Saccharomyces cerevisiae occur in an elutriated culture in

A second strategy, without the above restriction, are coarse space projection–based VMS methods, presented in Section 4: standard finite element spaces are chosen for all