• Nie Znaleziono Wyników

On the sup-measurability of multifunctions whose values are allowed to be noncompact

N/A
N/A
Protected

Academic year: 2021

Share "On the sup-measurability of multifunctions whose values are allowed to be noncompact"

Copied!
5
0
0

Pełen tekst

(1)

Problemy Matematyczne 14 (1995), 21 - 25

On the sup-measurability of multifunctions

whose values are allowed to be noncompact

Grażjma Kwiecińska

W łodzimierz Ślęzak:

T h e content o f the work was announced during the Summer School on Real Functions Theory 1992. It concerns sorne generalizations o f Zygm unt’s theorem on the sup-measurabilitj' of multifunctions with the Caratheodory condition. T h e theorems are given without proofs, which can be found in [5].

Let

( X,

A 4 (A ')) be a measurable space, (K, d) a complete separable m etric space and

( Z, g)

a m etric space. Suppose that

X )

has the following

„p rojection p roperty” :

I f A € M ( X ) ® B o ( Y ) then ttx( A ) = {a; : 3y € Y ( x , y ) _ £ A } £ M ( X )

where B o ( Y ) denotes the cr-field of Borel sets in Y and Ad ( A ) denotes a com pletion o f M . { X ) .

A m ultifunction F : X x Y —* Z is M ( X ) sup-measurable if for each •M (A ')m easu rable multifunction G : X —> Y with closed values the superpo- sition $ : X —*

Z

defined by formuła $ ( x ) = F ( x , G ( x ) ) = Uy&a ( x ) f ' ( x , y )

is A d (A r)measurable, i.e. $ + (i? ) = {x 6 X : $ ( x ) C B } G M . ( X ) for each open set B C Z .

T h e o re m 1 Let

( Z, g)

be acompact. Suppose that F :

X

x Y —>

Z

is a multifunction with A4(A)m easurable all y-sections and m ightly lower semicontinous all x-sections. Then F is A4(A)sup-m easurable.

T h e m ightly lower semicontinuity of multifunction: H : Y —►

Z

means that it is lower semicontinuous and for each point y £ Y there exists an open

(2)

22 O N T H E S U P - M E A S U R A B I L I T Y OF M U L T I F U N C T I O N S

set V ( y ) C Y such that y € C l ( V ( y ) ) and H |{y}ui'(y) is upper semicontinuous at y.

Let we observe that the lower semicontinuity of all y-sections o f F is not sufficient to the Ad(A')sup-mea.surability of F . Consider for exam ple a multifunction F : R x R —> R defined by formuła

F { x , y ) =

{0 , 1 } if x ^ y

{1 } if x = y and x 0 4 {0 } if x = y and x (£ A

where A C R and A (fc C ( R ) , i.e. A is a nonmeasurable (in the Lebesgue sense) set. A ll x-sections of F are lower semicontinuos but not m ightly lower semicontinuous and al y-sections are £(i?)m easurable. If G ( x ) = { x } we have <h(x) = F ( x , { x } ) = { \ ^ ( x ) } . $ is in this case the characteristic function of the nonmeasurable set.

T h e o r e m 2 Let Z, o be cr-compact. Let T { Y ) be a topology in

Y

finer than the metric one such that ( Y , T ( Y ) ) is separable. Let us fix some countable dense subset of Y and denote it by S. Suppose that for every point v €

Y

there exist a subset U ( v ) 6

T ( Y )

such that for each y € S

B y = {u €

Y

: y € U ( v ) } € Bo( Y, d) and for every

v in Y

the fam ily

Af {Y)

= { ( 7 ( r ) fi K ( v , 2 ~ n) : n 6 Ar} forms a filter-ba.se of T (F )-n eigh b o u rgh oo d s of point v. Assume that

F

:

X

x

Y

—> Z is a closed-valued multifunction whose all y-sections are Admeasurable and all x-sections are T (i')-co n tin u o u s. Then

F is Ad(A')sup-measurable.

E x a m p le Let ( Y , d , < ) be a partially ordered m etric space such that

( Y, < ) is a partially ordered set and there is a countable dense set S in (K, d)

such that for any y € Y we ha.ve: y = lim n_oo yn, for some seąuence yn € 5 and yn > y for n £ N . Let c a l T { Y ) be a topology on Y generated by all open sets in ( Y , d ) and also by all the intervals I a = {y € Y : y < a ] for a € Y. This topology fulfils the assumptions o f the theorem 2 as it have shown by Dravecky and Neubrunn (see theorem 6.5 on p. 156 in [2]). Fromtheorem 2 we obtain a corollary.

C o r o lla r y A multifunction F : X x R —+ R having all x-sections right- continuous (left-continuous) and all y-sections A ^ A ^ m ea su ra b le is Ad(A^)sup- -measurable, provided that values of F are closed.

R e m a rk Let A C R and A £ C ( R ) . Let F : R x R —* R be given by formuła

(3)

On T H E S U P - M E A S U R A B I L I T Y OF M U L T I F U N C T I O N S 23

f (1.2) if x € A and y < x

F ( x . y ) = < (1.2) if x (£A and y < x ( {0 } in other cases.

Some o f its x-sections are right-continuous, remaining are left-continuous, all y-sections are £(/?)measurable but it is not £(/?)sup-measurable.

This exam ple shows that the assumption of one-side continuity from the same side for all x-sections is essential.

T h e o r e m 3 Let ( A , T ( A ) ) be a perfectly normal topological space and let (Z , o) be cr-compact. If F : A x V —> Z is a multifunction with T ( A )-lower semicontinuous y-section and upper semicontinuous x-sections, then F is Z?o(AOsup-measurable.

R e m a rk 2 Let T ( X ) be the density topology in A . A multifunction

H : A —> Z is called approximately lower semicontinuous if H ~ ( U ) = { x €

A ’ : H ( x ) D U ^ 0 } € T (A " ) for each open set U C Z . In this case theorem 3 is a generalization Grande's theorem onto the case of multifunctions (see [4], theorem 30).

Let (Y, d, A A { Y ) , y) be a complete separable metric space with cr-finite regular com plete measure defined on a cr-field A i ( Y ) of subset of V containing £ o (T ). Let V ( Y ) be a differentition basis for the space ( Y, d, A 4 (V ), y ) (see [lj. p. 30) fulfilling the following conditions:

1. T>( Y) C M { Y ) is a countable fam ily of sets with nonempty interiors and positive frnite measure /z

2. For everv point y

Y there exists a seąuence of sets

(/n)^Li

from V { Y ) converging to y, i.e. y 6 I n t ( I n) for n € N and seąuence of diameters of I n converges to zero when n approaches innfinity.

( * ). A set A C Y has the property ( Z ) with respect to T>[ Y) if for any point

y € Y there exist an open set U C A and a number 8 > 0 such that n ( J n U ) 1

— > -n ( j ) 2

for each set J € P ( V ’ ) containing y and with diameter less than 6.

Denote by Z the fam ily of subsets of Y with the property ( Z ) . A m ulti­

function H : Y —> Z has the property { Z ) if H ~ { G ) € Z and H + ( G ) € Z for each open set G C Z .

(4)

24 On T H E S E P - M E A S U RA BI L I T Y OF M U L T I F U N C T I O N S

T h e o r e m 4 Let (A L Z 3 (A )) be the Baire space, ( Y . d , M ( Y ) , f i ) let be as in ( * ) and let Z be cr-compact. Suppose that F : X x A —> Z is a mul­ tifunction such that all its x-sections ha.ve the property ( Z ) with respect to

c a l D ( Y ) and all its y-functions have the Baire property. Then F is Z3(Ar)sup-

measurable, where 5 ( A’ ) denotes the crfield of the subsets o f X with Baire property.

Theorem 4 is a generalization of theorem E. Grandę and Z. Grandę (see [3], theorem 1) onto the case of multifunctions.

Each of these above theorems serve as a kind of generalization o f Zyg- m unt’s theorem (see [7], theorem 2):

T h e o r e m (Z y g m u n t) If all x-sections of multifunction F : X x Y —> Z with compact values are continuous and all its y-sections are A f ( A ’ )sup-mea- surable, then F is A4(A')sup-measura.ble.

References

[1] Bruckner A .M ., Differentiation o f integrals, Am er. Math. M onthly 78 (1979), 1 - 54.

[2] Dravecky J., Neubrunn T ., Measurability o f functions o f two variables, M atem aticky Ćasopis 23 no 2, (1973), 147 - 157.

[3] Grandę E., Grandę Z., Quelqu.es remaręues sur la superposition

F ( x , f ( x ) ) , Fund. Math. C X X I (1984), 199 - 211.

[4] Grandę Z., La mesurabilite des fonctions de deux uariables et de la su­

perposition F ( x , f ( x ) ) , Dissertationes mathematicae C L IX , 1 - 49.

[5] Kwiecińska G.,Ślęzak W ., Sup-mtasurability o f m ultifunctions, to appear. [6] Spakowski A., On Superpositionally Measurable M ultifunctions, A cta

Univ. Carolinae, vol. 30 no 2 (1989), 149 - 151.

[7] Zygmunt W ., Remarks on superpositionally measurable m ultifunctions (in Russian), Mat. Zamietki ( = Matn. Notes) vol. 48 no 3 (1990), 70 - 72.

(5)

O n T H E S U P - M E A S U R A B I L I T Y OF M U L T I F U N C T I O N S . . . 25

Streszczenie

O Supermierzalności multifunkcji o nie koniecznie zwartych wartościach

W tym komunikacie, prezentowanym na konferencji w Czecho-Słowacji, sformułowane zostały kryteria na cięcie multifunkcji 2 zmiennych gwaran­ tujące jej superpozycyjną mierzalność względem zupełnej sigma-algebry. W odróżnieniu od wcześniejszych prac Caljuka, Spakowskiego i Zygm unta nie wym aga się ciągłości żadnych cięć, lecz zastępuje się ją pewnymi uogól­ nieniami jednostronnej ciągłości, silną półciąglością z dołu lub warunkiem

( Z ) Grandego. W prezentowanych wynikach nie jest istotne, aby wartości

rozważanych multifunkcji były zwarte. Ponadto przedstawiono 2 kontrprzykłady, wskazujące, że nie jest możliwe dalsze osłabianie założeń w pewnych narzu­ cających się kierunkach. Pełne dowody znajdują się w [5].

I N S T I T U T E O F M A T H E M A T IC S I N S T I T U T E O F M A T H E M A T C S G D A Ń S K U N IY E R S I T Y P E D A G O G IC A L U N I Y E R S I T Y Gdańsk-Oliwa 80-952 Stwosza 57 Połand Bydgoszcz 85-064 Chodkiewicza 30 Poland

Cytaty

Powiązane dokumenty

Antoni Kępiński w swej słynnej książce zatytułowanej Lęk stawia diagno- zę: „Nerwicowa hiperaktywność, rzucanie się w wir życia, nadmierne życie towarzyskie i

- No mum, you know that all my socks are white or black and these are pink, they aren’t mine… They can’t be dad’s as well, his socks are bigger….. - Hmmm… I did’ t wash them

CSng – konwersja do typu Single CDbl – konwersja do typu Double CInt – konwersja do typu Integer CStr – konwersja do typu String lub funkcje. Single.Parse –

W węższym, zaznacza się w tych opracowaniach problematyka pytań rozumianych jako samorzutne wypowiedzi dzieci (uczniów) w toku zajęć edukacyjnych, a także

Syrop zaleca się także zażywać po dodaniu do dobrze ciepłego naparu z kwiatów bzu czarnego lub kwiatostanów lipy (najlepiej na noc przed położeniem się do ciepłego

We note that the work in this section allows us also to handle the case b = 3 here, but we have chosen to indicate the proof of the case b = 3 separately in the previous

The aim of this paragraph is to show th a t in finite dimension it is possible to obtain a generalization of the Badon-Nikodym theorem to the case of weak

Widać stąd, że jeśli chcemy poważnie zastanawiać się nad myślą Wittgen ­ steina, w szczególności zaś nad związkami między jego filozofią języka a filo ­