• Nie Znaleziono Wyników

Zmiany paleośrodowiska, jako wynik wzajemnego oddziaływania wydarzeń tektonicznych i oscylacji poziomu morza w basenie wschodniosłowackim

N/A
N/A
Protected

Academic year: 2021

Share "Zmiany paleośrodowiska, jako wynik wzajemnego oddziaływania wydarzeń tektonicznych i oscylacji poziomu morza w basenie wschodniosłowackim"

Copied!
7
0
0

Pełen tekst

(1)

Przeglqd Geologiczny, vol. 46, nr 5, 1998

Zmiany paleosrodowiska, jako wynik wzajemnego oddzialywania

wydarzeIi tektonicznych i oscylacji poziomu morza w basenie

wschodnioslowackim

Michal Kovac*, Adriena Zlinska**

Wzajemne oddzialywanie wydarzen tektonicznych i zmian poziomu morza wywieraly doniosly wplyw na paleoSrodowiska w basenie wschodnioslowackim (Ryc. 1). Gl6wne wydarzenia tektoniczne wplywaly na glebokose i ksztalt basenu, co z kolei wplywalo na zmiany srodowisk sedymentacji. Oscylacje eustatyczne sq odzwierciedlone w przybrzeinych kontaktach wstepujqcych. W srodo-wiskach odleglych od brzegu, wzgledne wzrosty lub spadki poziomu morza zostaly okre.slone w wyniku studi6w paleoekologicznych asocjacji otwornicowych. Korelacja skonstruowanych krzywych dla paleoglebokosci srodowisk i przybrzeinych kontakt6w wste-pujqcych z krzywymi globalnych zmian (Haq i in., 1987) wykazujq pewne odmiennosci, gl6wnie wywolane wydarzeniami tektonicznymi podczas rozwoju basenu.

W przeciwienstwie do wczesnomiocenskiego globalnego wzrostu poziomu morza, paleosrodowisko eggenburgu basenu wschodnio-slowackiego uleglo zmianie od glebokowodnego wysokoenergetycznego do plytkowodnego wysokoenergetycznego w wyniku tektoniki kolizyjnej, po czym w ottnangu nastqpilo wypietrzenie i hiatus. Transgresja karpatu moie bye skorelowana z globalnym przybrzeinym kontaktem wstepujqcym, ale sr6dkarpackie wahania poziomu morza byly tektonicznie warunkowane w przeciwienstwie do badenskich wahan, spowodowanych przez globalny wzrost poziomu morza w dolnym badenie i globalny spadek poziomu morza pod koniec srodkowego badenu. Transgresja g6rnego badenu i przybrzeiny kontakt wstepujqcy to ostatnie dobrze widoczne globalny wydarzenia

w zapisie sedymentacyjnym basenu wschodnioslowackiego. Stopniowe splycenie w sarmacie lub lokalny spadek poziomu morza byly gl6wnie warunkowane przez tektonike synsedymentacyjnqpodczas rozwoju basenu (Ryc. 4,5).

Slowa kluczowe: paleosrodowisko, srodowisko sedymentacji, ewolucja tektoniczna, poziom morza, eustazja, trzeciorzed, Basen Wschodnioslowacki

Changes of paleoenvironment as a result of interaction of tectonic events

and sea level oscillation in the East Slovakian Basin

Michal Kovac*, Adriena Zlinska * *

Sum m a r y. Interaction of tectonic events and sea level changes had an important influence on the paleoenvironment of the East Slovakian Basin. The main tectonic events influenced the depth and shape of the basin, what led to the changes of sedimentary environment. The eustatic oscillations are reflected in coastal onlaps. In offshore environment, the relative sea level rise or fall were defined by paleoecological study offoraminiferal associations. The correlation of constructed curves for the environment paleodepth and coastal onlap with global reference curves (Haq et al., 1987) shows some discrepancies, mostly caused by tectonic events during the basin development.

In contradiction to the Early Miocene global sea level rise the Eggenburgian paleoenvironment of the East Slovakian Basin was changed from deep water high-energy to shallow water high-energy due to collisional tectonics, followed by uplift and hiatus during the Ottnangian. The Karpatian transgression can be correlated with global coastal onlap but the intra Karpatian sea level oscillations were tectonically controlled unlike the Badenian ones, caused by the global sea level rise in the Lower Badenian and global sea level fall at the end of the Middle Badenian. The Upper Badenian transgression and coastal onlap are the last well observed global events in the sedimentary record of the East Slovakian Basin. The Sarmatian gradual shallowing or local sea level fall were mainly controlled by synsedimentary tectonics during the basin development.

Key words: Miocene, sedimentary basins, basin analysis, synsedimentary processes, tectonics, paleoecology, paleoenvironment, foraminifers, sea-level changes, indicators, East Slovakian Basin

Introduction

The aim of this paper is to describe the Miocene relative sea level oscillations in the East Slovakian Basin, based on changes of the paleogeography, microfaunal paleoecology, changes of the sedimentary environment and changes of regional tectonic regimes.

*Dept. of Geology and Paleontology, Fac. of Sciences, Come-nius University, Mlynska Dolina G, 842 15 Bratislava, Slovakia **Geological Survey of Slovak Republic, Mlynska Dolina 1, 81704 Bratislava, Slovakia, E-mail: geopaleo@fns.uniba.sk

The East Slovakian Basin is situated in the NW part of the Transcarpathian depression and attains 8-9 km depth (Fig. 1,2). The basin development started in compressional regime and can be regarded as a relic fore arc basin during the Early Miocene. The Middle Miocene crustal stretching controlled formation of the synrift back arc basin develop-ment, followed by thermal postrift subsidence during the Upper Miocene (Fig. 3,4).

The Early Miocene sedimentary sequences

(2)

Przeglqd Geologiczny, vol. 46, nr 5, 1998 + + + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + : + +

+~.

+ + : + : + : + + + + : + : + : + : + : + : + : + : + : + : + : + : + : .+. +. +. :+ ... : + : + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +/r'A.RPAT + + + + + + + + + + ++ + + + + + + + ++ +.. ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + + + + + ++ + + + + ... . + + + i + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + -:: .. .:.:..<~ ... ~ . .:.:.::.:.:.;;.rT-'-'r-'~ + . • + + + + + + + + + ++ + + + + + + + + + ++ + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + + + + + + + + + + ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +

III

Bukk and Zemplfn units

+ + + + + + + + + ++ + + + + + + + + + + + ++ + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

~ Outer Carpathian fJysch zone

~ Pieniny Klippen Belt

!lIlIlllIlill

Central Western Carpathians G::.:] North European Platform

1 1 Neogene basins and nappe units

~ Neogene volcanites

D

Studied area: East Slovakian Basin .' CWC - Central Western Carpathians

CEe - Central Eastern Carpathians TCR - Transdanubian Central Range

A - Apuseni Mts.

Fig 1. Geological sketch of the Carpathians and the Pannonian Basin System. (The position of Fig. 2 is marked)

Rye. 1. Schemat geologiczny Karpat i systemu basenu panoriskie-go (prostok(!t pokazuje polozenie ryc. 2)

II' I" 'I " I III! !

CENTRAL::::: :

CARPATHIAN: : PALEq~~~E ! : !!!~A~!N::::::: I III I !II III II III !II!! !! '!!!!!! " ! '! '! 'I' I !

~ Outer Carpathian f1ysch zone

~ Pieniny Klippen Belt

[[J]

Central Western Carpathians

ITIIIIl

Central Carpathian Paleogene Basin

!IEH.El

Bukk and Zemplfn units

c:=J

Neogene basins

~ Neogene volcanites

Fig. 2. Geological sketch of the East Slovakian Basin Rye. 2. Schemat geologiczny basenu wschodnioslowackiego

o

!

50 , 100 km .

of the Central Western Carpathians were developed during the disintegration of the Central Carpathian Paleogene Basin (Kovac et al., 1995), whereas their distribution followed the CWC nappe thrust front orientation (Jilicek, 1981).

The sequence was deposited in deep water high-energy

environment with rich dinoflagellata assemblages of two

types - the first one with Deflandrea spinulosa and other

deflandreas and the second one with Chiropteridium

parti-spinatum and other chorates cysts - is restricted to the

NW-SE trending zone near Presov and reaches 500 m thickness (Hudackova, 1996). Foraminiferal assemblage with Almaena osnabrugensis (Roemer), Bolivina fastigia Cushman, Globigerina ouachitaensis Howe et Wallace and

VirgulineUa chalkophila (Hagn) documents the open marine

conditions. The sequence partly deposited by turbidite cur-rents is composed predominantly of clays, silts tones and fine grained sandstones often bearing detritus of plants and

sub-angular clasts (Rudinec, 1989).

The Eggenburgian basin depocenters widened southe-astwards, following the Klippen Belt suture zone (Fig. 4).

The Presov Fm. covers with an angular discordance the

older Paleogene and Egerian sediments (Vass & Cvercko,

1985). The most essential part of this shallowing upward sequence is formed lithologically by dark-grey marine clay-stones and silts tones with sporadic sandstone intercalations

reaching a thickness up to 1000 m (Rudinec, 1978). Typical

foraminiferal assemblages with Pappina bononiensis

primi-formis (Papp et Tumovsky), Lenticulina arcuatostriata

(Hankten), Cyclammina acutidorsata (Hantken) and Spiro

-plectineUa carinata (Orbigny) point out the outer shelf

neritic conditions (Zlinska, 1992).

The Celovce Mb., a lateral equivalent of the Presov Fm.

(3)

sedi-Przeglqd Geologiczny, vol. 46, nr 5, 1998

C/} - l <!.C/} 52C/}

EAST

zc/} I zw FORMATION TYPE OF Zw COASTAL COASTAL

00::: u 0(9 SlOVAKIAN & SEDIMENTARY TYPE OF 0:2: ONlAP ONlAP

~L;} 0 6~ BASIN THICKNESS (m) ENVIRONMENT BASIN

0

6 OBSERVED ( Haq et al. 1987)

:2:>- a.. w ~C/} UTOlOGY Ww 1-0::: ~dward basinwa..!:!... w w z Z ue:: w ~ '§'§ ( . l

Cecehov Fm. terestrial - fluvial

Cl Zz t5Q) ::i ::J- Q» 0... oC/} ... &; :2:<!. 5.3 ~[O '" «

I-~

lacustrine fluvial ~ Senne Fm. Q)~ 7.1 Ee:: .- Q)

~

'" ~~ Q).D >::J « ._ m

I

lacustrine deltaic ~$ Secovce Fm. z 0: en extensional xrn Q)O <!. basin a. [0 Q) '" lacustrine u E « '8> ~ Stretava Fm. 0::: Q)

~

<!. ~~

w E deltaic brackisch inter arc .~ e::

w - ' Klcovo Fm. enQ)

LL basin c-o

z Cl

w Cl Q) ~ ~1i

( . l ~

'" lastomfr Fm. U deltaic marine U

Cl ::s > <!. Q)::J

:lE '" Zbudza Fm. 0 [0 ,en

Cl ~

.f§

;:; Vranov Fm. ~ neritic marine en>.

Hrabovec Fm. Cen

16.5 d:~ C neritic marine pull- apart

*

'- ' -' - ' - ' - '-'- ' - "-" 1700m B basin C ;2~ 9.::··9,,·~·.; ", - - - A deep marine ~ 17.5 '" « ~ terestrial « 19.1 ~ ::::; inner a: '" Celovce Mb. lagoonal Q) ;1i ::s shelf :5 <.!) er: shallow marine z oE => co z high - energy en Q).~ <.!) Presov Fm. <!. Ea. <.!) [0 outer '8>~ 22.5 u shelf Q)C ~ro 0::: .~~ 23.4 w Central <!. z

Biely Potok Fm. deep marine w en .... Q)U

Z « Western 0::: basin .... u

w

i

(Solivar Fm.) high - energy 0 Q.ro

( . l w Carpathian slope E Cl

5

... LL 25 CJ basement 500m 8 ::i Cl ...

- --

-conglomerate -gravel ~=====::=j claystone - clays t;~~~~~~~~~~~~~d acid tufts ~ hiatus. erosional surface

o

sandstone - sands b:::::::::::::::: I fJysch turbidites

A - TERIAKOVCE B - sO~NA BANA C-KlADZANY

~~~~~~~~~i siltstone - silt ~ o 0 0 0 evaporl es ·t

~t~~tt~t

~

j

coal

Fig. 3. Neogene formations, lithostratigraphy and maximal thickness of the East Slovakian Basin fill, coastal onlaps and tectonic regimes Rye. 3. Formacje neogenskie, litostratygrafia i maksymalna miqzszosc wypelnienia basenu wschodnioslowackiego, przybrzezne kontakty wst~pujqce i rezimy tektoniczne

ments. The siltstones and claystones in the lower part of the sequence were deposited in the shallow marine inner shelf environment. They gradually pass into the lagoonal, coal bearing layers overlain by plant detritus bearing siltstones, sandstones and conglomerates. The mentioned sequence documents the shallow water high-energy littoral environ-ment allowing a wide spectrum of depositional processes ranging from gravitational flows to turbidites (Janocko, 1993). The rapid input of coarse clastic material indicates the surface uplift of the basin margin associated with isola-tion and decrease of salinity. The changes in sedimentary environment, as well as the high-energy conditions are well documented by shallow water foraminiferal assemblages with Ammonia beccarii (Linne), Porosononion aft.

subgra-nosum (Egger), Nonion commune (Orbigny), Elphidium sp.,

Lenticulina meznericsae (Cicha), Cibicidoides budayi

(Ci-cha et Zapletalova), reached in the bed load redeposits of neritic fossils of the same age: Uvigerina hantkeni Cushman,

Bulimina elongata Orbigny and Lenticulina sp. (Fig. 5).

The Ottnangian compressive regime led to the uplift of the Central Western Carpathians active margin, marked by a hiatus in the East Slovakian Basin (Rudinec, 1978, 1989). The Karpatian sediments overlay transgressively the Eggenburgian strata and the pre-Neogene basement of the East Slovakian Basin (Fig. 4). The shape of the basin and the sedimentary facies distribution were controlled by the acti-vity of NW-SE trending dextral strike slip faults and NE-SW ranging faults, situated along the Seredne horst at the

(4)

Przeglqd Geo[ogiczny, vol. 46, nr 5, 1998

southern margin of the basin (Kovac et aI., 1995). The total thickness of the Kar-patian shallowing upward sequence atta-ins 1700 m (Vass et aI., 1988).

C.W.C.

The basal Teriakovce Fm. (Vass & Cvercko, 1985), over 500 m thick conta-ins conglomerates, sandstones and siltsto-nes in the lower part followed upwards by sandy-clayey sequence. The marine mic-rofauna documents the open marine, deep neritic to shallow bathyal zone evidenced by the deep water low oxic conditions tolerating foraminiferal taxa, e.g.

Pappi-na parkeri breviformis (Papp et

Turnov-sky), P. bononiensis primiformis (Papp et Turnovsky), Lenticulina calcar (Linne),

L. inornata (Orbigny), L. cultrata (Mont-fort), Uvigerina graciliformis Papp et Turnovsky, as well as planktonic

Globi-gerina ottnangiensis Roegl, G.

praebu-loides (Blow) (Zlinska, 1992).

Upwards, the Solna Baiia Fm. was de-posited. Isolation of the East Slovakian Ba-sin in this time led to the salt crystallization. The 250 m thick sequence, representing an evaporite event consists of claystones,

sil-UNITS

tstones with sporadic sandstone layers, gy- ZEMPLlN UNIT psum, anhydrite and salt (Fig. 3, 5).

The Karpatian sedimentation conti-nued by deposition of variegated clays and silts with thin sandstone intercala-tions of the 1300 m thick Kladzany Fm. representing a large surface wash. Mixed

compression extension

~

overthrust

~

Paleogene sediments

~

sedimentary area

~

+ + acid volcanism

foraminiferal assemblages composed of the inner shelf taxa tolerant to salinity changes: Elphidium macellum (Fichtel et Moll), E.fichtelianum

(Orbigny),Ammo-nia beccarii (Linne) and stenohaline

forms of the outer shelf, e.g. Uvigerina

graciliformis Papp-Turnovsky or

Cyc-~

rotation

P

strike - slip faults

I

normal faults

~

D

. . . basin depocentres delta Neogene sediments

acid volcanic centres

(f;9

calc-alkaline volcanism

63

Calc-alkaline volcanic centres

lammina karpatica Cicha et Zapletalova point out to the deposition in shallow to deep neritic high-energy environ-ment (Zlinska, 1992).

It is important to note that the transtensional tectonic regime disintegrated the Karpatian sedimentary area during the Lower Badenian (Fig. 4). Some parts continued subsi-ding, others were uplifted. This is reflected in the redeposition of the Karpatian microfauna in the Lower Badenian sediments of the Mirkovce Fm. (KaliCiak et al., 1990).

The Middle Miocene sedimentary sequences During the Middle Miocene the East Slovakian Basin development was controlled by the transtensive regime. Two separated depocenters can be distinguished, the Kosice depression on the west and the Trebisov depression in cen-tral and eastern part (Fig. 4) The shape of the basin was formed predominantly by NW-SE and NE-SW trending faults (Kovac et aI., 1995).

On the western flanks of the East Slovakian Basin the 630 m thick Mirkovce Fm. (Karoli & Zlinska, 1988) was deposited during the Early to Middle Badenian. The mono-tonous marine pelites deposited in low-energy environment are characterized in the lower part of the sequence with

Praeorbulina - Orbulina - Uvigerina macrocarinata

Papp et Turnovsky foraminiferal assemblages pointing out the neritic environment (Zlinska, 1992). In the upper part of the open marine deep neritic sequence the planktonic foraminifera, e.g. Globigerina decoraperta Takayanaki-Saito, G. druryi

Akers, G. nepenthes Todd, bentic taxa with Uvigerina aculeata orbignyana Czjzek, U. acuelata acuelata Orbigny and agglu-tinated forms, e.g. Cyclammina vulchoviensis Venglinsky and

C.zemplinica Cicha et Zapletalova are present.

In the central and eastern part of the East Slovakian Basin, the Lower Badenian Nizny Hrabovec Fm. represents a new high-energy cycle, composed of the 500-600 m thick volcano-sedimentary complex (Vass & Cvercko, 1985). The sequence contains the planktonic foraminifera taxa, e.g. Pra-eorbulina glomerosa (Blow), Orbulina suturalis Broenniman,

Globigerinoides quadrilobatus (Orbigny), G. trilobus (Reuss) pointing out to the open marine neritic conditions (Fig. 5).

Following upwards, the Middle Badenian up to 600 m thick Vranov Fm. was deposited (Vass & Cvercko, 1985).The sequence started with sands and clay intercalations, followed by dark calcareous clays with sporadic tuff and tuffite layers. The depth of the sedimentary environment was neritic, but also a shallow bathyal, nutrient rich open marine environment cannot be excluded what is marked by agglutinated forami-nifera assemblages with Cyclammina vulchoviensis Venglin-sky, C. complanata Chapman, Spiroplectammina carinata

(5)

C. C. P - Central Carpathian Paleogene Basin P K. B. - Pieniny Klippen Belt

C. W C. U. - Central Western Carpathian Units H. U. - Humenne Unit

Z. U. - Zemplin Unit

Przeglqd Geologiczny, vo!. 46, nr 5, 1998

Fig. 4. Palinspastic reconstruction of the East Slovakian Basin evolution during the Miocene Rye. 4. Palinspastyczna rekonstrukcj a ewolucji basenu wschodnioslowackiego w miocenie

dium, Nonion and small miliolides and neritic assemblages containing

Globigeri-na, Bulimina and Bolivina. In the upper part of the sequence only the shallow wa-ter Elphidium taxa are present.

The Sarmatian sedimentary environ-ment was characterized by a gradual de-crease of salinity due to the isolation of the Paratethys sea in the Carpathian-Panno-nian area from the Mediterranean. In the marginal parts of the East Slovakian Basin the environment of the delta plain and delta front prevailed (Fig. 4). The deltas were much smaller then the Upper Bade-nian ones. Minor fan and braided type deltas dominated (Janocko, 1993).

The basinal brackish facies is represented by the Lower to Middle Sarmatian, 1800 m thick Stretava Fm. (Vass & CverCko, 1985) built up of a monotonous complex of cal-careous clays intercalated with sands and rhyolite volcanoc1astics. The sequence contains the shallow water foraminiferal taxa, e.g. Elphidium reginum (Orbigny), E. acule-atum (Orbigny), E. macellum (Fichtel et Moll), E. samueli Zlins1ci, Articulina

articu-lino ides Gerke-Issaeva, A. problema Bogda-nowicz and mioliolides (Fig. 5).

B. U. - BOkk Unit o 25 50 75 100 km

The overlaying Upper Sarmatian Ko-chanovce Fm. was deposited in the freshwa-ter environment with coal deposition and it represents a lateral equivalent of the Stretava Fm. upper part (Vass & Cvercko, 1985). H. B. - Hernad Basin

S. H. - Seredne horst

(Orbigny) and planktonic taxa, e.g. Globigerina

praebulloi-des (Blow), Globorotalia mayeri (Cushman et Ellisor) (Zlinska, 1992). The end of the Middle Badenian sedimen-tary cycle is represented by the shallow water lagoonal salt deposition (Fig. 3, 5). The Zbudza Fm. (Vass & Cvercko, 1985) with poor (redeposited?) planktonic foraminifera as-semblages, e.g. Orbulina, Globigerina and low oxic

Bulimi-na reaches maximal thickness of 300 m.

During the Upper Badenian a deltaic system reaching the depression from the NW developed in the East Slovakian Basin (Fig. 4). The configuration and development of the delta fan lobes were influenced by tectonic activity (Rudi-nec, 1989; Janocko, 1993).

The lower Lastomir Fm., up to 2000 m thick (Vass &

Cvercko, 1985) is characterized by dark calcareous clays and claystones with sandy intercalations in its marginal parts, representing the delta front to prodelta deposits with neritic

Bulimina - Bolivina assemblages, pointing out to the stratification of water masses with low oxic conditions at the bottom (Fig. 5).

The upper Klcovo Fm., up to 1700 m thick (Vass & Cvercko, 1985) represents the progradational delta plain to delta front sequence deposited during the Upper Badenian and Lower Sarmatian (Fig. 3). The sequence in its lower part contains a mixture of shallow water littoral assemblages with Ammonia, Anomalina badenensis (Orbigny),

Elphi-The Late Miocene sedimentary sequences

During the Upper Miocene the East Slovakian Basin became a part of the back arc Pannonian Basin System, where the postrift sedimentation was controlled by thermal subsidence at this time (Horvath et aI., 1988; Royden, 1988). The thickness of the Pannonian and Pontian deposits attains 700-800 m (Rudinec, 1989). Alternating claystones, sandstones, conglomerates, tuffs and coal seams were deposited in the lagoonal, latter lake and fluvial environments (Fig. 3,4).

Conclusions

The aim of the study was to discuss the sedimentary history and development of the East Slovakian Basin from the viewpoint of interaction between the regional tectonic events forced by the subduction in front of the orogen and the back arc extension and global sea level changes (Fig. 3). The Early Miocene development.The Early Miocene collision between the Western Carpathians and the North European Platform was associated with the compressive tectonic regime. The Egerian deep water high-energy sedi-mentation on the Central Western Carpathian eastern margin continued in a relic fore arc basin (sensu Einsele, 1992). Due

(6)

Przeglqd Geologiczny, voz. 46, nr 5,1998

RA predicted depth (m) predicted foraminiferal and ostracods

age Stages IIIIIIIIE ~

depth assemblages

deeper shallower (m)

Ma

"

"

" Constructed eustatic curve for the East Slovakian

t\

~ Basin based on micropaleontological study

PONTIAN

,-

..,

,

7.1

,

, Global eustatic changes after Haq et al. (1987)

"

,

RA

Radiometric age after Steininger et al. (1985)

"

I \ PANNONIAN

,

, ,

\ 30~

-( \ 11.5 50~ Ph/yctenophora

z

UPPER farkasi sarmatica

«

"

~

/ 1

~ / 1 OO~ Elphidium, Mi/io/ides

0::: LOWER

«

\

(j)

13.6

z

UPPER 150~ Bu/imina -Bolivina

3 ~

z

w 300~ Cyc/ammina - G/obigerina 0

«

LOWER CO 200~ Praeorbu/ina -Orbu/ina 16.4

,

,.

1 OO~ Uvigerina - Cyc/ammina 9

KARPATIAN 400~ Pappina - Lenticu/ina 17.5 G/obigerina \ I 11 OTINANGIAN 13 19.1

z

50~ Ammonia - Porosononion

«

Elphidium

a

15 0::: 16 ~ III Z W C) 200~ Pappina -Lenticu/ina C) Cyc/ammina w 22.5 17 18 200~ A/maena - Bolivina 23.4 Virgu/ine//a EGERIAN 19 20 21

Fig. 5. Constructed eustatic curve and depth of the East Slovakian Basin during the Miocene

1-Elphidium aculeatum (Orb.), 2 -Elphidium reginum (Orb.), 3 - Bolivina hebes Macfadyen, 4 - Valvulineria complanata (Orb.),

5 - Bulimina elongata (Orb.), 6 - Uvigerina aculeata orbignyana (Orb.), 7 - Globigerina bulloides (Orb.), 8 - Orbulina suturalis

Broenn., 9 - Praeorbulina glomerosa (Blow), 10 - Uvigerina macrocarinata Papp-Turn., 11 - Uvigerina gracilijormis Papp-Turn.,

12 - Cyclammina sp., 13 - Globigerinoides trilobus (Rss.), 14 - Pappina bononiensis primijormis (Papp-Turn.), 15 - Lenticulina cultrata (Montfort). 16 - Globigerina ottnangiensis Roegl, 17 - Ammonia beccarii (L.), 18 - Elphidium (Porosononion) granosum (Orb.),

(7)

to compression the high-energy sedimentary environment of the basin was changed from deep to shallow water during the Eggenburgian. Later on, the compression forced the uplift of the area marked by hiatus in the sedimentary record of the East Slovakian Basin in the Ottnangian (Haq et aI., 1988; Fig. 3).

The global sea level fall and rise on the short term eustatic curve (Haq et aI., 1987) between 22.5-22 Ma can be correlated with the Eggenburgian transgression in the East Slovakian Basin. The Haq et aI., (1987) curve oscilla-tions upwards are not documented because of tectonic ally controlled basin evolution and hiatus during the Ottnangian. Due to the Karpatian changes in the overriding plate movement, the Central Westem Carpathian margin was deformed by wrench tectonics, which opened the East Slo-vakian pull-apart Basin during the Karpatian. The change from transpressional to transtensional tectonic regime was associated with initial rifting and was accompanied by acid vo1canism (Lex a et aI., 1993).

The Karpatian transgression, well documented by co-astal onlap was strengthened by tectonics and can be corre-lated with the global short term sea level oscillation at 17.5 Ma (Haq et aI., 1987). The 1700 m thick finning upward sequence represents a transition from the deep neritic low-energy to the shallow neritic high-low-energy environment. The intra Karpatian salinity crisis is regarded as the tectonic ally controlled local sea level fall due to basin isolation (Fig. 3).

The Middle Miocene development. During the Middle

Miocene, the subduction roll-back effect has caused the extension in the overriding slab, followed by rifting and subsidence in the back arc area (Vass et aI., 1988; Kovac et aI., 1995). The crustal stretching was associated with mantle updoming, accompanied by acid and later ca1c-alkaline vol-canism in the East Slovakian Basin (Szab6 et al., 1992; Lexa et al. 1993).

The Lower Badenian sea level rise, which can be corre-lated with the global sea level oscillation at 16.5 Ma (Haq et aI., 1987) led to the deepening of the sedimentary environ-ment of the East Slovakian Basin. The synrift crustal exten-sion was associated with voluminous acid vo1canism, whose products were deposited in the high-energy environment of neritic depth.

Upwards, the Middle Badenian part of the sequence was deposited predominantly in the deep neritic (to shallow bathyal) low-energy open marine conditions with low aera-tion on the basin bottom. To the climatic condiaera-tions and fall of the sea level between 15.5

±

15 Ma (Haq et aI., 1987) can be referred the lagoonal shallow water salt deposition et the end of the Middle Badenian (Fig. 3).

The Upper Badenian to Sarmatian high-energy deltaic sedimentation of the shallow neritic to littoral sequence can be regarded as a consequence of local tectonics. In contra-diction to oscillations on the short term curve (Haq et aI., 1987) a continuous shallowing (or sea level fall) is observed in the East Slovakian Basin (Fig. 5).

The Upper Miocene development.At the end of the

Middle Miocene the settlement of convergence and subduc-tion velocities took place in the Western to Eastern Carpat-hians junction (Royden, 1993). The slab detachment (sensu

Wortel & Spakman, 1992) as it was described by Tomek and Hall (1993) was followed by regional uplift of the Carpat-hians front.

Przeglqd Geologiczny, vo!. 46, nr 5, 1998 The Upper Miocene development of the East Slovakian Basin represents the postrift stage of back arc basin evolution in the Pannonian Basin System, where the thermal subsidence dominated. The extensional regime was associated with some compressional events preceding the Pliocene tectonic inversion of the area (Kovac et al., 1995). No correlation with short term curve of Haq et al. (1987) was possible.

The authors wish to express their gratitude to the grants

N.13052/96, N. 24076/97 and N. 24007/97 for financial support.

References

EINSELE G. 1992 - Sedimentary basins. Springer, Berlin: 615. HAQ B.U., HARDENBOL J., V AIL P.R, WRIGHT RC., STOVER L.E., BAUM G., LOUTIT T., GOMBOS A, DA VIES T., PFLUM c., ROMINE K., POSAMENTIER H. & JAN DU CHENE R 1987 - Ce-nozoic Cycle chart.

HAQ B.U., HARDENBOL J. & VAIL, P.R 1988 - Mesozoic and Cai-nozoic chronostratigraphy and cycles of sea level change. [In:] Wilgus, C. K., Hastings, B.S., Kendall, c.G.ST.c., Posamentier, H.W., Ross, C.A, and van Wagoner, J.c. (eds.): Sea level changes. Soc. Econ. Pa-leont. Miner., Spec. Publ., 42: 125-154.

HORV ATH F., DOVENYI P., SZALAY S. & ROYDEN L.H. 1988-Subsidence, thermal and maturation history of the Great Hungarian Pla

-in. [In:] Royden, L.H., Horviith F. (ed.). The Pannonian Basin. AAPG Me-moir, 45: 355-372.

HUDAcKOV AN. 1996 - Dinoflagelaty paleogenu Levocskych vrchov, Abstract, Mineralia Slovaca, 28: 11.

JANOCKO J. 1993 - Development of braid delta depositional system-Lower Sarmatian, Neogene East Slovakian Basin, Manuscript, GUDS Bratislava.

nRfcEK R 1981- Contact between Miocene deposits and alpinotype basement of the East Slovakian Neogene basin. [In:] Geological structure and raw materials in the border zone of the East and West Carpathians.

Grecula P. (ed.), GUDS, Kosice, 39-46.

KALICIAK M. et al. 1990 - Explanatory notes to the geological tpa£ of the northern part of Shinske vrchy Mts. and Kosice depression. GUDS Bratislava: 231.

KAROLI S. & ZLINSKA A 1988 - Results of the lithological and rnicrobiostratigraphical research of the Neogene of the Kosice depres-sion. Manuscript, GUDS,Bratislava: 33.

KOV Ac M., KOV Ac P., MARKO F., KAROLI S. & JANOCKO J. 1995 - The East Slovakian Basin - A complex back-arc basin. Tecto-nophysics, 252: 453-466.

LEXA J., KONECNY V., KALICIAK M. & HOJSTRICOV A, V. 1993 - Distribution of the Carpathian Pannonian region volcanites in space and time. [In:] Rakus, M., Vozar, J.(ed.), Geodynamicky model a hlbinna stavba Zapadnych Karpat. Konferencie-Symp6zia-Seminare. GUDS, Bra-tislava: 57-71.

ROYDEN L H. 1988 - Late Cenozoic Tectonic of the Pannonian Basin System. in: Royden, L.H., Horviith F.,ed. The Pannonian Basin. AAPG Memoir45: 27-48.

ROYDEN L.H. 1993 - The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12: 303-325.

RUDINEC R 1978 - Paleogeographical, lithofacial and tectonic deve-lopment of the Neogene in eastern Slovakia and its relation to volcanism and deep tectonic. Geol. Zbor. Geol. Carpath., 29: 225-240.

RUDINEC R 1989 - New view onto the development of the Transcar-pathian depression during the Neogene. Mineralia. slov., 21: 27-42. SZABO c., HARANGI S. & CSONTOS L. 1992 - Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tecto-nophysics, Amsterdam, 208: 243-256.

TOMEK C. & HALL J. 1993 - Subducted continental margin imaged in the Carpathians of Czechoslovakia. Geology, 21: 535-538. VASS D. & CVERCKO J. 1985 - Neogene Lithostratigraphic Units in East-Slovakian ~o:vland. Geol. prase, Spravy, 82: 111-126.

V ASS D., KOV AC M., KONECNY V. & LEXA, J., 1988 - Molasse basins and volcanic activity in West Carpathian Neogene - its evolution and geodynamic character. Geol. zbor., Geol. Carpath., 39: 539-562. WORTEL, M.J.R & SPAKMAN, W. 1992 - Structure and dynamics of subducted lithosphere in the Mediterranean region. Proc. Kon. Ned. Acad. v. Wetensch, 95: 325-347.

ZLINSKA A. 1992 - Zur biostratigraphischen Gliederung des Neogens des Ostslowakischen Beckens. Geol. prace, Spr., 96: 51-57.

Cytaty

Powiązane dokumenty

W ielu z nas odpow iedziało na ponow ne (choć głęboko odm ienne) dośw iadczenie odzw yczajnienia a b so lu t­ nym jego odrzuceniem , (konserw atywnym ?)

„Przy pracy nad taką niew ątpliw ie potrzebną, choć może niezbyt jeszcze bliską syntezą, ujmującą jeden tylko, ale bardzo istotny aspekt sztuki, pojawiają

Ich strącenie nawiązuje do motywu z tradycji żydowskiej o strąceniu aniołów upadłych (por. 122,6, zdaniem wydawców i tłumaczy, autor OrigMundi wprowadza nową myśl, o

Nowe per- spektywy i możliwość edukacji (druk, kontakty międzynarodowe). Szlachta — przywódcza warst- wa w państwie, jej horyzonty, potrzeby edukacyjne, możliwości ich

Verbeteringen worden voorgesteld, zoals het gebruik van gordels om de rug beter te ondersteunen en een grotere bewustwording van de kraanmeester ten aanzien van zijn eigen

Four of the evaporation products considered in this study are based on the PCR-GLOBWB hydrological model (see Table 1, these products are indicated by the PCR prefix) with

(A test body should not be symmetric in x to avoid cancellation of the discretisation error.) The panel method used for comparison applied straight elements of constant source

Each intermediary analysis stream (trajectory analysis, action recognition, ROI detection module, and facial expression analysis), provides an input to the reasoning model, which