• Nie Znaleziono Wyników

Extreme shearography

N/A
N/A
Protected

Academic year: 2021

Share "Extreme shearography"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

Extreme shearography

Development of a high-speed shearography instrument for quantitative surface strain

measurements during an impact event

Anisimov, Andrei G.; Groves, Roger M.

DOI

10.1016/j.optlaseng.2020.106502

Publication date

2021

Document Version

Final published version

Published in

Optics and Lasers in Engineering

Citation (APA)

Anisimov, A. G., & Groves, R. M. (2021). Extreme shearography: Development of a high-speed

shearography instrument for quantitative surface strain measurements during an impact event. Optics and

Lasers in Engineering, 140, [106502]. https://doi.org/10.1016/j.optlaseng.2020.106502

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

OpticsandLasersinEngineering140(2021)106502

ContentslistsavailableatScienceDirect

Optics

and

Lasers

in

Engineering

journalhomepage:www.elsevier.com/locate/optlaseng

Extreme

shearography:

Development

of

a

high-speed

shearography

instrument

for

qua

ntitative

surface

strain

measurements

during

an

impact

event

Andrei

G.

Anisimov

,

Roger

M.

Groves

Aerospace Non-Destructive Testing Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: High-speed shearography Double-pulse shearography Flexural waves Impact Composite materials Surface strain

a

b

s

t

r

a

c

t

Monitoringofextremedynamicloadingsoncompositematerialswithhightemporalandspatialresolution pro-videsanimportantinsightintotheunderstandingofthematerialbehaviour.Quantitativemeasurementofthe surfacestrainatthefirstmomentsoftheimpacteventmayrevealtheinitiationofthefailuremechanismsleading todamage.Forthispurpose,wedevelopedashearographyinstrumentforstrainmeasurementsduringasevere impacteventatμstemporalresolution.Thispaperpresentsthedesign,developmentandexperimental mea-surementofthesurfacestrainduringanimpactonaluminiumandcompositesamples.Thefinaldesignrealises measurementsofthein-andout-of-planesurfacestraincomponentstoimprovecouplingofexperimentaldata withthenumericalmodels.Theexperimentsonaluminiumandcompositespecimensrevealedthemainelastic materialresponsetobeinthefirst1-2μsaftertheimpactfollowedbytheinitiationandpropagationofflexural wavescausingin-andout-of-planedeformation.Furtheranalysisofthewavefrontswillbeusedasinputand validationdatafornewnumericalandanalyticalmodelsoftheimpactresponseofcompositesandforvalidation ofotherexperimentaltechniquesasacousticemissionandembeddedpiezosensors.

Thesetoftechnicalparametersofthedevelopedshearographyinstrumentmakesitoneofthemostextreme ap-plicationsofshearographyformaterialcharacterisation.Theframeworkforthisworkisthe“EXTREMEDynamic Loading– PushingtheBoundariesofAerospaceCompositeMaterialStructures” Horizon2020project.

1. Introduction

Improvingtheimpactresponseofcompositematerialsisan impor-tantdirectionofthematerialsdevelopmenttowardssaferandlighter aircraft.Compositematerialsarevulnerabletoextremedynamic load-ingssuchasbladeoff eventsorforeignobjectdamage(hail,runway debris,birdstrike)[1].Thedevelopmentofnewinstrumentsto recon-structextremedynamiceventsandtomeasurefailureparameterswill provideanimportantinsightintotheunderstandingofthebehaviourof composites.Thestraindevelopmentduringtheimpactisofparticular interestforbothmaterialsmodellingandforexperimentalresearchers [2,3].Theshearography(specklepatternshearinginterferometry) tech-nique[4–6]isusedinthisprojecttoprovideaquantitative measure-mentofthesurfacestraindevelopmentatthefirstmomentsofthe im-pactevent(𝜇stimescale)whichmayrevealtheinitiationofthefailure mechanismsincompositematerials.

Inpractice,shearographyhasactivelybeenusedfornon-destructive inspectionortesting(NDI,NDT)ofcompositematerialsovermorethan 20years[5,7,8],mostlyfordefectdetection,localisationand

charac-∗Correspondingauthorat:Kluyverweg1,2629HS,Delft,theNetherlands

E-mailaddress:a.g.anisimov@tudelft.nl(A.G.Anisimov).

terisation.Aposteriorinspectionofimpactdamagehasbeenreported in theliteratureforbothlow [9–11]andhigh-velocity impacts[12]. Shearographyhasalsoalreadybeenusedfortheexperimental mechan-icsofcompositesatslowstrainrates[5,13–15],butnotduringan im-pacteventathighimpactspeedsandenergies.Previouslyholographic techniqueswereusedtocapturethepropagationofflexuralwaves dur-ingtheimpactforcewithclassical(film)pulsedholography[16,17]and laterwiththeelectronicspecklepatterninterferometry(ESPI)by intro-ducingacarrierfrequency[18].DoublepulseESPIhasbeenactively usedforimpactmonitoring[19,20]andnumericalcomparisonwiththe availablefiniteelementmodels[21,22].

Whenshearographyisusedforthemonitoringofdynamicevents,the phasecorrespondingtothesurfacedisplacementgradientoftheobject canbeextractedfromcapturedinterferogramswithouttime-averaging byusingaspatialphase-shiftandFourier-basedprocessing [23].The firstspatialphase-shiftforshearographyusedacarrierspatialfrequency generated bya Mach-Zehnder interferometer[24]. Recently, various configurationsofspatialphase-shiftwithaMach-Zehnder interferome-terweredeveloped[25,26]andlatertheMichelsoninterferometerwas

https://doi.org/10.1016/j.optlaseng.2020.106502

Received4July2020;Receivedinrevisedform11October2020;Accepted23November2020

(3)

alsoadaptedforthispurpose[27]andimprovedbyusingaslitinstead ofacircularaperturetoimprovetheenergyefficiencyandqualityof therevealedphasemaps[28].Alternativemethodswerealsoreported withacameracoupledwithanarrayofmicro-polarisers[29],a dual-wavelengthmethodwithasyntheticwavelength[30]andwith diffrac-tiveopticalelements[31].

Dynamicloadingwithahighspeedofdeformationrequiresthe high-estpossibleacquisitionrate,reaching𝜇sandsub-𝜇stemporal resolu-tion.Varioussolutionsforfastshearographyhavebeenreportedwhich employedhigh-speed[32]ormoreoftendoubleframecameraswitha higherspatialresolution[33].Thedoubleframeapproachwasalsoused forvibrationanalysisin afrequencyrangeuptoafewkHz[34–36], includingfortransientvibrations[37,38]andimpact-inducedflexural wavesatlowimpactenergies[39,40]. Mostofthereported shearog-raphyinstruments with spatialphase-shift implemented out-of-plane deformationanalysiswiththeshear appliedin onedirection per ex-perimentduetothecomplexityoftheopticalpartsandphase extrac-tion.However,therewererecentresultswiththeshearsimultaneously appliedinboth𝑥-and𝑦-directionsbymultiplexingusingpolarisation [41,42],differentspectralranges[43]andspatialphase-shifting[44].

This paper presents thefinal results of the development and ex-perimentaltestingofthenewhigh-speed EXTREMEshearography in-strument,whichwasperformedintwoconfigurationswithamodified MichelsonanddoubleimagingMach-Zehnderinterferometers, respec-tively[45,46].Bothconfigurationsarepresentedandcomparedwhen usedforhigh-speedshearography.Thelatteronewasusedforthe fi-naldesignasitallowsanindependentadjustmentoftheshearamount. Thedevelopmentwasdrivenbytheneedtomaximisethevalueofthe expectedresults forthevalidation ofnumericalmodels– to measure bothin-andout-of-planesurfacestraincomponentsatimpactspeeds upto200m/swith𝜇stemporalresolutionoverthefieldofviewaround 100×100mm.Thereforetwoviewingdirections(shearing interferome-ters)withadouble-frameapproachwereusedtocapturethe interfero-gramsduringtheimpact.Themainresultsincludeexperimentally mea-suredsurfacestrainmapsoverthefieldofviewduringimpacteventson aluminiumandcompositesamples.

Theframeworkforthisworkisthe“EXTREMEDynamicLoading– PushingtheBoundariesofAerospace CompositeMaterial Structures” Horizon2020project[47].Withintheproject,theshearographydatais fusedwithhigh-speed3Ddigitalimagecorrelation(DIC)[48]and in-situimpactdatafromfibreopticalsensorsbasedonFibreBraggGratings (FBG),embeddedandsurfacemountedpiezo-electricsensors[49].

2. High-speedshearographytheory

Shearographyisacoherent-opticaltechniquethatrealisesfull-field directmeasurementofthesurfacedisplacementgradientwhenthe ob-jectisdeformed.Inthisproject,theobjectisdeformedbyimpact load-ingwithagas-gunusinganimpactor.Asintheliterature[33–36],a pulsedlaserisusedheretoproduceaspecklepatternbyilluminatingthe objectwithanexpandedlaserbeam.Interferogramsarerecordedwith camerasthroughshearingdevicesattheinitialmomentoftheimpact (from0to10μsaftertheimpact).Duringtheimpactevent,eachcamera recordsinterferogramssynchronouslywiththelaserpulsesandrealises spatialphase-shiftingtogivetheshearographyphasecorrespondingto thesurfacedisplacementgradientwhichwasbuiltupinbetweenlaser pulses.Thisphasemapisfurtherprocessedundercertaindesign consid-erations,e.g.camerasandlasersorientation,togivethesurfacestrain components.

Ingeneral,tomeasurethein-andout-of-planesurfacestrain com-ponents,amulticomponent3Dshearographyconfigurationisneeded, e.g.withthreeshearingcameras[5].Duetotheexpectedcomplexityof thehigh-speedshearographyinstrument[45,46],thenumberof shear-ingcameraswasreducedtotwowiththemainsensitivitytothein-and out-of-planecomponents.AschematicoftheEXTREMEshearography instrumentispresentedinFig.1.

Whentwoshearingcamerasareused,eachofthemwillprovidea phasechangeΔ𝜙𝑥whichcanbeextractedfromtheFourierside-spectra of therecordedinterferograms[25].Iftheillumination andviewing directionsareinthe𝑥𝑧-planeandarelativelysmallsheardistance𝑑𝑥

isappliedinthe𝑥-direction(theshearissignificantlysmallerthanthe distance totheobject),thephase changeΔ𝜙𝑥 becomesafunctionof thein-andout-of-planesurfacestraincomponents(𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥, respectively): Δ𝜙𝑥=𝜙𝑥𝜙ref𝑥 = 2𝜋 𝜆 ( 𝑘𝑥𝜕𝑢𝜕𝑥+𝑘𝑦𝜕𝑣𝜕𝑥+𝑘𝑧𝜕𝑤𝜕𝑥)𝑑𝑥 ifinxzplane ≈ 2𝜋 𝜆 ( 𝑘𝑥𝜕𝑢𝜕𝑥+𝑘𝑧𝜕𝑤𝜕𝑥)𝑑𝑥, (1) where𝜙

𝑥 and𝜙𝑟𝑒𝑓𝑥 arethesignalandreferencephasedifferences

ob-tainedbeforeandafterdeformation,subscript𝑥referstotheshear di-rection,𝜆 isthelaserwavelength,and(𝑘𝑥𝑘𝑦𝑘𝑧)arecomponentsofthe sensitivityvector,thatisthebisectoroftheviewingangleΘbetweenthe illuminationandviewingdirections[5].Thesurfacestraincomponents 𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥fortheshear𝑑𝑥𝑗inthe𝑥-directioncanbecalculated

byprocessingthephasechangesΔ𝜙𝑥𝑗obtainedateachcamera𝑗=1,2: [ 𝜕𝑢𝜕𝑥 𝜕𝑤𝜕𝑥 ] = 𝜆 2𝜋 [ 𝑘𝑥1 𝑘𝑧1 𝑘𝑥2 𝑘𝑧2 ]−1[ Δ𝜙𝑥1𝑑𝑥1 Δ𝜙𝑥2∕𝑑𝑥2 ] ifsymmetric setupin𝑥𝑧−plane ≈ 𝜆 4𝜋 [ 1∕sin(Θ) 1∕sin(−Θ) 1∕(cos(Θ)+1) 1∕(cos(Θ)+1) ][ Δ𝜙𝑥1𝑑𝑥1 Δ𝜙𝑥2∕𝑑𝑥2 ] . (2)

Eqs(1)and(2)arevalidaslongastheilluminationandthe symmet-ricviewingdirectionslayin𝑥𝑧-plane.Incaseofangularmisalignment betweentheviewingdirectionsandtheilluminationoffewerthan5 de-grees(rotationoverthe𝑥axis),theshearstrain𝜕𝑣𝜕𝑥ismixedupwith theout-of-planecomponent𝜕𝑤𝜕𝑥upto5%(assumingthemagnitude ofthesecomponentsiscomparable).

2.1. High-speedshearography

Giventhefactthatthepulsedilluminationat𝜇stimescaleispossible withmodernlasersthatcandelivertwoorseveralsub-pulses[50],the mainchoiceisofthecameraarchitecture.Acomparisonofthedifferent approachesforhigh-speedshearographyisdoneinTable1.

Inthisproject,thethirdarchitecturewiththedoubleframecameras waschosenduetotheabilitytoachievehighnumberofpixelsandsmall pixelsizeastheydefinethehighestspatialfrequencyandthefrequency range,respectively. These arethemainlimitationsofthehigh-speed camerasinoptions1and2.Thelimitationoftwoframespercameracan beovercomebyincreasingthenumberofcameras[56]orbyrepeating theexperimentswithcontrolleddelays.

3. Instrumentdesignanddevelopment 3.1. Spatialphase-shiftshearography

Fig.2showstheshearographyconfigurationforoneofthecameras withspatialphase-shiftingusingtheMichelson[27]orthedouble imag-ingMach-Zehnder[25]interferometers.Bothconfigurationsimplement theshearingprinciplebyoneofthemirrorswhichistiltedwithrespect tothereferenceone.Thespatialphase-shiftisrealisedbyslitsinboth interferometers(Fig.2(b,c))whichlimitthefrequencybandwidthof therecordedinterferogramwithacut-off frequency𝑓𝑐𝑢𝑡=𝐷∕2𝜆𝑓[24],

where𝐷 istheslitwidthprojectedtothefocalplaneand𝑓 isthe fo-callengthoftheimaginglens.InthecaseofMichelsoninterferometer, thefilteringisdoneinthefrontfocalplaneofthefirstlensofthe4f system,intheMach-Zehnderscheme– thisisdonedirectlyinthefront focalplaneofeachimaginglens.Theoffset(carrier)frequency𝑓𝑜isset bytheangularoffset𝛽 as𝑓𝑜=sin𝛽∕𝜆.FortheMichelsoninterferometer

(4)

A.G. Anisimov and R.M. Groves Optics and Lasers in Engineering 140 (2021) 106502

Fig.1.TheEXTREMEshearographyinstrumentforin-andout-of-planemeasurements.

Table1

Comparisonoftheshearingcamerasarchitectures.Parametersmaydependonspecificcameramodels.

Camera architecture Main advantages Main limitations

1. One or more high-speed cameras with a trade-off between the spatial resolution and the frame rate [51–53]

Flexibility in various frame rates with a trade-off for the resolution

Ability to capture a sequence of interferograms to record the whole impact event

Frame rates around 10 6 fps result in low spatial

resolution (order of 128 ×48 pixels), which is not enough for digital speckle interferometry 2. One or more high-speed cameras with a

fixed resolution at extremely high frame rates (buffer on the sensor) [55]

Moderate spatial resolution (close to 1 Mpixel) at extremely high frame rates (higher than 5 ∙10 6 fps)

Ability to capture a sequence of interferograms (up to 100-200 frames)

[Valid for architectures 1-2] Large pixel size (order of 20 ×20 𝜇m) and low fill factor limit the maximum spatial

frequencies for the spatial phase-shift

High price, especially if 2 or 3 cameras are needed for the 3D shearography [ 5 , 6 , 54 ] 3. One or several double frame CCD cameras

with an interline frame transfer [ 18–22 , 34–40 ]

High spatial resolution (several Mpixel)

Small pixel size (up to 3 ×3 𝜇m)

Affordable price

The number of frames is limited to 2 per camera

Long exposure time for the second frame if no extra shutter is used (exposure equal to a readout time of the first frame, reaches 100-200 ms)

Fig.2. Shearographyconfiguration(a)foroneofthecameraswithspatialphase-shiftingwithmodified

(b)Michelsonor(c)doubleimagingMach-Zehnderinterferometers:schematicrepresentationoftheopticalpathsinbothconfigurations,(d)relativeoff-axisoffsetof theslitsinMach-Zehnderschemeand(e)dataprocessingflowintheFourierdomain(FOV– fieldofview,FT– Fouriertransform,IFT– inverseFouriertransform).

(5)

Fig. 3.Comparison of the phase maps cap-turedwith(a)the Michelsonand(b) Mach-Zehnder interferometers (Fig. 2(b,c), respec-tively)correspondingtotheout-of-plane de-formationduringimpactsonaluminiumplates withtheshearinthe𝑥-direction.

(Fig.2(b)),𝑓𝑜dependsontheactualshearamount𝛽 expressedinan

angularform.FortheMach-Zehnderinterferometer,𝑓𝑜isindependently

setbytheangularoffsetoftheslits𝛽 (Fig.2(c,d))[25].Both interfer-ometersweremodifiedbyusingaslitinsteadofcircularaperturesto improvetheenergyefficiencyandqualityoftherevealedphasemaps byincreasingtheareaandfrequencyrangeofthesidemaximumsinthe Fourierspectrum(redrectanglesinFig.2(b,e))[57].

AftertheinverseFouriertransformation,thesidemaximumsyield acomplex functionthatcontains thephaseinformation𝜙𝑟𝑒𝑓𝑥 and𝜙𝑥

fortheinterferogramscaptured beforeandafterthedeformation, re-spectively. Toisolate these maximums with a windowed transform, theoffset frequency 𝑓𝑜 has tobe at least twice higher than𝑓𝑐, i.e.

2𝑓𝑐𝑢𝑡𝑓𝑜⇒ 𝐷𝑓sin𝛽[24].

Thedynamicrangeofthemeasuredstrainduringanimpactevent hastobemaximized.Forthat,thesheardistancetypicallyhastobe de-creased.FortheMichelsoninterferometerthisisuptoareliablespectra separation(asinFig.2(b)),fortheMach-Zehnderinterferometerthis isuptotheexperimentallyfoundlimitofnotlessthan2specklesizes. Whentheslitisused,thespecklesizeisdefinedasthelongestsizeof thespeckle(herehorizontal).Tominimizethesubjectivespecklesize Δ𝑠=𝜆𝑓∕𝐷,theslitwidth𝐷 hastobemaximized.However,the mini-mumspecklesizeΔ𝑠forshearographyhastobemorethan6pixels[24]. Thismakesthetrade-off fortheslitwidth𝐷:

𝜆𝑓∕6𝑝𝑥𝐷𝑓sin𝛽, (3)

where𝑝𝑥isthepixelsizeinthe𝑥-direction.Therefore,forreliable

spec-tralseparation,itispreferabletousecameraswithaminimalpixelsize andahighnumberofpixels(seeoption3inTable1).

3.2. Experimentalcomparisonoftheinterferometers

OneMichelsonandoneMach-Zehnder interferometerswere simi-larlyassembledtoexperimentallycomparetheirperformance.To sim-plifythepreliminarytests,theinterferometerswereoriented perpendic-ularlytotheobject,sothephasemaps(Fig.3)recordedduringimpact eventscorrespondtotheout-of-planedeformation.Eachinterferometer wastestedindividuallyinthesametestconditionsandimpactenergy withnewaluminiumspecimens,whichisasimplematerialcase.The meansheardistanceoverthefieldofviewfortheMichelson interfer-ometerwasdecreasedto2.7mmfromthepreviouslyreportedresults [45]up tothelimit ofthespectraseparation(Fig.2(b)).The Mach-Zehnderinterferometerhadashearwiththemeanvalueof1.4mm.

The phase maps (Fig. 3) reveal the propagation of a symmetric circularflexuralwaveduringthetime intervalaround3to4μs

af-terthemomentoftheimpact.Fig.3(b)wascapturedwiththe Mach-Zehnder interferometer andreveals the increased dynamic range of the resolved phase fringes in comparison with theMichelson inter-ferometer. According to the comparison of the shear distances, the Michelson interferometeris expected to have a higher phase value (morefringes,Eq.(1)),however,thesefringesarenotresolvedinthe phasemap.

Foraccuratestrainestimationoverthefieldofview(Eq.(2)) two correctionshavetobeimplemented.First,thesensitivityvectorhasto becorrectedduetothevaryingviewingangleΘfordifferentpointsof thespecimen[5,6].Second,thenon-uniformityofthesheardistancehas tobecalibrated,e.g.bycapturinganobjectwithaknown2Dpattern viareferenceandshearedfieldofviews.Fig.4showsthesheardistance variationforbothinterferometerswhencheckerboardimageswere cap-turedindependentlythroughthereferenceandtheshearedfieldofview andtherelativeshiftsofallcornerswereidentifiedandinterpolated [54].

Fig.4showsthatbothinterferometershavenon-uniformshear dis-tanceswhichisacumulativeresultofthemisalignmentsand imperfec-tionsofthespecificopticalparts(e.g.mirrorsnon-flatness).According toFig.4,thedistributedopticalschemeinaMach-Zehnder interferom-etermayresultina15%differenceoverthefieldofviewincomparison with1%withtheMichelsonone.Incaseoftheimpact-monitoringwhen theopticalsetupislocatedclosetotheimpactevent,afinalalignment ofthesetupaftereachimpactischallenging,thereforeaccordingtoour practice,thepost-calibrationof theactualshearamountispreferable andeasierimplementedthantheopticsrealignment.

3.3. EXTREMEshearographyinstrumentdesign

Based on the performance comparison of the two interferome-ters(Figures3and4),thearchitecturewiththeMach-Zehnder inter-ferometer was used furtherfor the instrumentdevelopment. This is mainlydue totheabilitytoadjusttheshear distance independently from the offset frequency which is critical for the high strain sce-nario as an impact event. Tomaximise the couplingof the experi-mentaldatawiththenumericalmodels,thedevelopedconfiguration of theshearographyinstrument(Fig.5)realisesmeasurementsof the in- andout-of-planesurfacestraincomponents(𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥or 𝜕𝑣𝜕𝑦and𝜕𝑤𝜕𝑦dependingonthesheardirectionduringtheimpact, Eq.(2)).Thereforetwoshearinginterferometerswereplaced symmet-ricallyinahorizontalplane.Theinstrumentwasbuilttogetherwitha gas-gunasanimpactchamberwiththreezones drivenbythesafety measures:

(6)

A.G. Anisimov and R.M. Groves Optics and Lasers in Engineering 140 (2021) 106502

Fig.4.Variationofthesheardistanceinthe𝑥-directionfor(a)theMichelsonand(b)Mach-Zehnderinterferometers(Fig.2(b,c)).Theshearvalueswerenormalized foradirectcomparison.

Fig.5. EXTREMEshearographyinstrumentforin-andout-of-planesurfacestrainmeasurements: (a)overviewoftheinstrument,thegas-gunandtheimpactchamber,

(b)theimpactzonewiththespecimenclampingandtheopticalsynchronisationunit, (c)themonitoringzoneasseenfromoneoftheshearinginterferometers,

(d)twosymmetricshearinginterferometersimplementingthedouble-imagingscheme.

a) an impact zone with the optical synchronisation unit pro-viding real-time information about the approaching impactor (Fig.5(b));

b) amonitoringzonewherethebacksurfaceofthespecimenis ob-servedduringtheimpact(Fig.5(c));

c) ashearographyzonewheretheshearingcamerasandthelaser beampathareplaced(Fig.5(d)).

Thegas-gunisadaptedforimpactspeedsupto200m/sandoperates underpressurisedair or nitrogen,impactreleaseis controlledbyan electromagneticvalve.Theimpactordesignwithahemispheretipwith aradiusofcurvatureof5mmwasusedfollowingstandardpracticein theaerospaceindustry.

Eachdouble-imagingMach-Zehnderinterferometer[25]consistsofa double-framecameraBOBCATB3420byImperx.Thiscamerahasan

in-terlineframetransferwitharesolutionof3388×2712pixels,apixelsize of3.69×3.69𝜇mandaninterframingtimeof200ns.Thespeckle pat-ternisproducedbyilluminatingthespecimenwithanexpandedbeam fromapulsedlaserinadoublepulseregime(customisedSpitLight600 Nd:YAG-LasersystembyInnoLasLaserGmbH,wavelength532nm).An additionalgroundglassdiffuser(Fig.1(a))isusedtonormalisethe en-ergydistributionovertheilluminatedareatoovercometheinitial circu-larfringesinthebeamduetocomplexmodescombination.Twoportions ofthesinglepulsewiththeinitialenergyfrom100upto500mJ sequen-tiallyilluminatethespecimenunderthecontrolofaPockelscellwith theminimumseparationtimeof1𝜇s.Ineachinterferometer,twoslits wereplacedatthefrontfocalplanesoftheimaginglensestoachievea betterqualityofthephasemapsincomparisonwithacircularaperture [57].Thetrade-off betweentheinterferometerparameters(Eq.(3))was madeasfollows:

(7)

Fig.6. Timingoftheshootingroutine:(a)diagramwiththemaintriggersandsignals(timescaleisnotlinear),

(b)electricalsignalscapturedduringanimpact:cameraexposure(blueline),laserpulses(red)andAEsignals(brownandgreen;timeaxisistoscale).

a) theminimumdistancebetweenthecameraandtheobjectof 500-600mmwasbasedonsafetymeasures;

b) thefocallengthwasmaximisedupto50mm(Xenoplan2.8/50 bySchneider)anddefinedbythevisibleareaofØ150mm; c) eachslitwasshiftedfromthejointaxisby1.9mm(𝛽=2.3°)

re-sultingin theoffsetfrequencyclosetoahalfofthemaximum one,seeFig.2(c-e);

d) the1.8mmslitwaschosenasarationalcompromiseresultingin theabsenceoftheoverlapofthecentralandsidemaximumsof theFourierspectraandtheaveragesubjectivespecklesizeof7 pixels(correspondingto0.35mm;alongwiththe𝑥-axis). e) thesheardistance𝑑𝑥wasdecreasedincomparisonwiththe

pre-liminarytests(section3.2)to17to21pixels(0.9..1.1mm)and calibratedoverthefieldofviewforbothcamerasasinFig.4(b).

During the tests, square specimens of 200×200 mm are tightly clampedbetweentwo squareclampswithcircularwindowson both impactandobservingsides(Fig.5(b,c)).Theclampingitselfisfixedto thewallwhichdividestheimpactandmonitoringzones.Toimprove thelaserlightscattering,thespecimensarepaintedwithmattewhite paint.

3.4. “On-the-fly” synchronisationbasedontheapproachingimpactor Missingtheimpactmeanslossofthespecimen,thereforeallparts oftheinstrumentrequirereliablereal-timesynchronisationwithan ac-curacyupto1𝜇stocapturetheinitialmomentofimpact.Theoverall shootingproceduretakesmorethan10seconds(Fig.6(a))andincludes: phase1.Warming:10sofpre-heatofthelaserforthermalstabilisation bytriggeringthelaser(greensignalinFig.6(a))resultingin100 dou-blepulses(redsignal)at10Hz;phase2.Shot:openingofthegas-gun valve,theimpactorstartstravelling;phase3.Travelling:theimpactor travelstowardsthespecimenbeingcontinuouslymonitoredbythe op-ticalinterrupterstocalculatetheexpectedimpacttimeandtheneeded “dynamicdelay” beforethefinal“laser-camera” trigger;phase4. Im-pact:capturingoftwoframessynchronouslywithtwolasersub-pulses andacousticemission(AE)signalsfromtwosensors(Fig.5(c)).

“On-the-fly” synchronisationisdonebyprocessingsignalsfrom20 opticalinterrupters(pairsofLEDandfastphototransistors)whichcross thepathoftheimpactor(Fig.5(b))usingareal-timeprocessing unit withanFPGAarchitecture[45,46].Theactualspeedoftheimpactoris calculatedbasedontherelativedelaysbetweenthese20signals,then theappropriatedelaystotriggerthelaserandthecameraarecalculated

inareal-timerightbeforetheimpact.Aftertheimpact,theactual mo-mentofimpactisestimatedbyprocessingsignals(brownandgreenin Fig.6(b))fromtwominiatureacousticemissionsensorsPICOHF-1.2by PhysicalAcousticsoperatingintherangeof500-1850kHzwhichare tapeddirectlytothespecimensymmetricallyfromthespecimencenter (Fig.5(c)).

4. Experimentalresults

Theexperimentalresultspresentedherearetoinvestigatethe instru-mentperformance.Forthattwoaerospacegradematerialswereselected withisotropicandanisotropicproperties.Aseparatestudywillcoverthe modellingaspectofthematerialbehaviour.

ThedevelopedinstrumentwiththeMach-Zehnderarchitecturewas used forthemaintests.Thein-andout-of-plane surfacestrain com-ponents weremeasuredduringimpact tests on4mm thick 6082-T6 aluminiumspecimens(Fig.7)and3mmthickcarbonfibrereinforced composite(CFRP)specimenswith0/90/0/90/0layupofunidirectional plies(Fig.8).Thestrainmapsrevealtheevolutionof𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥 in betweenthelaserpulses (1𝜇s, Pockelscellseparationtime)with varyingdelaystartingfromthemomentoftheimpactandnotthetotal strainwhichwasbuiltupduringtheimpact.Eachimpactexperiment withanewspecimenresultedinapairofmaps(𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥) pre-sentedinsub-columnsinFigures7(e.g.aandeintheredrectangle,b andf,etc.)and8.Straincomponents𝜕𝑣𝜕𝑦and𝜕𝑤𝜕𝑦inFig.8were measuredbyrotatingthespecimensby90degreesandmaintainingthe samecalibratedsheardistance𝑑𝑥.Notethephaseunwrappingalgorithm

hasnotbeenabletoresolveallfringesandfullyidentifyallthephase steps,whichresultedinthepartiallylostdata.

TheimpactorandthedamageintheCFRPspecimenareshownin Fig.9.NopenetrationoftheimpactorwasobservedintheCFRPand aluminiumspecimens.Duringthetests,theimpactorspeedwasinthe rangeof58.5±0.5m/scorrespondingtoa53.8..55.7Jimpactenergy rangewithanimpactorof32g.

ThestrainmapsinFigures7and8reflectbothspatialand tempo-ralinformationontheflexuralwaves.Toassessthetemporalaspect, thewavespeedsforthealuminiumspecimens(Fig.7)wereestimated, first, based on theAE signals recordedbythe piezo-electricsensors andthencomparedwiththeonederivedfromthegraphicallycaptured strainmaps(Fig.7).Forbothcases,thecross-sectionsofthestrainmaps wereplottedtogetherinFig.10andmatchedwiththeAEsignalsfrom thesametests (shownontheleftandrightsides).First,thespeedof 5490m/swascalculatedbyaveragingthetimeofarrivalofthewaveto

(8)

A.G. Anisimov and R.M. Groves Optics and Lasers in Engineering 140 (2021) 106502

Fig.7. In-andout-of-planesurfacestrainmaps(𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥)of4mmaluminiumplates(6082-T6) atthetimefrom0to2.9..3.9μsaftertheimpact.Axesunitsmm.

Fig.8. In-andout-of-planesurfacestrainmaps(𝜕𝑢𝜕𝑥and𝜕𝑤𝜕𝑥,𝜕𝑣𝜕𝑦and𝜕𝑤𝜕𝑦)of3mmCFRPspecimensatthetimefrom0to6..7μsaftertheimpactwith anadditionalzoom(m)intotheunwrappedphasemap.Axesunitsmm.

(9)

Fig.9. Theimpactor(a),(b)theimpactedand(c)themonitoredsideofthe3mmCFRPspecimenrevealingthedamageaftertheimpact.

Fig.10. Matchingthegeometricalandtimedata:cross-sectionsofthestrainmapsperimpactfromFigure7,thesignalsfromaphotodiodeandtheacousticemission (AE)sensorscapturedduringtheimpactevents.Theunresolvedstrainvaluesareplottedinlightgreycolour.

theAEsensorsplacedsymmetricallybetween65and70mm(greyarea) fromthespecimencenterduringthefirstimpacttest(toplineinFig.10). Thisvaluewasusedtorecalculatethespatial𝑥-axisinmm(bottom)to thetimeaxis(top).Thesecondcalculationwasdonebasedonthe lo-cationofthewavefrontinthecapturedstrainmaps(linestwotofive) withanassumption,thatthespeedofthegraphicallycapturedwave maydifferfromthemeasuredwithAEsignals.Fourcross-sectionsfrom 1.1to3.9𝜇swereaveragedtogivethespeedestimationof5380m/s, whichdiffersby2%fromthevaluemeasuredwiththeAEsensors.

Twophotodiode signals(redline inFig. 10; shown onlyfor one experiment)with1μs separationtimerepresentthelasersub-pulses recordedduringtheimpact(alsoinFig.6(b))togetherwiththeAE sig-nals(plottedatthesametimescale).Oncethecross-sectionsofstrain mapswerematchedwiththecorrespondingtime(topandbottomaxes), therisingedgeofthesecondphotodiodesignal(secondsub-pulse) cor-respondstothelocationofthewavefrontinthespatialdomain.

5. Discussion

ThefirststrainmapsinFigures7and8(a,e;b,f)and5(a,e)reveal theelasticresponseofthematerialduringtheinitiationoftheimpact eventduringthefirst0..2𝜇saftertheimpact.Furtherintime,the prop-agationoftheflexuralwaveisobservedatvaryingdelaysafterthe im-pact.Forthealuminiumspecimens(Fig.7),theexpectedaxial symmet-ricwaveswereobserved.Thewavefrontforthecompositespecimens (Fig.8)reveals theanisotropyof thematerialpropertiesresulting in differentwavevelocitiesindifferentdirections.Thewavestravelfaster alongthereinforcementfibredirections(verticalandhorizontal)and

slowerinthediagonaldirections[58,59].Themeasuredstrainmaps willbeusedasoneofseveralvalidationtechniquesforthenew numeri-calandanalyticalmodelsbeingdevelopedwithintheEXTREMEproject [2,3,47].Forcomposites,thisinformationabouttheearlyresponsemay supplementthefailuremodesanalysis(fibreormatrixfracture, delam-ination,plasticity).

The estimated speed of the captured waves of 5380-5490 m/s (Fig.10)issmallerthantheexpected6240m/s(speedofthe longitu-dinalultrasonicwavefor6082-T6aluminiumcalculatedwithYoung’s modulus 71GPa,Poisson’sratio0.33,density2700kg/m3).The dif-ferencecanbeexplainedbytheuncertaintiesintheestimationofthe timeofarrival(about±0.5𝜇s),themomentoftheactualimpact, sen-sorpositioningerror(±1mm),repeatabilityoftheimpactlocation(± 2-3mm)andtherepeatabilityofthetestsingeneral.Furtherinvestigation isneededtoidentifythemodalcompositionoftheemergingacoustic waves.

Theaforementionedrepeatabilityofthetestsisacrucialissue.The comparisonofthestrainmapsinFigures7,8,and10isbasedonthe con-ditionthatwasmade,thatthetestsarerepeatableandreproducible.In ageneralcase,theyarenotduetovaryingimpactorspeedof58.5±0.5 m/sandcorrespondingimpactenergyof53.8..55.7J(duetovarying pressure in thegasgun vessel),variationof thematerial properties, specimengeometriesandotherexperimentalconditions.However,the instrumentandtheexperimentalprocedureweredesignedand devel-opedina waytominimizethese deviations.Inourexperiments,the desired delaybetween theimpactandthelasersub-pulsescould dif-fer fromtheactualonebyuptoseveralmicroseconds.However,the recordedtimedataofthetravellingimpactor,triggers,lasersub-pulses

(10)

A.G. Anisimov and R.M. Groves Optics and Lasers in Engineering 140 (2021) 106502 andAEsignalsallowedustopost-calculateandreconstructtheactual

timingwiththeuncertaintyofaround±0.5𝜇s.

Themainproblemofthecapturedphase mapsandfurther calcu-latedstrainmapsisthelossofthemeasurementresultsinthecenter after2-3𝜇s(dependingonthematerialproperties).Thishappens be-causeofahighnumberoffringesattheimpactlocationinabutterfly pattern,whichischaracteristicforshearography.Fig.8(m)showsa fil-teredwrappedphasemapfromoneofthecameraswherethesymmetric butterflypatterncanbeidentified.Latertheunresolvedfringesatthe centerareclusteredduringtheunwrappingprocedurewhichresultsin thelostdata.Basedonourexperience[45,46]theoveralldynamicrange ofthepresentedMach-Zehnderschemeisimprovedincomparisonwith theMichelsonconfiguration.Furtherimprovementscouldbe:

a) increasingthelaserwavelength from532nmto1064to dou-blethedynamicrangeoftherecordingsurfacestrain,however, attentionhastobepaidtothedecreasedbyahalfspecklesize; b) increasingthefocallengthoftheimaginglensestoincreasethe

spatialresolution(Eq.(3)),butlimitingthefieldofview. AnalternativeapproachistoinvestigatethecapabilitiesofESPIto monitorthepresentedimpactscenario.Accordingtotheexperimental results[18–22],thephasemapsobtainedwithESPIoftenhavemore resolvedfringesthanwithshearography.However,accordingtoour ex-perience,therequiredalignmentoftheopticalsetupaftereachimpact testmaybechallenging.

Anadditionaltechnicalcomment hastobemade aboutthe dou-bleimagingMach-Zehnderinterferometer[25]incomparisonwiththe Michelsonscheme.Thebeamsplitterthathastobeplacedbehindthe imaginglenses(Fig.2(c))causespracticaldifficultiesintheuseof stan-dardC/CS mount objectivelensesandsinglelenseswithshortfocal lengths(lessthan30mm)incombinationwithstandardC/CSmount cameras.Thisisbecauseofthegapbetweenthelastmechanicalpartof theobjectivelensandtheimageplaneofthecamerasensorhastobeat least16.7mmwhichcorrespondstothereducedthicknessofa1-inch prisminair.Whenadditionalmarginsforthemechanicalassembly,in practice10-20mmaretakenintoaccount,therequiredgapismorethan 30mm.ThismakesmostofthestandardC-mountobjectivelensesnot applicableforthistask(asthebackfocaldistanceis16mm).Asa solu-tion,singlelenseswiththefocallengthofmorethan25-30mmcanbe usedwiththeexpectedpoorimagequality.Theobjectivelensusedin thisproject(Xenoplan2.8/50bySchneider)togetherwiththecamera (BOBCATB3420byImperx)havehighintegrationcapabilitybypartial disassemblyofthepartswhichretainstheappropriateimagequality.

6. Conclusions

Inthispaper,thedesign,developmentandexperimentalresultsof anewshearographyinstrumentforhigh-speedimpactmonitoringare presented.Thenewinstrumentiscapableofcapturingtheimpact re-sponseofmaterialsusingtworecentlyreportedconfigurationsof shear-inginterferometerswhichwereadaptedandexperimentallycompared. ThedoubleimagingMach-Zehnderconfigurationwasusedforthefinal designduetotheindependentadjustmentoftheshearamount,which isthekeyparametertobeminimizedwhenhighstrainvaluesare ex-pected.

Themainvalueofthepresentedexperimentalresults isinthe𝜇s mappingof theflexuralwavesduringthefirstmomentafterthe im-pact.Asexpected, waveswiththeaxialsymmetry werecaptured for aluminiumspecimens,andaxiallyasymmetricforthecomposites. Fur-theranalysisofthewavefrontswillbeusedasinputandvalidationdata fornewnumericalandanalyticalmodelsoftheimpactresponseof com-positesandforvalidationofotherexperimentaltechniquesasacoustic emissionandembeddedpiezosensors[49].Currently,theEXTREME shearographyinstrumentrealisesmeasurementsofthein-and out-of-planesurfacestraincomponentsduring theimpactusing thedouble frameapproach.Theoverallsetoftechnicalparametersofthedeveloped

shearographyinstrumentmakesitoneofthemostextremeapplications ofshearographyformaterialcharacterisation.

Futurestepsoftheinstrumentdevelopmentincludeoptimisationof theinterferometertoincreaseitsdynamicrange,exploringsimultaneous measurementsin multiplesharingdirections[60]andrecordingofa sequenceofinterferograms(morethan2)ina“pulsetrain” regime.The materialbehaviourduringtheimpactwillbenumericallymodelledand comparedwiththeexperimentalresults.

Fundingstatement

Theproject“EXTEME” leadingtothispaperhasreceivedfunding fromtheEuropeanUnion’sHorizon2020researchandinnovation pro-gramunderagreementNo.636549.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.optlaseng.2020.106502.

CRediTauthorshipcontributionstatement

AndreiG.Anisimov:Methodology,Software,Investigation, Valida-tion,Writing-originaldraft.RogerM.Groves:Conceptualization, Val-idation,Supervision,Fundingacquisition,Writing-review&editing.

References

[1] Robin O . Mass criterion for wave controlled impact response of composite plates. Compos Part A Appl Sci Manuf 2000;31(8):879–87 .

[2] Vignjevic R , Djordjevic N , De Vuyst T , Gemkow S . Modelling of strain softening materials based on equivalent damage force. Comput Methods Appl Mech Eng 2018;335:52–68 .

[3] Giannaros E , Kotzakolios A , Sotiriadis G , Tsantzalis S , Kostopoulos V . “On fabric ma- terials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation,”. Compos Struct 2018;204:745–54 . [4] Hung YY . Shearography: a new optical method for strain measurement and non-de-

structive testing. Opt Eng 1982;21:213391 .

[5] Steinchen W , Yang L . [Digital shearography]. Bellingham, Washington: SPIE Press; 2003 .

[6] Francis D , Tatam RP , Groves RM . Shearography technology and applications: a re- view. Meas Sci Technol 2010:29 21, 102001 .

[7] Hung YY . Shearography for non-destructive evaluation of composite structures. Opt Lasers Eng 1996;24(2-3):161–82 .

[8] Hung YY . Applications of digital shearography for testing of composite structures. Compos B Eng 1999;30(7):765–73 .

[9] Kim G , Hong S , Jhang KY , Kim GH . NDE of low-velocity impact damages in com- posite laminates using ESPI, digital shearography and ultrasound C-scan techniques. Int J Precis Eng Manuf 2012;13(6):869–76 .

[10] Ochôa P , Infante V , Silva JM , Groves RM . Detection of multiple low-energy im- pact damage in composite plates using Lamb wave techniques. Compos B Eng 2015;80:291–8 .

[11] Goto DT , Faraz MI , Rans CD , Groves RM . Low energy impact damage detection using shearography. Proc Photomech 2011 .

[12] Okafor AC , Otieno AW , Dutta A , Rao VS . Detection and characterization of high-ve- locity impact damage in advanced composite plates using multi-sensing techniques. Compos Struct 2001;54(2-3):289–97 .

[13] Lee JR , Molimard J , Vautrin A , Surrel Y . Application of grating shearography and speckle shearography to mechanical analysis of composite material. Compos Part A Appl Sci Manuf 2004;35(7-8):965–76 .

[14] Lomov SV , Ivanov DS , Verpoest I , Zako M , Kurashiki T , Nakai H , Molimard J , Vautrin A . Full-field strain measurements for validation of meso-FE analysis of tex- tile composites. Compos Part A Appl Sci Manuf 2008;39(8):1218–31 .

[15] Anisimov AG , Müller B , Sinke J , Groves RM . Analysis of thermal strains and stresses in heated fibre metal laminates. Strain 2017;54:1–16 .

[16] Fällström K-E , Gustavsson H , Molin N-E , Wåhlin A . Transient bending waves in plates studied by hologram interferometry. Exp Mech 1989;29(4):378–87 .

[17] Fällström K-E , Lindgren L-E , Molin N-E . Transient bending waves in anisotropic plates studied by hologram interferometry. Exp Mech 1989;29(4):409–13 . [18] Schedin S , Gren P . Phase evaluation and speckle averaging in pulsed television

(11)

[19] Field JE , Walley SM , Proud WG , Goldrein HT , Siviour CR . Review of experimen- tal techniques for high rate deformation and shock studies. Int. J Impact Eng 2004;30(7):725–75 .

[20] Schmidt A . “Experimental investigations on nondestructive testing methods for de- fect detection with double-pulse electronic speckle pattern interferometry, ”, Ham- burg, Germany: Helmut-Schmidt-University / University of the Federal Armed Forces; 2009. PhD Thesis .

[21] Diaz FV , Kaufmann GH . Impact-induced transient deformation analysis by means of digital speckle pattern interferometry. Exp Mech 1999;39(4):311–16 .

[22] Lopes H , Guedes RM , Vaz MAP , Rodrigues JD . Study of transient wave propaga- tion in plates using double pulse TV holography. In: Proc. international conference on advances in computational and experimental engineering and sciences; 2004. p. 2216–21 .

[23] Yang L , Xie X . [Digital shearography: new developments and applications]. Belling- ham, Washington: SPIE Press; 2016 .

[24] Pedrini G , Zou YL , Tiziani HJ . Quantitative evaluation of digital shearing interfero- gram using the spatial carrier method. Pure Appl Opt A 1996;5(3):313 .

[25] Gao X , Yang L , Wang Y , Zhang B , Dan X , Li J , Wu S . Spatial phase-shift dual-beam speckle interferometry. Appl Opt 2018;57(3):414–19 .

[26] Gao X , Wang Y , Dan X , Sia B , Yang L . Double imaging Mach-Zehnder spatial carrier digital shearography. J Mod Opt J Mod Opt 2019;66(2):153–60 .

[27] Xie X , Yang L , Xu N , Chen X . Michelson interferometer based spatial phase shift shearography. Appl Opt. 2013;52(17):4063–71 .

[28] Xie X , Li J , Zhang B , Yan L , Yang L . Improvement of phase map quality for Michel- son interferometer based spatial phase-shift digital shearography. Asian J Phys 2015;24(10):1391–400 .

[29] Aranchuk V , Lal AK , Hess CF , Trolinger JD , Scott E . Pulsed spatial phase-shifting dig- ital shearography based on a micropolarizer camera. Opt Eng 2018;57(2):024109 . [30] Fu Y , Pedrini G , Hennelly BM , Groves RM , Osten W . Dual-wavelength image-plane

digital holography for dynamic measurement. Opt. Lasers Eng 2009;47(5):552–7 . [31] García BB , Moore AJ , Pérez-López C , Wang L , Tschudi T . Spatial phase-stepped in-

terferometry using a holographic optical element. Opt Eng 1999;38(12):2069–74 . [32] Moore AJ , Hand DP , Barton JS , Jones JDC . Transient deformation measurement

with electronic speckle pattern interferometry and a high-speed camera. Appl Opt 1999;38:1159–62 .

[33] Steinchen W , Yang LX , Kupfer G , Maeckel P , Voessing F . Toward double-pulse digi- tal shearography. In: Advances in optical beam characterization and measurements 3418; 1998. p. 19–27 .

[34] Spooren R , Dyrseth AA , Vaz M . Electronic shear interferometry: application of a (double-) pulsed laser. Appl Opt 1993;32(25):4719–27 .

[35] Chen F , Luo WD , Dale M , Petniunas A , Harwood P , Brown GM . High-speed ESPI and related techniques: overview and its application in the automotive industry. Opt Lasers Eng 2003;40(5-6):459–85 .

[36] Francis D . Surface strain measurement using pulsed laser shearography with fiber-optic imaging bundles, Cranfield, UK: Cranfield University; 2008. PhD Thesis . [37] Pedrini G , Pfister B , Tiziani H . Double pulse-electronic speckle interferometry. J Mod

Opt 1993;40(1):89–96 .

[38] Pedrini G , Tiziani HJ . Double-pulse electronic speckle interferometry for vibration analysis. Appl Opt 1994;33(34):7857–63 .

[39] Santos F , Vaz M , Monteiro J . A new set-up for pulsed digital shearography applied to defect detection in composite structures. Opt Lasers Eng. 2004;42(2):131–40 . [40] Shim VPW , Toh SL , Quah SE . Impact-induced flexural waves in a Timoshenko beam

– Shearographic detection and analysis. Exp Mech. 1994;34(4):340–8 .

[41] Xie X , Lee CP , Li J , Zhang B , Yang L . Polarized digital shearography for simultaneous dual shearing directions measurements. Rev Sci Instrum 2016;87(8):083110 . [42] Zhang B , Xu W , Li J , Siebert T , Yang L . Modified Michelson interferometer based

dual shearing single camera digital shearography. Exp Tech 2020;44(2):187–95 . [43] Wang Y , Gao X , Xie X , Wu S , Liu Y , Yang L . Simultaneous dual directional

strain measurement using spatial phase-shift digital shearography. Opt Lasers Eng 2016;87:197–203 .

[44] Yan P , Sun F , Dan X , Zhao Q , Wang Y , Lu Y . Spatial phase-shift digital shearogra- phy for simultaneous measurements in three shearing directions based on adjustable aperture multiplexing. Opt Eng 2019;58(5):054105 .

[45] Anisimov AG , Groves RM . EXTREME shearography: development of a high-speed shearography instrument for measurements of the surface strain components during an impact event. Proc SPIE 2018;10834 108340X .

[46] Anisimov AG , Groves RM . EXTREME shearography: high-speed shearography instru- ment for in-plane surface strain measurements during an impact event. Proc SPIE 2019;11056 110560J .

[47] ”EXTREME dynamic loading – pushing the boundaries of aerospace composite ma- terial structures,”www.extreme-h2020.eu (26 June 2020).

[48] Elmahdy A , Verleysen P . Tensile behavior of woven basalt fiber reinforced compos- ites at high strain rates. Polym Test 2019;76:207–21 .

[49] De Simone ME , Cuomo S , Ciampa F , Meo M , Nitschke S , Hornig A , Modler N . Acous- tic emission localization in composites using the signal power method and embedded transducers. Proc SPIE 2019;10971 109711O .

[50] Nösekabel EH , Honsberg W , Kelnberger R . Development and application of a 10 Hz Nd:YAG double pulse laser for vibration measurements with double pulse ESPI. In: Fringe 2009. Berlin: Springer; 2009. p. 1–6 .

[51] Helfrick MN , Niezrecki C , Avitabile P , Schmidt T . 3D digital image correla- tion methods for full-field vibration measurement. Mech Syst Signal Process 2011;25(3):917–27 .

[52] Lagny L , Montresor S , Gautier F , Pezerat C , Picart P . Full field holographic vibrome- try at ultimate measurement limits. Digital holography and three-dimensional imag- ing, M4B-1, optical society of America; 2019 .

[53] Picart P , Poittevin J , Gautier F , Pezerat C . Full-field investigation of traveling acous- tic waves with digital holography. In: Inter-noise and noise-con congress and con- ference proceedings, 257; 2018. p. 229–38 .

[54] Anisimov AG , Serikova MG , Groves RM . 3D shape shearography technique for sur- face strain measurement of free-form objects. Appl Opt 2019;58(3):498–508 . [55] Crooks J , Marsh B , Turchetta R , Taylor K , Chan W , Lahav A , Fenigstein A . Kirana: a

solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proc SPIE 2013;8659:865903 .

[56] “pco.dicam C4 4-channel intensified sCMOS camera,” https://www.pco.de/ intensified-cameras/pcodicam-c4 (26 June 2020).

[57] Xie X , Li J , Zhang B , Yan L , Yang L . Improvement of phase map quality for Michel- son interferometer based spatial phase-shift digital shearography. Asian J Phys 2015;24(10):1391–400 .

[58] Fällström K-E , Gustavsson H , Molin N-E , Wåhlin A . Transient bending waves in plates studied by hologram interferometry. Exp Mech 1989;29(4):378–87 .

[59] Fällström K-E , Lindgren L-E , Molin N-E . Transient bending waves in anisotropic plates studied by hologram interferometry. Exp Mech 1989;29(4):409–13 . [60] Wang S , Dong J , Pöller F , Dong X , Lu M , Bilgeri LM , Jakobi M , Salazar-Bloise F ,

Koch AW . Dual-directional shearography based on a modified common-path config- uration using spatial phase shift. Appl Opt 2019;58(3):593–603 .

Dr Andrei G. Anisimov is a Senior Researcher in Optical Metrology at Delft University of Technology, The Netherlands. He obtained MS and PhD degrees in optical engineering from University ITMO, Russia. In 2014 he joined the Aerospace NDT Laboratory at TU Delft. His research interests include machine vision and laser interferometry techniques for high precision measurement and non-destructive testing of aerospace and civil engineering materials and structures. Current projects in- clude characterization of composite materials, evaluation of damage and structural behaviour.

Dr Roger M. Groves is Associate Professor in Aerospace NDT/SHM and Heritage Diagnostics at Delft University of Technology, The Netherlands. His PhD is in Optical Instrumen- tation from Cranfield University (2002) and he was a Senior Scientist at Institute for Applied Optics, University of Stuttgart, before joining TU Delft in 2008 as an Assistant Professor. Dr Groves heads a team of approximately 20 researchers in the Aerospace NDT Laboratory at TU Delft. His research inter- ests are Optical Metrology, Fibre Optic Sensing and Ultrasonic Wave Propagation in Composite Materials. He has approxi- mately 200 journal and conference publications in these top- ics. In 2020 he was awarded Fellow of SPIE.

Cytaty

Powiązane dokumenty

„Wśród form, które zw ykliśm y określać jako formy trybu przypuszczającego, należy wyróżnić: 1) podstawowe formy tego trybu, charakteryzujące się

Keywords: water infrastructure planning; flood risk management; adaptive water management; policy analysis; decision support; serious gaming; climate change;

Podejścia diachroniczne zorientowane są na zmiany w ramach jednostek społecznych (społeczeństwach, kulturach, instytu­ cjach społecznych) na przestrzeni czasu oraz na

Warta odnotowania jest również wypowiedź, w której autorka podkreśla potrzebę pomocy rodzinom dzieci i postrzega to jako element zapobiegania zjawisku przemocy rówieśniczej

Obserwator znajdujący się dokładnie na biegunie Ziemi zaobserwował, że wschód Słońca nastąpił w punkcie horyzontu wyznaczonym przez kierunek południka Greenwich.. W

W niniejszym artykule zamierzam zwrócić uwagę na Ojców Kościoła i ich aktualność, biorąc za przykład ich chrystologię, która odznacza się szczególną

duszpasterstwo katolickie obejmowało swoim zasięgiem zarówno mieszkańców wsi, jak i miast śląskich. Proces uprzemysłowienia niemiec pociągał za sobą ujemne skutki w

Skoro logika ma, zdaniem Wittgensteina, kodyfi kować formalne własności języka i świata 47 i jednocześnie poprzedzać wszelkie możliwe doświadczenie „trosz- cząc się sama