• Nie Znaleziono Wyników

Practical use of electric networks to simulate or predict seiche conditions in harbors

N/A
N/A
Protected

Academic year: 2021

Share "Practical use of electric networks to simulate or predict seiche conditions in harbors"

Copied!
28
0
0

Pełen tekst

(1)

CHAPTER

6

PRACTICAL USE OF ELECTRIC NETWORKS TO SIMULATE OR PREDICT SEICHE CONDITIONS IN HARBORS

By Joseph W. Joy Marine Advisers, Inc.

1. INTRODUCTION

The successful design of a marina with respect to seiche conditions presupposes two categories of knowledge. Of these the more difficult to obtain is an adequate description of the local long period wave environment. Somewhat easier, but equally important, is a detailed knowledge of the responses various basin configurations present as a result of irradiation under some standardized wave environment. One such environment would be that provided by sinusoidal waves issuing from a distant line source maintained at unit amplitude, constant frequency; and fixed direction. Independently varying both the source orientation and frequency and measuring resulting responses at fixed locations is a procedure

cornmon to many wave scattering experiments. It is generally supposed that these scattered wave fields later may be superimposed. This will be the case if

linear equations adequately describe the wave motion, as will be assumed here. However, in a medium with spacially inhomogeneous propagation properties, there is no unambiguous distinction between the incident and scattered waves; only

ir

the case of uniform propagation are the real and imaginary parts of ei(k. x-wt) identical, apart from a translation in the direction

of~

.

Interfering reflections and other scattering effects due to variable depth cannot be eliminated

or tr eated separately from. peripheral reflections. The complexity inherent in

most practical situations requires that some sort of model be used.

Two cOITlputational techniques based on potential flow formulations and suitable for programming on a digital cOITlputer have been discussed by Stoker (1957) and Raichlen (1965). General purpose analogue computers are also known to have been used to solve seiche problems (Ref. 19). A matheITlatical forITlulation of the boundary-value probleITl for a harbor of arbitrary shape and constant depth has been given by Miles and Munk (196la, Ref. 12) with

subsequent application to a rectangular harbor. Adaptations of numerical methods used previously for predicting tides or storm surges (suITlmarized in References 1, 3, 6, 9, and 21) also afford proITlising approaches. A classical technique is construction of a suitably scaled-down hydraulic model. Another type of physical ITlodel is due to Ishiguro and is based on a physical analogy with electric networks. Such models have been tested ~nd found to yield results quite close to those observed in nature (References 2, 7, 8, and 10). This paper reports on the methods and use of such an analogue model.

II. DISCUSSION

Suppose a fixed volume of fluid having a free surface Tl(x, y;t) occupies a spe cified region, R, above a bottom boundary surface of slowly varying

(2)

d e p t h z = - h ( x , y ) . C o n s i d e r f i r s t t h a t t h e o n l y e x t e r n a l f o r c e s a c t i n g a r e g r a v i t y a n d a f o r c i n g f u n c t i o n w h o s e s p a c e d e r i v a t i v e s f u r n i s h t i m e - v a r y i n g c o m p o n e n t s of f o r c e o r p r e s s u r e . F o r i r r o t a t i o n a l f l o w w i t h n o l o c a l e n e r g y d i s s i p a t i o n , t h e r e s u l t i n g m o t i o n i s d e r i v a b l e f r o m a v e l o c i t y p o t e n t i a l f u n c t i o n . I n t h e c a s e w h e r e R i s b o u n d e d h o r i z o n t a l l y b y a n i m p e n e t r a b l e c l o s e d p e r i m e t e r C, t h e n o r m a l m o d e s f o r f r e e o s c i l l a t i o n s , o r s e i c h e s , o f t h e f l u i d w i t h i n t h e v a r i a b l e d e p t h r e g i o n c o u l d be o b t a i n e d f r o m a n e q u a t i o n i n v o l v i n g t h e p o t e n t i a l f u n c t i o n b y s e t t i n g t h e f o r c i n g f u n c t i o n e q u a l t o z e r o a n d r e q u i r i n g t h a t o n C n o r m a l c o m p o n e n t s o f v e l o c i t y v a n i s h . I n g e n e r a l t h e r e e x i s t s a d i s c r e t e , b u t i n f i n i t e , s e t o f n a t u r a l f r e q u e n c i e s UU j a n d t i m e i n d e p e n d e n t m o d a l a m p l i t u d e d i s t r i b u t i o n s A j ( x , y ) s u c h t h a t A j ( x , y ) e i ™ j t s a t i s f i e s t h e r e d u c e d e q u a t i o n a n d b o u n d a r y c o n d i t i o n . I f no m e c h a n i s m s o f i n t e r n a l e n e r g y d i s s i p a t i o n o r c o u p l i n g a r e i n c l u d e d , m o t i o n i n i t i a t e d i n a p a r t i c u l a r m o d e w o u l d c o n t i n u e o s c i l l a t i n g w i t h t h e s a m e a m p l i t u d e s i n d e f i n i t e l y ; t h u s t h e " Q " * f o r t h a t m o d e w o u l d be i n f i n i t e . S u p p o s e n o w t h a t t h e b a s i n p e r i m e t e r d e s c r i b e d b y t h e c u r v e C w e r e n o t c o m p l e t e l y c l o s e d , a n d t h a t t h i s w e r e s i m u l a t e d b y a s u i t a b l y a b s o r b i n g s e g m e n t i n s e r t e d t o r e p r e s e n t t h e e n t r a n c e a n d a l s o t o e f f e c t t h e c l o s u r e . T h e i n i t i a l e n e r g y o f t h e o s c i l l a t i o n s t h e n c o u l d d e c a y b y r a d i a t i v e l o s s e s t h r o u g h t h i s e n t r a n c e s e g m e n t a n d t h e Q of t h e m o d e w o u l d n o l o n g e r be i n f i n i t e . O t h e r m e c h a n i s m s w h i c h l i m i t Q v a l u e s a r e l o c a l b o t t o m f r i c t i o n , f l u i d v i s c o s i t y , t u r b u l e n c e , a n d i m p e r f e c t l y r e f l e c t i n g b o u n d a r i e s . A p e r i o d i c f o r c i n g f i m c t i o n m a y be a b l e t o w e a k l y e x c i t e c e r t a i n m o d e s e v e n t h o u g h t h e s e d i f f e r s l i g h t l y i n f r e q u e n c y . O f t e n t h e e f f e c t s o f l o c a l e n e r g y d i s s i p a t i o n a r e i m p o r t a n t . I n s u c h c a s e s e q u a t i o n s o f m o t i o n a n d c o n t i n u i t y m a y be w r i t t e n i n t e r m s o f m o m e n t u m a n d m a s s f l u x e s w h e r e the h o r i z o n t a l v e l o c i t y c o m p o n e n t s a r e a s s u m e d t o t a k e o n t h e i r v e r t i c a l l y a v e r a g e d v a l u e s . B y i g n o r i n g h o r i z o n t a l a n d v e r t i c a l v e l o c i t y d i f f e r e n c e s b e t w e e n v e r t i c a l l y s e p a r a t e d p o i n t s s u c h " l o n g - w a v e " e q u a t i o n s o n l y a p p r o x i m a t e l y d e s c r i b e t h e r e a l m o t i o n s . E q u a t i o n s (1) a r e o f t h i s t y p e , b u t r e m a i n c o m p l i c a t e d b y C o r i o l i s e f f e c t s a n d v a r i o u s n o n - l i n e a r i t i e s . * T h e q u a n t i t y 2 r r / Q i s a l i n e a r m e a s u r e o f w a v e d a m p i n g . I n t h e t i m e d o m a i n i t i s t h e a v e r a g e r e l a t i v e d e c r e m e n t of e n e r g y p e r c y c l e i n t h e d e c a y o f f r e e o s c i l l a t i o n s ; t h e v a l u e Q = 1/2 c o r r e s p o n d s t o t h e c a s e of c r i t i c a l d a m p i n g . I n t h e f r e q u e n c y d o m a i n , t h e s h a r p n e s s o f r e s o n a n c e i n a n y p a r t i c u l a r m o d e o f o s c i l l a t i o n i s a l s o g i v e n b y t h e Q f o r t h a t m o d e . F o r l a r g e Q t h i s m a y be t a k e n as t h e f r e q u e n c y a t p e a k r e s o n a n c e d i v i d e d b y t h e f r e q u e n c y b a n d w i d t h b e t w e e n t h e h a l f - p o w e r p o i n t s on a r e s p o n s e c u r v e . R e s o n a n t a m p l i f i c a t i o n i s n o t c o n f i n e d o n l y t o d i s c r e t e p o i n t s a l o n g t h e f r e q u e n c y a x i s . ( R e f e r e n c e s 12, 13, a n d 15 p r o v i d e d i s c u s s i o n s o f Q as a p p l i e d t o s e i c h e s . )

(3)

S E I C H E CONDITION SIMULATION

89

P ICuCh+'n)]^ + u [ u ( h + - n ) ] ^ + v [ u ( h + - n ) ] ^ + v{h+'n)f | = -pg(h+Ti)Ti^ - P Y ^ U ^

1. ) . . . P i L v i h + r i ) ] ^ + u [ v ( h + T | ) ] ^ + v [ v ( h + ' n ) ] ^ + u(h+-n)f j - = - p g ( h + T i ) - n ^ -PY^v^

p(h+-n)j. = - p | [ u { h + T i ) ] ^ + [ v ( h + ' n ) ] ^ | >

H e r e f i s the C o r i o l i s p a r a m e t e r 20 sinG (see L i s t o f S y m b o l s ) .

A p p r o x i m a t e s o l u t i o n s a r e c o m m o n l y o b t a i n e d f r o m a l i n e a r i z e d s e t o f e q u a t i o n s ( w i t h c o r r e s p o n d i n g b o u n d a r y c o n d i t i o n s ) f o r c a s e s w h e r e : (1) Tl i s e v e r y w h e r e v e r y s m a l l w h e n c o m p a r e d t o h ; (2) o n l y o s c i l l a t i o n s w i t h p e r i o d s v e r y s m a l l c o m p a r e d t o a p e n d u l u m d a y a r e c o n s i d e r e d ; ( 3 ) t h e f i e l d a c c e l e r a t i o n t e r m s a r e s m a l l c o m p a r e d t o u ^ a n d v ^ ; (4) t h e q u a d r a t i c t e r m f o r t a n g e n t i a l s t r e s s e x e r t e d b y t h e b o t t o m i s r e p l a c e d o v e r s o m e r a n g e by one d e p e n d i n g o n t h e f i r s t p o w e r o f the v e l o c i t y . I f s o m e p r i o r e s t i m a t e o f the m e a n c u r r e n t s p e e d s c a n be m a d e , a f o r m [ p Y ^ { l u l > ] u c a n be u s e d . * T h e s e i c h e s w h i c h o c c u r i n m o s t h a r b o r s , m a r i n a s a n d m a n y n a t u r a l e m b a y m e n t s f a i r l y w e l l m e e t t h e s e c o n d i t i o n s . T h e s u p e r p o s i t i o n p r o p e r t y o f l i n e a r e q u a t i o n s i s o f g r e a t p r a c t i c a l i m p o r t a n c e f o r t h i s p r o b l e m . C e r t a i n l y i f n o n - l i n e a r i n t e r a c t i o n s b e t w e e n p r o g r e s s i n g w a v e s o r s t a n d i n g w a v e m o d e s a r e t o be r e a l i s t i c a l l y t a k e n i n t o a c c o u n t , m u c h m o r e h a s t o b e k n o w n r e g a r d i n g t h e s p e c i f i c i n t e r a c t i o n s w h i c h t a k e p l a c e . F o r i n s t a n c e , G r o v e s ( 1 9 6 4 ) p o i n t s o u t t h a t i f t h e r e i s a n o n - l i n e a r b o t t o m s t r e s s , t h e n a n y m o d e w i l l be i n f l u e n c e d b y a l l o t h e r s as w e l l as b y a n y s t e a d y f l o w s p r e s e n t . A n o r m a l l y n o n - d i s p e r s i v e w a v e p h e n o m e n o n m i g h t a l s o e x h i b i t d i s p e r s i o n due t o f r i c t i o n a l e f f e c t s . L o n g p e r i o d w a v e s i n n a t u r e a r e s e l d o m c o n f i n e d t o a s i n g l e f r e q u e n c y o r i n c i d e n t d i r e c t i o n . M o r e o v e r , a n y p a r t i c u l a r r e a l i z a t i o n o f a n e x c i t i n g f o r c e t i m e h i s t o r y w h o s e c a s e m i g h t be t r e a t e d e x a c t l y , has v e r y l o w p r o b a b i l i t y o f r e c u r r e n c e . T h u s a s t a t i s t i c a l d e s c r i p t i o n s e e m s t o be i n d i c a t e d . F o r e n g i n e e r i n g p u r p o s e s , t h e t e c h n i q u e s of s p e c t r a l r e p r e s e n t a t i o n a p p l i e d t o a l i n e a r p r o c e s s a r e w i d e l y u s e d w h i l e t h o s e a p p r o p r i a t e f o r o t h e r p r o c e s s e s a r e p r e s e n t l y i n m u c h m o r e l i m i t e d u s e . I I I . T H E E L E C T R I C N E T W O R K A N A L O G Y T h e e q u a t i o n s w h i c h m a y b e s o l v e d t h r o u g h p h y s i c a l a n a l o g y w i t h a t w o - d i m e n s i o n a l p a s s i v e e l e c t r i c a l n e t w o r k m a d e u p o f l i n e a r * * l u m p e d * H a r l e m a n n a n d I p p e n ( 1 9 6 1 ) s t a t e t h a t f o r w a v e s o f i n i t i a l l y s m a l l a m p l i t u d e -t o - d e p -t h r a -t i o , -the f r i c -t i o n s h o u l d be e s s e n -t i a l l y i n d e p e n d e n -t o f w a v e a m p l i -t u d e . * * i . e . , l e n g t h - d i s t r i b u t e d c i r c u i t e l e m e n t s w h i c h a r e i n d e p e n d e n t o f t h e a p p l i e d v o l t a g e o r c u r r e n t a n d l o c a l i z e d as s i n g l e p o i n t s at w h i c h t h e y a s s u m e t h e i r a v e r a g e v a l u e s t a k e n o v e r a s m a l l i n t e r v a l A^,; f o r i n s t a n c e , i n d u c t a n c e L j = ( h e n r y s / m e t e r ) • A^,j .

(4)

i n d u c t i v e , c a p a c i t i v e a n d r e s i s t i v e e l e m e n t s a r e : * (uh)^ = -ghT] - F u h 2 . )• • • ( v h ) ^ = - g h l l y - F v h [ { T l + h ) d x d y ] = - / [ ( u l i d y l d x ] + [ ( v h d x ) d y ] [• t \ X Y' w h e r e F i s a l o c a l l y c o n s t a n t f r i c t i o n c o e f f i c i e n t . T h e w a v e m o t i o n d e s c r i b e d by t h e s e e q u a t i o n s e x h i b i t s n e i t h e r f r e q u e n c y o r a m p l i t u d e d i s p e r s i o n . N e u m a n n ( 1 9 4 4 ) , I s h i g u r o ( 1 9 5 0 ) , K a j i u r a ( 1 9 6 1 ) , a n d M i l e s a n d M u n k ( 1 9 6 1 ) i n v a r y i n g d e g r e e s h a v e a p p l i e d t h e i m p e d a n c e f u n c t i o n c o n c e p t t o l o n g - w a v e p h e n o m e n a . T h e r e a l p a r t of t h e i m p e d a n c e i s i d e n t i f i e d w i t h t h e c o m b i n e d e f f e c t s o f r a d i a t i v e r e s i s t a n c e of a b a s i n e n t r a n c e a n d l i n e a r i n t e r n a l d i s s i p a t i o n . T h e i m a g i n a r y p a r t a l s o c o n s i s t s o f t w o e f f e c t s : a n i n d u c t i v e i m p e d a n c e a s s o c i a t e d w i t h the l o c a l i n e r t i a o f a n a c c e l e r a t i n g f l o w a n d a n o t h e r r e a c t i v e i m p e d a n c e a s s o c i a t e d w i t h t h e r e q u i r e d v o l u m e f l u x ( e l e c t r i c c u r r e n t ) t o r a i s e the l o c a l w a t e r l e v e l ( c h a r g e a c o n d e n s e r ) . U n i t i m p e d a n c e s , e a c h a f u n c t i o n of t h e l o c a l d e p t h h ( x , y ) , c o u l d b e c o n s i d e r e d j o i n t l y i n c o m b i n a t i o n s , t h u s p r o v i d i n g a s y s t e m w i t h m a n y d e g r e e s of f r e e d o m . T h e p o w e r a m p l i f i c a t i o n f u n c t i o n o r c h a r a c t e r i s t i c p o w e r s p e c t r u m o b t a i n e d at one l o c a t i o n ( X j ^ , y ) due t o s i n u s o i d a l e x c i t a t i o n s i n t r o d u c e d a t a d i f f e r e n t l o c a t i o n i ^ y ' w o u l d be 1 / | H ( x ^ , y^ , x ^ , y ;a)) | ^ w h e r e H r e p r e s e n t s the o v e r a l l ( a m p l i t u d e o r v o l t a g e ) t r a n s f e r f u n c t i o n b e t w e e n t h e t w o p o i n t s i n t h e i n d i c a t e d s e n s e . L o c a l r e s o n a n c e s a t (^jjYj) w o u l d be d e t e r m i n e d f r o m t h e z e r o s ( o r m i n i m a ) o f t h i s t r a n s f e r f u n c t i o n . I s h i g u r o ( 1 9 5 9 ) p u b l i s h e d t h e e l e c t r i c a l a n a l o g u e t e c h n i q u e f o r s o l v i n g E q u a t i o n s (2) s u b j e c t t o b o u n d a r y c o n d i t i o n s o f v a r i a b l e d e p t h , l a t e r a l p e r i m e t e r a n d c o n n e c t i o n w i t h t h e o p e n s e a . B e s i d e s p r o v i d i n g s o m e a d d i t i o n a l e x a m p l e s , t h i s p a p e r w i l l s e r v e f o r e n g i n e e r i n g u s e , t o a u g m e n t I s h i g u r o ' s e a r l i e r w o r k . C o n s i d e r F i g u r e 1 . I f e l e c t r i c w a v e p r o p a g a t i o n i n a t w o - d i m e n s i o n a l n e t w o r k i s t o s i m u l a t e the p r o p a g a t i o n of l o n g w a t e r w a v e s o v e r an i r r e g i i l a r b o t t o m , c e r t a i n c o n s t a n t s c a l i n g f a c t o r s m u s t be e s t a b l i s h e d . T h e s e r e l a t e : ( 1 ) t h e e l e v a t i o n o f the s u r f a c e f r o m t h e m e a n l e v e l , 11, t o v o l t a g e , e, a c r o s s a c a p a c i t o r . 3. ) . . . T) = K e ( u n i t s o f K : c m / v o l t ) e e (2) t h e v o l u m e t r i c f l o w c o m p o n e n t s w a n d w t o t h e e l e c t r i c c u r r e n t f l o v i ' i n g m m e s h b r a n c h e s i n t h e p o s i t i v e x a n d y ^ d i r e c t i o n s , * U n i t d e n s i t y i s a s s u m e d .

(5)
(6)

= K . I ^ ( u n i t s o f K . ; c m ^ s e c " ^ / a m p e r e ) V = K . I y 1 y a n d (3) d i n a e n s i o n l e s s s c a l e f a c t o r s K a n d K r e l a t i n g m o d e l t i m e a n d s p a c e to r e a l t i m e a n d s p a c e , r e s p e c t i v e l y , 5 . ) . . . t = K t t e •f- = K , i = c ( K t ) * e e t e H e n c e f o r t h a s u b s c r i p t " e " w i l l be u s e d t o d i s t i n g u i s h q u a n t i t i e s i n t h e e l e c t r i c a l s y s t e m f r o m c o r r e s p o n d i n g q u a n t i t i e s i n the h y d r a u l i c s y s t e m . S u p p o s i n g t h a t h = 0 , l e t t i n g d x = d y « M a n d t h e n m u l t i p l y i n g the f i r s t t w o o f E q u a t i o n s ( 2 ) b y k , a n d the t h i r d b y 1 / ( A ^ ) 2 y i e l d s e q u a t i o n s i n t e r m s o f f l o w c o m p o n e n t s Sw X St -ghA.t'n - F w 5w 6 . ) - - - = -ghA^,ri__ - F w 9TI _ 1 y y Sw ' 3 9 t " U \ Sx Sy

y

T h e c u r r e n t s a n d v o l t a g e s i n the m e s h u n i t s h o w n i n F i g u r e I . b , o b e y * Se 1 So s u b s t i t u t i n g ( 3 ) , (4) a n d (5) i n p l a c e of the h y d r o d y n a m i c v a r i a b l e s i n (6) g i v e s * I n F i g u r e I . b , t h e p o s i t i v e d i r e c t i o n f o r " e " i s u p w a r d a n d t h e p o s i t i v e d i r e c t i o r ^ f o r t h e c u r r e n t s , i n d i c a t e d b y s m a l l a r r o w s .

(7)

S E I C H E CONDITION SIMULATION

a i K K S I K K ^ St V K . y e Sy t y ' s t \ K J \ 2 J dl L Sx Sy J L e t S I X Sx J X Sx dl ( ^ ) = AE T - ^ = A I a n d dl r j A t d i ( 1 ^ ^ ) = AE ^ = A I e \ o y / y o y y C o m p a r i n g (7) a n d ( 8 ) , one f i n d s ( w h e n c. g . s, u n i t s a r e u s e d ) , K t L = ( ( ^ } '^i —- ( v o l t s A m p e r e ^ s e c , o r H e n r y s ) \ K / \ is. / g h 9. ) . . . C = ^ ' ( — — ; At. ( v o l t s A m p e r e s e c , o r F a r a d s ) / ^ i ^ F - 1 R = I — ) —r ( v o l t s A m p e r e , o r O h m s ) A f t e r K , K . , a n d K h a v e b e e n f i x e d , t h e s e f o r m u l a s c a n be u s e d t o r e l a t e t h e v a l u e s of"^ t h e c i r c u i t e l e m e n t s (L,, C, a n d R ) i n e a c h e l e c t r i c a l " m e s h " ( F i g u r e I . b ) t o t h e m e a n d e p t h s , h , of t h e f l u i d c e l l s , e a c h o f w h i c h i s t a k e n t o h a v e f i n i t e s u r f a c e a r e a ( A ^ , ) ^ . T h e w a t e r d e p t h i s a s s u m e d c o n s t a n t o v e r e a c h c e l l ; h o w e v e r , i t c h a n g e s f r o m c e l l t o c e l l as i n d i c a t e d i n F i g u r e 1 . c T h e c i r c u i t e l e m e n t s i n t h e e l e c t r i c a l m e s h e s s h o w n i n F i g u r e 1. d , s e t i n a c c o r d a n c e w i t h E q u a t i o n s (9) a b o v e , w i l l t h e n b e a n a n a l o g o u s m e d i u m , i n p r i n c i p l e , f o r l i n e a r l o n g - w a v e p r o p a g a t i o n . T h r e e t y p e s o f i n t e r r e l a t e d " b a n d w i d t h s " m u s t b e c o n s i d e r e d i n s u c h a m o d e l . T h e s e c o n c e r n : (1) t h e f r e q u e n c y r a n g e o f i n t e r e s t , (2) t h e d e p t h r a n g e t o be s p a n n e d , a n d (3) t h e r e q u i r e m e n t t h a t the a r e a o f i n t e r e s t s h o u l d

(8)

n o t be l a r g e c o m p a r e d to t h e t o t a l a r e a m o d e l e d . A l s o , the s i z e s of t h r e e i n c r e m e n t s At, Ah, a n d A-L m u s t be e s t a b l i s h e d .

T h e m e s h s i z e s c h o s e n m u s t be s m a l l i n c o m p a r i s o n to t h e m a j o r f e a t u r e s o f t h e b o t t o m t o p o g r a p h y . M u n k , S n o d g r a s s a n d G i l b e r t ( 1 9 6 4 ) , r e p r e s e n t s m o o t h d e p t h p r o f i l e s as a s e r i e s o f d i s c o n t i n u o u s s t e p s . T h e i r j ^ ^ d . " e q u a t i o n s a r e s o l v e d f o r e a c h c o n s t a n t d e p t h " l a y e r " , a n d t h e s o l u t i o n " p a t e ^ by r e q u i r i n g c o n t i n u i t y i n t h e f l u x o f m a s s a n d m o m e n t u m a c r o s s t h e s t e p s -r e s u l t o f V o l t e -r -r a ( 1 8 8 7 ) i s c i t e d , w h i c h d e m o n s t -r a t e s f o -r t h i s c a s e t h a t t b ^ e x a c t s o l u t i o n c a n b e o b t a i n e d t o a n y r e q u i r e d p r e c i s i o n b y m a k i n g t h e <1"^P*'^ qus s t e p s s u f f i c i e n t l y s m a l l . T h e s a m e r e s u l t , i n p r i n c i p l e , h o l d s f o r t h e a n a i e l e c t r i c n e t w o r k , w h e r e one n o t e s t h a t K i r c h h o f f ' s L a w s a u t o m a t i c a l l y t a ^ ' ' c a r e o f the c o n t i n u i t y r e q u i r e m e n t s . A s i n a l l f i n i t e - d i f f e r e n c e c o m p u t a t i o n s , t h e r e i s a n e r r o r due t o ' - " ' ^ ^ ^ g c o a r s e n e s s o f t h e s p a c i n g of c o m p u t a t i o n a l p o i n t s i n the h o r i z o n t a l p l a n e s i hi i s f i n i t e . I t i s c o n v e n i e n t to d e f i n e a q u a n t i t y k as b e i n g t h e n u m b e r o f . ^ g c o m p u t a t i o n a l p o i n t s , o r e l e c t r i c a l m e s h e s , p e r w a v e l e n g t h , k = \ l ( h l ) . \a.c&-w a v e l e n g t h h e r e r e f e r s t o i t s i n s i t u v a l u e ; t h u s k m a y v a r y f r o m p l a c e t o P T h e e r r o r s i n e s t i m a t e s o f t h e p h a s e a n d a m p l i t u d e f o r a p a r t i c u l a r w a v e ^ v e n f r e q u e n c y a r e f u n c t i o n s o f k a n d d e c r e a s e as k i n c r e a s e s . C l e a r l y , f o r a-m e s h s i z e , t h e l o w e s t a c c u r a c y i s o b t a i n e d f o r t h e c a s e o f h i g h e s t f r e q u e ï ^ a n d s h a l l o w e s t d e p t h , t h a t the m o d e l i n g m u s t a c c o m m o d a t e . T h e f i n i t e - m e s h - s i z e p a r a m e t e r k e x p r e s s e d i n the t w o s y s t e m s i ^ \ _ 2 n / g h _ 2TT

ï t t - S i

^ (A-t) w(M) A d i m e n s i o n l e s s d i s s i p a t i o n f a c t o r , s, a l s o u s e f u l i n d e s c r i b i n g b o t h s y S "t

r V c

I n t e r m s of t h e s e t w o p a r a m e t e r s , I s h i g u r o ( 1 9 5 9 ) e x a m i n e d the e r r o r f o ^ c a s e o f o n e - d i m e n s i o n a l p r o p a g a t i o n w i t h f r i c t i o n , a n d h i s p a p e r s h o u l d 1 ^ ^ t h e c o n s u l t e d f o r t h i s d i s c u s s i o n . B r i e f l y , f o r t h e c a s e w i t h s = 10 a n d k r j ^ e r r o r i n t h e e s t i m a t e o f a m p l i t u d e is a p p r o x i m a t e l y 10%. c t i o n A r e l a t e d e r r o r o c c u r s i f a c o m p l i c a t e d t i m e v a r y i n g e x c i t a t i o n ^ ^ " ^ ' ^ ^ ^ . j ^ a i n -is r e p r e s e n t e d b y a s e t o f n v a l u e s s p a c e d At a p a r t i n t i m e . I n o r d e r tc? ^ ^ -^g t a i n l o w h a r m o n i c d i s t o r t i o n o f t h e e x c i t a t i o n w a v e f o r m , t h e t i m e At TCVC^ s m a l l c o m p a r e d t o t h e p e r i o d o f t h e h i g h e s t - f r e q u e n c y c o m p o n e n t , i n t h e d e c o m p o s i t i o n o f t h e f o r c i n g f u n c t i o n , w h i c h p o s s e s s e s a n y s i g n i f i c a n t a. ^ a n d w h i c h t h e m o d e l is t o a c c o m m o d a t e . F o r a n a l o g u e m e a s u r e m e n t s , t

t i m e s b e t w e e n s w e e p r e p e t i t i o n s w h e n t h e s e t s of (nAt ) v o l t a g e v a l u e s a.':^ -rhe i n s e r t e d m u s t a l s o be l o n g c o m p a r e d t o the l o w e s t f r e q u e n c y c o n t a i n e d i x ^ t i m e t r a n s i e n t p u l s e s o t h a t t h e o s c i l l a t i o n s o f t h e r e s p o n s e a r e g i v e n a d e q u a t ;

(9)

S E I C H E CONDITION SIMULATION

95

t o d i e o u t b e f o r e a n o t h e r e x c i t a t i o n c y c l e b e g i n s . I f t h e e x c i t a t i o n i s a c o n t i n u o u s f u n c t i o n , s a y f r o m a s i n e w a v e v o l t a g e g e n e r a t o r , t h i s d i s c u s s i o n i s o f l i t t l e i n t e r e s t s i n c e o n l y s t e a d y s t a t e r e s p o n s e s a r e n o r m a l l y d e s i r e d . A f t e r the p a r a m e t e r s a b o v e a r e f i x e d , e c o n o m i c d e s i g n o f the e l e c t r i ' ^ n e t w o r k f o r s i m u l a t i n g l o n g - w a v e p h e n o m e n a r e s t s c r u c i a l l y o n t h e s e l e c t i o n ^ of t h e c o n s t a n t s K , K a n d K . t 1 e I V . O U T L I N E O F P R O C E D U R E F O R E L E C T R I C N E T W O R K D E S I G N T h e p r o c e s s of s e l e c t i o n o f s u i t a b l e and p r a c t i c a l v a l u e s f o r a n d 1 ° " ' t h e r a t i o K j / K ^ c o n t i n u e s s o m e w h a t a l o n g t h e f o l l o w i n g l i n e s . F i r s t s e t d o W ^ i the i n i t i a l c o n s t r a i n t s , w h i c h a r e : (1) f r e q u e n c y b a n d w i d t h r e q u i r e d b y t h e p r o b l e m , (2) n u m b e r o f m e s h e s r e q u i r e d , (3) b a t h y m e t r i c a c c u r a c y a n d c h a r a c t e r i s t i c s ( h m a x / ' ^ n i n ) o f t h e m o d e l e d r e g i o n , (4) a c c u r a c y s o u g h t , (5) t y p e s o f c i r c u i t c o m p o n e n t s a v a i l a b l e , (6) a c c u r a c y r e q u i r e d i n e l e c t r i c c o m p o n e n t v a l u e s , (7) t y p e s o f g e n e r a t o r s a n d t e s t e q u i p m e n t a v a i l a b l e , o r h a n d , a n d (8) f u n d s a v a i l a b l e o r r e q u i r e d . - t o r s T h e s e l e c t i o n of e l e c t r i c a l c o m p o n e n t s is e s p e c i a l l y i m p o r t a n t . I n d u ^ a r e u s u a l l y the m o s t e x p e n s i v e i t e m s , a n d h e r e t h e e l e c t r i c a l " Q g " r e q u i r e d ° ^_ t h e c o m p o n e n t m a k e s a l a r g e d i f f e r e n c e . T h i s s h i f t s a t t e n t i o n b a c k to t h e h y * ^ ^ d y n a m i c s y s t e m i n o r d e r t o a s c e r t a i n w h a t " Q ' s " a r e r e q u i r e d i n o r d e r t o a n a l o g o u s l y r e p r o d u c e , i n t h e e l e c t r i c a l s y s t e m , s i m i l a r c o n d i t i o n s . F o r rT^*^ d e s i g n , o n l y l o c a l d i s s i p a t i o n - - a n d n o t r a d i a t i v e l o s s e s - - a r e c o n s i d e r e d . A s s u m i n g a s i n u s o i d a l v e l o c i t y u ^ cos wt a n d a q u a d r a t i c f r i c t i o n l a w , t h e m-<s r e l a t i v e d i s s i p a t i o n of e n e r g y E p e r c y c l e p e r u n i t a r e a i s *

^2 J Q _ "J<E) _ 3TT luh^ Snujh d < E ) , , 2 A , , 2 -1^ IbY o 1 6 Y U dt o 2 „ A c c o r d i n g l y , w e d e f i n e a n e w l i n e a r i z e d f r i c t i o n c o e f f i c i e n t r = 16y u /3TT t h a t F = r / h ( E q u a t i o n s 9 ) . T h e n , ° Q 1 3 . ) . . . R ( h ) ; * U s i n g ; ( E ) ~ 1/4 pg A ^ f o r s t a n d i n g w a v e s ; u h = A «/gïi f o r l o n g w a v e s ; ""^ <UT) = Y 2 < | u c o s o i t p f f o r d ( E ) / d t . °

(10)

Minimum Inductor "Q's" Required ot Vnrin,,. n»p.K

s ond Wove Periods

3 4 6 6 7 8 £ 1000

(11)

S E I C H E CONDITION SIMULATION

97

Inductonce 4.13mH 1.62mH 6 4 5 M H 2 5 8 M H

160 turns ( 7 / 4 4 Litz Wire ) 100 6 3 4 0 ( 1 9 / 4 8 ( 3 0 / 4 8 ( 4 0 / 4 4

3 H I ferrite material for cores having A;_= 1 6 0 m H / l O ' t u r n s

Frequency ( K c p s )

F i g u r e 3 . "Qe" v s . f r e q u e n c y c h o r a c t e r i s t i c s of 1 4 m m i n d u c t o r s f o r

various w i n d i n g s and i n d u c t a n c e s .

(12)

F i g u r e 2 i l l u s t r a t e s t h e e f f e c t o f d e p t h on i n t e r n a l Q f o r v a r i o u s ^ ^ ^ ^ j ^ i p p e r i o d s a n d f o r a n a s s u m e d a v e r a g e v a l u e o f r . T h e c o r r e s p o n d i n g r e l a t i " " ^ f o r i n d u c t o r s i s n o t so s i m p l e , b u t c a n be o b t a i n e d b y r e p l o t t i n g d a t a siro^^*'" to t h a t s h o w n i n F i g u r e 3. I n d u c t a n c e i s i n v e r s e l y p r o p o r t i o n a l t o the dept^J^ a n d d i r e c t l y p r o p o r t i o n a l t o t h e s q u a r e o f t h e n u m b e r o f c o i l t u r n s , b u t e ^ ' ' w i n d i n g has a d i f f e r e n t c u r v e Q g ( f g ) - I f t h e t y p e of i n d u c t o r c o r e w h o s e c h a r a c t e r i s t i c s a r e s h o w n i n F i g u r e 3 w e r e t o p r o v e a d e q u a t e , one shoul*^ ^ a l s o a r r a n g e t o h a v e t h e r a n g e i n r e q u i r e d d e p t h s s p a n n e d b y c o i l s c o n t a i i ^ ' ^ ^;bis 4 0 t o 1 6 0 t u r n s , t h e c h a r a c t e r i s t i c s b e i n g s o m e w h a t d e g r a d e d o u t s i d e ° r a n g e . I n d u c t o r c o r e s a r e d i s t i n g u i s h e d b y t w o m a j o r p a r a m e t e r s : ( 1 ) ' ^ ' ^ ^ ^ m a t e r i a l t y p e , t h e m o l e c u l a r a n d m a g n e t i c p r o p e r t i e s o f w h i c h d e t e r m i n e £. F i g - 3 a b o u t f r e q u e n c y r a n g e , L a n d Qg v a l u e s o b t a i n a b l e , a n d (2) a q u a n t i t y A X J ' p e r w h i c h d e p e n d s o n t h e c o r e g e o m e t r y a n d p r o v i d e s i n d u c t a n c e i n m i l l i h e r a r ' y t h o u s a n d c o i l t u r n s . C u r v e s l i k e t h o s e o f F i g u r e 3 m a y be o b t a i n e d f r o i ï i m a n u f a c t u r e r s. a , p t i S t a r t i n g w i t h a l a t e l y i n d u c t o r c o r e c a n d i d a t e , one c o n s t r u c t s a \BX'^^ h a v i n g t w o a b s c i s s a s c a l e s , w a v e p e r i o d T a n d e l e c t r i c a l f r e q u e n c y f ^ , ^ ^ a p l ^ to e a c h o t h e r b y the a s - y e t - u n s e l e c t e d f a c t o r K j . I n s i m i l a r f a s h i o n , t h e ^ ^3. t o s h o w n i n F i g u r e 4 h a s t h r e e i n d e p e n d e n t o r d i n a t e s c a l e s , w h i c h a r e a l l o ^ * ^ s l i d e r e l a t i v e t o e a c h o t h e r . T h e s e o r d i n a t e s c o n s i s t o f s c a l e s o f d e p t h » i n d u c t a n c e a n d c o i l t u r n s . A t r i a l c h o i c e f o r K^. f i x e s the a b s c i s s a s e a l ' s S r e l a t i v e t o e a c h o t h e r ; s i m i l a r l y , c h o i c e of t h e r a t i o K ^ / K ^ f i x e s t h e dep'^^ a x i s r e l a t i v e t o t h e i n d u c t a n c e a x i s , t h e i n d u c t a n c e a n d t u r n s s c a l e s b e i ^ ^ ^ ^ a l r e a d y l i n k e d t h r o u g h A j ^ . N o w , f o r e a c h p o i n t i n the p l a n e , one i s a b l " ^ i i a e d a s s i g n v a l u e s f o r Q, u s i n g F i g u r e 2 ( t h e a v e r a g e v a l u e o f r b e i n g t h a t o t > * .^^^rves t h r o u g h c a l c u l a t i o n o r c u r r e n t m e a s u r e m e n t s ) , a n d v a l u e s f o r Q^, u s i n g g ) . n g e s s i m i l a r t o t h o s e o f F i g u r e 3. * A v a l i d d e s i g n o v e r t h e d e p t h a n d p e r i o d d e f i n e d b y t h e i n t e r v a l s [ h ^ j ^ ^ h < h ^ ^ ^ ] a n d [ T ^ i ^ < T < T ^ ^ ^ ] r e q ^ ^ ^ i o n t h a t Q g ( L , f g ) 2= Q ( h , T ) . A f t e r v a l u e s o f K j / K g a n d o b t a i n i n g t h i s con'^ ^ i t h h a v e b e e n d e t e r m i n e d , i t i s a d v i s a b l e t o a d j u s t t h e s e v a l u e s i n c o n n e c t ! ' - ' ^ t h e m e s h s i z e c o e f f i c i e n t (M)^ so as t o o b t a i n a c a p a c i t o r s i z e w h i c h i s 3 . i n s . c o m m o n l y a v a i l a b l e , r e c h e c k i n g t h e n t o v e r i f y t h a t t h e a b o v e v a l i d i t y y-^ e m e s h T h e v a l u e K j m u s t be c h o s e n so t h a t t h e c u r r e n t f l o w i n g t h r o u g l i ^ a r m s ( F i g u r e s I . b a n d I . d ) i s w e l l b e l o w t h e c o r e s a t u r a t i o n l e v e l o f t l ^ -i n d u c t o r s , y e t h -i g h e n o u g h t o p r o v -i d e a g o o d s -i g n a l - t o - n o -i s e r a t -i o o v e r * ^ c o m p l e t e v e l o c i t y r a n g e o f i n t e r e s t w h e n u s i n g a v a i l a b l e c u r r e n t m e a s i . i ^ " i n s t r u m e n t s . W i t h t r i a l v a l u e s of K ^ / K ^ a n d K^^ d e t e r m i n e d , i s s e t be a u t o m a t i c a l l y . T h e r a n g e o f v a l u e s t h a t L , C, a n d R m a y t a k e o n c a n x>e c a l c u l a t e d u s i n g E q u a t i o n s ( 9 ) . T h e u n i t m e s h i m p e d a n c e s c a n t h e n a l s * N o t e : T h e Q g ( f g ) v a l u e s u s e d i n F i g u r e 4 w e r e f o r a d i f f e r e n t i n d u c t o : t h a n t h a t d e s c r i b e d i n F i g u r e 3.

(13)
(14)

c a l c u l a t e d . I f t h e o v e r a l l d r i v i n g - b o u n d a r y i m p e d a n c e u s i n g t h e s e c h o i c e s t u r n s o u t t o b e t o o l o w , t o o g r e a t p o w e r w i l l be r e q u i r e d t o e x c i t e t h e n e t w o r k , a n d t h e a b o v e p r o c e s s m u s t t h e n be r e p e a t e d , o r m o d i f i e d , so as t o a c h i e v e m o r e r e a s o n a b l e v a l u e s . T r a n s m i s s i o n l i n e t h e o r y p r o v i d e s a n a p p r o x i m a t e m e a n s o f c a l c u l a t i n g t h e s e b o u n d a r y i m p e d a n c e s . F o r t h e m o d e l m e a s u r e m e n t s t o be m e a n i n g f u l , i t i s i m p e r a t i v e t h a t t h e e l e c t r i c a l c h a r a c t e r i s t i c s o f t h e n e t w o r k be u n a l t e r e d b y the p r e s e n c e o f t h e w a v e g e n e r a t o r o r t h e m e a s u r i n g e q u i p m e n t . I t i s t h e r e f o r e n e c e s s a r y t o h a v e the i m p e d a n c e a c r o s s t h e s e i n p u t a n d o u t p u t e q u i p m e n t t e r m i n a l s m u c h h i g h e r t h a n t h e i m p e d a n c e s a c r o s s t h e t e r m i n a l s o f t h e n e t w o r k t o w h i c h t h e y a r e c o n n e c t e d . T h i s is n o t a d i f f i c u l t c o n d i t i o n t o a c h i e v e f o r the c a s e o f t h e m e a s u r i n g i n s t r u m e n t s , as t h e i r i n p u t i m p e d a n c e s a r e v e r y h i g h . I n t h e c a s e o f t h e w a v e g e n e r a t o r , h o w e v e r , t h e a d d i t i o n a l c o n f l i c t i n g r e q u i r e m e n t f o r e f f i c i e n t p o w e r t r a n s f e r c o m p l i c a t e s t h e s i t u a t i o n , a n d a c o m p r o m i s e c o n d i t i o n m u s t be t o l e r a t e d . H e r e t h e l o w e s t - p o s s i b l e i s o l a t i n g i m p e d a n c e , c o r r e s p o n d i n g t o t h e m a x i m u m e r r o r , i s e s t i m a t e d . N e x t , c o n s i d e r i n g t h e s e n s i t i v i t y o f the m e a s u r i n g e q u i p m e n t a n d t h e m a x i m u m a n d m i n i m u m v o l t a g e s r e q u i r e d i n the n e t w o r k , d e t e r m i n e w h a t p o w e r w i l l be r e q u i r e d f r o m t h e w a v e g e n e r a t o r s . F o r t r a n s i e n t e x c i t a t i o n s , t h e p e a k s o u r c e p o w e r r e q u i r e d m u s t b e e s t i m a t e d . F o r a s i n g l e m e s h w h e r e a w a v e o f h e i g h t £ is r e q u i r e d , t h i s c a n b e n o l e s s t h a n ^ s ^ 2 Z [ ^ ) = K K . ( W a t t s p e a k t o p e a k ) ; w h e r e n m e s h e s a r e so d r i v e n . 1 T h e l a n d w a r d p e r i m e t e r of t h e w a t e r a r e a i s s i m u l a t e d b y a n o p e n c i r c u i t i n t h a t d i r e c t i o n . I n t h i s c a s e , Z = a n d p e r f e c t w a v e r e f l e c t i o n s o c c u r a l t h o u g h , i f k n o w l e d g e p e r m i t s , o t h e r h i g h v a l u e s (Z > Z ^ ) c o u l d b e s p e c i f i e d , a l l o w i n g f o r i m p e r f e c t r e f l e c t i o n s . I n the e l e c t r i c m o d e l , t h o s e b o u n d a r i e s f o r w h i c h a c o n n e c t i o n t o t h e o p e n s e a i s t o be s i m u l a t e d r e q u i r e s p e c i a l a t t e n t i o n . I t w o u l d be u n r e a l i s t i c to h a v e a n y o u t g o i n g w a v e s r e f l e c t e d f r o m t h i s b o u n d a r y , o r d i m i n i s h i n a m p l i t u d e o n a p p r o a c h i n g i t . C o n s e q u e n t l y , t h i s b o u n d a r y s h o u l d b e t e r m i n a t e d m i t s c h a r a c t e r i s t i c i m p e d a n c e . R e a s o n a b l e a p p r o x i m a t i o n t o t h i s c o n d i t i o n i s a c h i e v e d b y c o n n e c t i n g (to g r o u n d ) r e s i s t o r s h a v i n g v a l u e s c a l c u l a t e d u s i n g the r e a l p a r t o f 1 5 . ) . . . Z = ^ J 1 + T r : / i h (M) M + ZTTiK h

(15)

S E I C H E CONDITION SIMULATION 101

w h e r e the l o c a l v a l u e o f h i s u s e d . T h e s e v a l u e s m a y l a t e r be a d j u s t e d e x p e r i m e n t a l l y . I f t h e n e t w o r k i s p r o p e r l y d e s i g n e d , t h i s e q u i v a l e n t i m p e d a n c e w i l l be p u r e l y r e s i s t i v e t o an e x c e l l e n t a p p r o x i m a t i o n . T h e c a p a c i t o r s s e l e c t e d s h o u l d h a v e d i s s i p a t i o n f a c t o r s ( l / Q ) c e r t a i n l y no g r e a t e r t h a n t h a t of t h e i n d u c t o r s . T h i s p r e s e n t s n o p r o b l e m , b u t i n d i c a t e s the n e e d f o r c a p a c i t o r s h a v i n g m i c a , p o l y s t y r e n e , g l a s s , o r o t h e r l o w - d i s s i p a t i o n , h i g h - s t a b i l i t y , d i e l e c t r i c m a t e r i a l . L i t t l e n e e d be m e n t i o n e d c o n c e r n i n g t h e r e s i s t a n c e c o m p o n e n t s , s a v e t h a t t h e y m u s t be s t a b l e a n d h a v e s u f f i c i e n t r e s o l u t i o n t o be c o n s i s t e n t w i t h t h e o v e r a l l a c c u r a c y s o u g h t . V . E X A M P L E S O F E X P E R I M E N T A L R E S U L T S V a l u e s of s c a l e a n d o t h e r p a r a m e t e r s t h a t h a v e b e e n u s e d f o r t w o l o n g w a v e a n a l o g u e s a r e c o m p a r e d b e l o w . C h e s a p e a k e B a y S m a l l B o a t H a r b o r K = 2 . 0 X lo"^ K = 1 . 0 x 10*^ t t K . = 2 . 0 X l O ^ ^ c m ^ s e c ' V A m p . K . = 8. 56 x 1 o'^cm'^ sec " / A m p . K = 40 c m / v o l t K 1.0 c m / v o l t e e T . = 10 m i n u t e s T . = 25 s e c o n d s m m m m A.f, = 3. 0 K m ; 1. 0

Km;

0. 5

Km

M = 920 f t ; 240 f t ; 80 f t h = 3 . 0 - 3 3 m e t e r s h = 2 . 0 - 1 6 m e t e r s C h a n g e s i n d i s t a n c e s c a l e i n the e l e c t r i c a n a l o g u e c a n be e a s i l y a c h i e v e d b y c h a n g i n g c a p a c i t o r v a l u e s . B e f o r e u s i n g a n e l e c t r i c a l a n a l o g u e m o d e l t o a t t a c k g e n e r a l s e i c h e p r o b l e m s , i t c a n be v e r y r e a s s u r i n g t o h a v e s u c c e s s f u l l y s e t i t t o t h e t a s k o f s o l v i n g a l o n g - w a v e p r o b l e m w h e r e t h e p r o t o t y p e s o l u t i o n i s k n o w n i n a d v a n c e . T h e o b s e r v e d t i d e s a r o u n d C h e s a p e a k e B a y n e a r l y p r o v i d e d s u c h a p r o b l e m a n d a l s o a l l o w e d t h e o p p o r t u n i t y to a d j u s t r e g i o n a l f r i c t i o n a l v a l u e s , so as t o m o r e c o r r e c t l y s i m u l a t e the t i d a l e f f e c t s . T h i s a f f o r d e d an a p p r o x i m a t e m o d e l c a l i b r a t i o n . F i g u r e 5 s h o w s t h e p o s i t i o n s o f s e v e n t e e n s t a n d a r d t i d e s t a t i o n s l o c a t e d a r o u n d C h e s a p e a k e B a y . F i g u r e 6 s h o w s t h e r e s u l t s o f t h e h a r m o n i c a n a l y s i s o f t h e t i d e s o b s e r v e d at t h e s e s t a t i o n s . T h e s e c o n s i s t of s i n u s o i d s o f f i x e d f r e q u e n c i e s w h o s e a m p l i t u d e s a n d p h a s e s h a v e b e e n a d j u s t e d so as t o r e a l i z e s o m e s t r e t c h of t i d a l e l e v a t i o n t i m e h i s t o r y . S i n u s o i d a l v o l t a g e s w h o s e

(16)

17. Elk River Entrance 16. Pooles Island Light 15. Baltimore

14. Seven-foot Knoll Light 13. Love Point Light 12. Annapolis

11. Thomas Point Shoal Light

9. Sharp's Island Light 10. Cambridge

8. Solomon's Island Light

7. Holland Island Bar Light

6. Great Wicomico Light

5. Stingray Point Light

1. Cape Charles

2. Old Point Comfort 4. Hampton Roads 3. Portsmouth

Figure 5. Positions of standard tide stations (listed in Figure 6 ) for which harmonic components were recently computed and used for comparison with results of analog model.

(17)

Figure 6 .

A M P L I T U D E S AND P H A S E S O F T H E MAJOR C O N S T I T U E N T S O F T H E O B S E R V E D T I D E S A R O U N D C H E S A P E A K E BAY

0 - Represents the phase lag of a tidal constituent behind that of Ihe corresponding equilibrium tide at the some position.

- Represents phase logs corrected to a common meridion, Old Point Comfort { 7 6 ° 18' W ) . Note: A maximum error of 2 ° moy result here becousc of some approximations. A - Amplitude in centimeters.

NOTE : Interpolated «olues ore shown by meons of porenlheses to distinguish from direct observations.

U. S . C . a G. S . L E N G T H O F TID AL C O M P O N E N T T I D E S T A T I O N TIDE RECORD

ANALYZED Kz Ol K, P, Q, S l

NUMBER - NAME - LOCATION If 0' A 4' A 0' A 4' A 0 0' A 0 0' A 0 0' A 0 0' A 0 0' A

2180 Old Point Comfort ( 37* 0 0 'N , 76* 18'W) 1 Ï 2 4 6 ' 0* 36.61 271' 0* 6.92 228* 0 ° 8 J 2 277* 0* 1.58 143' 0* 4.0Z 120' 5,24 103' 0 ' 1.74 115" 0 ° Ó-61 41" 0* 0.64 2180 Porlwnouth, Eliiobeth R. V. ( 3 6 ' 4 9 ' N , 76*18'W) 1 y 2 6 4 ' 18* 40.66 2 9 5 ' 24' 756 2 4 6 ' 16* 9.05 279" 2" 1.63 156* 7" 4.39 130" 10* 5,64 110' 7* 1.55 142" 27" 076 30" -10" 0.61

2213 Cope Chorles 1 37* 16'N. 76'01* W ) l y 253' 8 ' 34.08 278* 7* 6.89 231' 3* 768 2 6 8 ' - 9 ' V83 148" 4.24 128° 8" 3.36 121* 8* 1.96

-

-

-

-

-

-603 Hampton Roods ( 36" 51' N, 76' 20' W ) 3y 2 5 7 ' 11* 36.56 2 8 5 ' 14* 7.10 239* 11* ao2 Z86" 11* 201 147" 4" 4.11 127" 7* 521 123" 20" 1.59 132* 17* 1.04 26" -12* 0.94 493 Shorps Island Light ( 38' 3e'N, 76' 23' W 1 29 d 8 0 ' 194* 177 126' 215' 1.6 51* 183* 3.1 (126*) (209*) (0.5) 272* 129* 3,9 272* 152" 4.5 12 72') (169") (1.5) 1272") 1157*) (0.6)

-

-

-491 Hollond Islond Sor Light ( 3 8 ' 0 4 'N, 7 6 ' 0 6 'W ) 29 d 12* 126* 21.5 33' 122* 3.3 3 4 9 ' 121* 4.2 (33*) tll6*) (0.9) 214* 71* 2.9 201* 81* 2.6 (201") 196*) (0.9) (220*1 (105"1 (0.5)

-

-

-2180 Annopolis, Md. { 38* 59'N. 7 6 ' 29' W ) l y 143* 257* 11,49 170* 259* 1.95 115* 247* 2.36 -

-

-

293* 150* 4.11 284- 154* 5.03 272" 169* 2.16

-

-

-

2 3 4 ' 196* 1.65

487 Stingray Point Light 1 3 7 ' 3 4 'N, 7 6 ' 1 6 ' w ) 29 d 296* 50* 16.1 325' 5 4 - 2.5 261' 33* 3.4 1325*) (48*1 (0.71 190* 47* 2.3 133" 13* 2.6 1133*1 (30*1 10.91 (219') 1104') (0.5)

-

-

-488 Gr«t Wicomico Light (37'4e'N, 76"16'w) 29 d 337* 91* 15.5 357* 8 6 ' 2.6 322* 9 4 ' 3.5 {357'] (80*) (0.7) 194' 51* 2 7 157* 37" 2.4 (137") 134*) 10.8) (213') (98') (0.5)

-

-

-692 Solomon't Island. Md. I S B ' t S ' N , 76*27'W) 44* 156* 16,67 70* 159* 2.62 18' 150* 3.63 62* 145" 0.76 259* 116' Z.Ol 239" 119" 2.29 240* 137" 1.25 216' 101" 0.46 220" 180" 1.07 2181 Boltimore, Md. { 39-16'N. 76* 35'W ) 4y 190' 304* 14.57 217* 306* 2.56 166* 296* 3.11 216* 299* 0.7 303" 160* 512 296* 176" 6.46 289" 186' 2.20 264* 149' 0,98 2 2 5 ' 185* 1.9 499 PoolB's Island Lighl (39* 17'N. 76'16* W) 29 d 212* 3 2 6 ' 174 259* 348* 2.9 192* 324* 3.5 (259*) (342"1 (0.8) 319" 176* 4.9 293* 173* 6.4 (293*1 (190*) (2.6) (331*) 1216") (0.9)

-2130 Washington, D.C. ( S B ' S S ' N, 77*orW) 4 y 2 2 8 ' 342* 42.28 269* 358* 6.22 2 0 6 ' 338* 8.11 273" 356" 1.92 300* 157* 3.23 276" 156" 4.75 291* 168" 1.22

-

-

-

233* 193' 1.40 2180 Combridg», Md, ( 38* 34'N. 75*04'W ) 1 1 107* 221' 22.74 141* 230* 3 7 5 86* 218'' 4.54 - - - 279* 136' 4,79 265" 145" 4.75 254* 151" 1.65 244* 129* 1.07 233* 193* 1.74 495 Love Poinl Light ( 39*03'N, 76*1T'W) 29 d 168* 2 8 2 ' 15.3 210* 299* 2.3 159* 291* 3.4 1210*1 (293") (0.6) 301" 136" 5.4 275* 155* 7 7 (27 5-1 (172*) ( 2 . 5 ) (314-1 (199*) 11.0)

-

-

-— Thomos Poinl Shool Light (38* 54'N, 76*26'W) 29 d 119' 2 3 3 ' 11.2 127* 216* 1.6 103* 2 3 5 ' 2.4 (127*) 1210*) (0.4) 297* 154* 3.0 268* 148' 6,3 (268*) (165*) (2.1) (312-) (197-) (0.6)

-

-

-500 Elk River Enironee - Turkey Point I 3 9 ' 2 6 'N, 75*59'W ) 29 d 246* 3 6 0 ' 30.8 2 8 4 ' 3 7 3 ' 5.2 219' 351" 5.6 1284*) (367"1 (1.41 337" 194- 5.2 307" 187' 10.3 (307*1 (204*1 (3.4) (352*1 1237") (1.2) -

-

-501 CtKsopeoke City, tild. ( 39'32'N. 75" 49'W ) 413 d 263* 3 7 7 ' 31.9 304* 393* 4.1 2 3 8 ' 3 7 0 ' 6.0 316' 401* 2.0 324" 161* 6.3 315* 195° 7.5 1341*1 1236*1 (1.6) (326") (213*1 n.2) 239" 199* 0.6 693 Court House Point. Md. ( 39" 31'N. 75'53'W ) 369 d 2 6 9 ' 3 8 3 ' 31.21 311* 400" 4.11 239* 371' 6.10 298* 381* 1.52 316" 175' 5.91 313* 193* 7 8 0 318* 215" 2.07 262" 167* 1.)6 243* 203* 1.46 496 Seven Foot Knoll Light. Md. ( 39*09'N, 7 6 ' 2 5 'W 1 29 d 185* 2 9 9 ' 13.4 220* 3 0 9 ' 2.7 165* 297* 2.8 (220* (303* 10.7) 312" 169" 2.8 284" 164* 8.4 1284* (161") 12,81 (326' 1211*) (0.5)

(18)

-f r e q u e n c i e s c o r r e s p o n d e d i n m o d e l t i m e t o t h e t i d a l c o m p o n e n t s l i s t e d w e r e i n t r o d u c e d w e l l o f f s h o r e f r o m t h e b a y m o u t h . V o l t a g e a m p l i t u d e s a n d p h a s e s w e r e m e a s u r e d a t p o s i t i o n s i n t h e m o d e l c o r r e s p o n d i n g t o t h o s e o f t h e s e v e n t e e n t i d e s t a t i o n s . A n o r m a l i z i n g s t a t i o n w a s c h o s e n n e a r t h e b a y e n t r a n c e . T h e a m p l i t u d e r a t i o s a n d p h a s e s h i f t s of t h e r e m a i n i n g s e t o f s i x t e e n s t a t i o n s c o u l d b e c o m p a r e d i n b o t h t h e m o d e l a n d the p r o t o t y p e i n t h i s w a y . W h e n t h e M 2 t i d a l f r e q u e n c y w a s u s e d a n d t h e e l e c t r i c c u r r e n t f l o w i n g i n v a r i o u s m e s h a r m s m e a s u r e d t o o b t a i n l o c a l t i d a l - c u r r ent v e c t o r s , i t w a s f o u n d t h a t t h e s e e x c e e d e d m e a s u r e d M 2 s p e e d b y a b o u t 50%. I n i t i a l l y , a r m i f o r m v a l u e f o r b o t t o m f r i c t i o n w a s u s e d t h r o u g h o u t the b a y . F o l l o w i n g t h e s e m e a s u r e m e n t s , n e w v a l u e s o f r , t h e l i n e a r i z e d f r i c t i o n c o e f f i c i e n t , w e r e c o m p u t e d u s i n g t h e s i m u l a t e d M 2 t i d a l c u r r e n t s m e a s u r e d i n t h e m o d e l p r e v i o u s l y ; f r i c t i o n w a s t h e n n o n u n i f o r m l y d i s t r i b u t e d . A f t e r t h i s , t h e o b s e r v e d m o d e l c u r r e n t s w e r e l o w e r t h a n t h o s e o b s e r v e d i n n a t u r e , b u t w i t h m u c h s m a l l e r l o c a l d e v i a t i ons t h a n b e f o r e . T h e t i d e s t a t i o n c o m p a r i s o n s w e r e i n o r e o r l e s s i m p r o v e d a l s o , b u t n o t so m a r k e d l y . O n l y one s u c h i t e r a t i o n f o r t h e b o t t o m f r i c t i o n a l d i s t r i b u t i o n h a s b e e n t r i e d t o d a t e . S i n c e t i d e s a r e n o t s m a l l a m p l i t u d e o s c i l l a t i o n s a n d C o r i o l i s e f f e c t s a r e p r e s e n t , i t w o u l d be s u r p r i s i n g i f s u b s t a n t i a l e r r o r s w e r e n o t o b s e r v e d u s i n g t h i s l i n e a r m o d e l f o r t i d e s . A c e r t a i n r e g u l a r i t y , h o w e v e r , w a s n o t i c e d i n t h e a c c u r a c y w i t h w h i c h t i d a l s i m u l a t i o n w a s p o s s i b l e a t s o m e s t a t i o n s . A t S t a t i o n s 5, 6, 11 a n d 14 i n F i g u r e 5 p r e d i c t i o n w a s c o n s i s t e n t l y g o o d , w h i l e at S t a t i o n s 10 a n d 17 i t w a s c o n s i s t e n t l y p o o r . F o r t h e s e t o f s e v e n t i d a l c o m p o n e n t s a n d s e v e n t e e n t i d e s t a t i o n s , t h e p h a s e d i f f e r e n c e e r r o r a v e r a g e d a b o u t 1 0 ° a n d t h e a m p l i t u d e r a t i o s d e v i a t e d a b o u t 25% w h e n c o m p a r e d t o t h o s e f r o m t h e p r o t o t y p e . S u c h p r e d i c t i o n e r r o r s a r e p r e s u m a b l y s m a l l e r f o r s h o r t e r p e r i o d e x c i t a t i o n s . F i g u r e 7 s h o w s a n e x a m p l e of a m p l i t u d e r e s p o n s e s p e c t r a o b t a i n e d f o r t h r e e l o c a t i o n s i n C h e s a p e a k e B a y . I n e a c h c a s e t w o c u r v e s a r e s u p e r i m p o s e d . T h e s e s h o w t h e e f f e c t o f v a r y i n g t h e d i r e c t i o n o f i n i t i a l w a v e a p p r o a c h . A p p a r e n t l y c e r t a i n m o d e s of o s c i l l a t i o n a r e e x c i t e d p r e f e r e n t i a l l y b y w a v e s f r o m d i f f e r e n t d i r e c t i o n s . E s p e c i a l l y a t l o w f r e q u e n c i e s , t h e c o n s t r a i n t i m p o s e d b y t h e l o c a t i o n o f t h e w a v e s o u r c e b e c o m e s m o r e i m p o r t a n t . One n o t i c e s i n F i g u r e 7, h o w e v e r , t h a t t h e d i r e c t i o n a l e f f e c t d i m i n i s h e s at l o w f r e q u e n c i e s as i t m i g h t be e x p e c t e d t o d o . F i g u r e 8 s h o w s e x a m p l e s o f i m p u l s e r e s p o n s e s a l s o o b t a i n e d a t v a r i o u s m o d e l e d l o c a t i o n s i n C h e s a p e a k e B a y . H e r e t h e e x c i t a t i o n p u l s e t i m e h i s t o r y a p p e a r s as t h e t o p t r a c e i n e a c h f r a m e , w h i l e t h e l o w e r o s c i l l o s c o p e b e a m , a f t e r s o m e d e l a y , t r a c e s o u t t h e r e s p o n s e t i m e h i s t o r i e s . E x a m i n a t i o n o f r e s p o n s e s p e c t r a f r o m a n u m b e r of l o c a t i o n s m a y i n d i c a t e c o n s i s t e n t l a r g e a c t i v i t y o r r e s o n a n c e a m p l i f i c a t i o n a t c e r t a i n f r e q u e n c i e s . I n s u c h c a s e s i t i s d e s i r a b l e to e x a m i n e a p a r t i c u l a r m o d e of o s c i l l a t i o n i n d e t a i l . F i g u r e 9 s h o w s a n e x a m p l e o f s u c h a c a s e f o r one b a s i n c o n f i g u r a t i o n t h a t h a d

(19)

C O R R E S P O N D I N G WAVE P E R I O D F O R R E A L T I M E i l l I ÏS s : 9

i i l i i t i i

2 Ï 4 a 6 I E

:

I S

J i H i j v h ' l |,!;:|.

^ g T T ! HAMPTON ROADS E L E C T R I C A L F R E Q U E N C Y IN K I L O C Y C L E S -03

IS

H-(

O

O

O

I—I

i

59

I

Figure 7. Model response spectra for indicated positions showing the effect of variation in the initial direction of wave approach.

Boundaries B ( » ) and D ( • )

(20)

0.5-Kilometer Meshes

(66,32)

/ l l

il

Ï

r

V'

1 '1 5 0 / i s / c m

(66,32)

I

E O CM 2 0 / i s / c m

( 3 4 , 2 8 )

Ll

P T T T T T

\ 5 0 / ^ s / c m

( 3 4 , 2 8 )

r ' 1, 1

A

— — 11 É j

V

^ ^^

V

N

i

1

2 0 / ^ s / c m

(56,41)

i

E O 00

M I I

5 0 u s / c m

(56,41)

2 0 u s / c m

(37, 42)

( 3 7 , 4 2 )

H H m l bii H H

V yii

A - 1 4 3 5 0 / ^ s / c m 2 0 / / s / c m

(21)

S E I C H E CONDITION SIMULATION

107

Figure 9 .

A configuration for a small-boat tiarbor illustrating one severe case.

(22)

Frequency = 13.4 k c , Period ( T ) = 7 4 . 6 s e c . B O U N D A R Y C D R I V E R , 35VOII5 R M S R E F E R E N C E , 1 »oll R M S A V E R A G E D E P T H , 1 7. 8 2 l e d A V E R A G E W A V E L E N G T H , 1 7 9 0 feel 1 7 9 0 / 8 0 SS 2 2 m e s h e s Figure 10.

Another configuration for a s m a l l - b o a t harbor showing a severe

(23)

S E I C H E CONDITION SIMULATION

109

1. 7 37 /.2 36 0.76 35 0.26 25 0.4 6 222 /.2 2/9 1.9 36 /.4 36 0.97 35 0.4 39 1. 9 37 /.4 36 /.O 35 0.6 32 0.53 3/ /./ 35 0.7 8 33 0.54 3/ 0.38 29 0.2Z 27 0./ 35 0.06 9 / 0.08 /34 0.// 157 0./5 /62 o.se 25 0.3 23 0.22 20 0./3 22 0.06 39 0.04 /28 0.09 /58 0./2 /62 0. /5 /64 0.22 243 0./8 247 0,32 244 0.38 240 0.3 247 0./2 30a 0.// 337 0./ 345 .06 .02 .06 .09 /67 .03 /68 0./6 /7/ 023 242 0./3 305 0.3 6 238 0.46 237 0.4 24/ 0.23 249 0./8 260 0/2 26/ 0.09 250 0.07 225 0.08 /93 0.// /80 0./4 /^ê 0./8 774 0.44 253 0.46 240 0.63 Z30 0.64 234 0. 54 237 0.4 2 241 032 244 0.2Z 244 0./6 237 0./2 227 0,/ /9Z 0./2 /82 0./5 /79 0./8 /73 0.66 25/ O. 7 251 0.89 Z'^5 0.82 234 0. 67 235 0.53 237 0./4 239 0./3 239 0./2 237 0./4 235 0.78 25'0 0.8 243 0.84 250 0.8C. 234 0.72 2 35 0.38 235 0.45 237 0.32 23? 02/ 238 0.1 239 0.02 O./4 55 0.24 56 0.3 2 0.9 235 0.9 234 0.9 234 o.ei 236. O. 7 2 34 0.54 .235 0.42 235 0. 3 237 0.2 239 0.09 0.02 0./2 0.2 a.2(, 5-g C.77 235 0.76 234 0.7 5 2 35 0.68 235 0.58 235 0.47 235 0-36 234 0.26 234 0/6 2 32 0.07 ^34 0.03 0." 39 0./6 45-o.z 5/ 0.57 234 056 234 0.55 234 0.5 233 0.42 233 0.35 Z3i 0.7 23/ 0./8 230 0.// 230 0.04 0.04 0.1 44 0./4 47 0/8 S/ 0.33 234 0.33 Z34 0.2 3 2 35 09 23/ 0.25 2 33 0.2 232 0./5 0./ 0.0 6 0.0/ 0.05 0./ 5-0 0./2 43' 0./5 5/ O.S 236 O. 9 240 0. 9 Z40 0.09 0.08 0.07 0.06 0.04 0.0/ C7.03 0.0 6 r2 0.09 47 0./ 44 o/z 45 O./é 51 O./5 50 0/4 ^ 5 " 0./2 42 0./ 45 0.09 0.07 O.Oé O.06 0.0 6 •42 0.07 0.0 8 4/ 0./ 4a 0 / 47 0.4 55 0.38 5-4 0.37 51 0-32 55 0.27 55 02 2 53 0./6 50 0./2 0./ 4/ 0.08 0.07 0.0 6 0.0 6 0.07 0.64 5(. 0.6 2 55 0.5d 55 0.5 5'7 0.4/ 5-5 0.32 55 /).24 5-3 0./6 52 O./l 53 0.8 0. 6 0.4 0. 2 0.2 0.85 O.S2 56 0.77 56 0.64 60 0.5Z 5'9 0.4 S3 0.28 55 0.3 52 0./2 52 0./6 0./2 0. /2 0.5 0.4 /.O 58 0.96 5-3 0.9/ 57 0.76 62 0.6 60 0.5 5-4 \ 0.3 5-0 0./4 45 0.8 O.OZ 0. 03 0.0 6 0.08 33 0./ 50 O.04 0.0/ 0.04 003 0./ 0/2 50 0./5 52 0.00 OO < - R M S A M P L I T U D E IN V O L T S (or c m ) < - P H A S E R E L A T I V E TO T H E D R I V E R (deg.) 0.05 0.06 0.09 O./3 0./(, 0./9 0.20 0./ 0./2 0./6 0./7 a./9 0.22 0.25 0.4 0./5 0./7 (2.2 0.22 0.26 0.29 Figure 11.

Insertion of simulate(J solid mole at node of standing w o v e , i l l u s t r a t i n g the mode of oscillation (shov^n in previous f i g u r e ) effectively e l i m i n a t e d .

(24)

b e e n p r o p o s e d f o r a s m a l l b o a t h a r b o r . T h e g r i d s h o w n i s on 8 0 - f o o t c e n t e r s a n d t h e q u a n t i t y c o n t o u r e d i s R M S v o l t a g e as m e a s u r e d i n t h e m o d e l . T^^^^ p a r t i c u l a r m o d e e x h i b i t e d r e s o n a n t a m p l i f i c a t i o n f a c t o r s {e .. /e^_^^) o f ^s l a i ge as s i x t e e n , o v e r a v a r i e t y o f i n i t i a l w a v e h e a d i n g s . F i g u r e ^ ' ' 10 s h o w s a s i m i l a r c a s e f o r a n o t h e r s i m p l e b a s i n c o n f i g u r a t i o n , f o r w h i c h a p p r o x i m ^ ' ' ^ h a n d c o m p u t a t i o n s c a n be m a d e . T h e b a s i n d e p t h i n t h i s c a s e w a s r e l a t i v e l y c o n s t a n t e x c e p t n e a r t h e e n t r a n c e a n d a l o n g t h e b o r d e r s . H i g h a m p l i f i * ^ ^ * ^ " " f a c t o r s a r e a g a i n n o t e d . F i g u r e 11 s h o w s t h e s a m e b a s i n w i t h a s i m u l a t e d s o l i d m o l e o r s h e e t - p i l e o b s t r u c t i o n i n s e r t e d a t a c r i t i c a l p o i n t . C o n d i t i o n s a r e o t h e r w i s e t h e s a m e as f o r t h e p r e v i o u s f i g u r e ; h o w e v e r , t h a t m o d e o f ^ o s c i l l a t i o n h a s n o w b e e n e f f e c t i v e l y e l i m i n a t e d . T h e n u m b e r s t o w a r d t h e t o p o e a c h s q u a r e a r e t h e m e s h v o l t a g e s , e, a n d t h e b o t t o m e n t r i e s a r e t h e p h a s e d i f f e r e n c e s e x i s t i n g b e t w e e n e a c h o f t h e s e p o i n t s a n d t h e d r i v e r , l o c a t e d m a n y w a v e l e n g t h s a w a y . T h e e x a m p l e s s h o w n h e r e a r e f a i r l y s i m p l e o n e s ; q m * ^ c o m p l e x p a t t e r n s a l s o m a y b e f o u n d . F r e q u e n c i e s w h i c h p r o d u c e l a r g e r e s o n a n t a m p l i f i c a t i o n s a t p o " ^ * ^ . i n t e r n a l t o t h e b a s i n s c a n be i d e n t i f i e d a n d t h e i r m o d e s o f o s c i l l a t i o n ^"^^'^ S t e p s c a n t h e n be t a k e n t o s u p p r e s s t h o s e w h i c h m a y be p a r t i c u l a r l y u n ^ e s i r a e. E a c h c h a n g e i n l a t e r a l o r b o t t o m b a s i n c o n f i g u r a t i o n m a y i n t r o d u c e n e ^ o r c h a n g e t h e Q ' s o f p r e - e x i s t i n g o n e s , a n d t h e s e m u s t be r e - e x a m i n ' ^ ' ^ ' N e v e r t h e l e s s , t o s o m e e x t e n t , i t i s p o s s i b l e t o a t t a c k t h e i n v e r s e pr o'^^^™^ ° a r r i v i n g at t h r e e d i m e n s i o n a l b a s i n s h a p e s w h i c h y i e l d d e s i r e d r e s p o n s e s , a p p e a r s t h a t , g i v e n s u f f i c i e n t d e s c r i p t i o n o f the l o n g - w a v e e n v i r o n m e n t » ' ® d e s c r i b e d t e c h n i q u e w i l l a i d i n t h e d e s i g n o f s h e l t e r s f o r v e s s e l s s o t h ' a t t h e s e w i l l f u l f i l l t h e i r m a j o r f u n c t i o n w e l l i n t h e e n v i r o n m e n t f o u n d . V I . A C K N O W L E D G M E N T S T h e a u t h o r g r a t e f u l l y a c k n o w l e d g e s t h e u s e f u l d i s c u s s i o n s a n ^ . c r i t i c i s m s R o b e r t R . P u t z d u r i n g t h e p r e p a r a t i I s h i g u r o f o r h i s p r e v i o u s i n v a l u a b l e a d v i c e . o f M r . R o b e r t R . P u t z d u r i n g t h e p r e p a r a t i o n o f t h i s p a p e r a n d t o D r - S h i z u w o

(25)

S E I C H E CONDITION SIMULATION

L I S T O F S Y M B O L S

111

H y d r o d y n a m i c Q u a n t i t i e s g r a v i t a t i o n a l a c c e l e r a t i o n t i m e p e r i o d f o r one w a v e c y c l e f r e q u e n c y of w a v e c o m p o n e n t a n g u l a r f r e q u e n c y = Zirf p h a s e v e l o c i t y h o r i z o n t a l c o o r d i n a t e s i n a r i g h t h a n d e d , r e c t a n g u l a r C a r t e s i a n s y s t e m -v e r t i c a l c o o r d i n a t e , p o s i t i -v e u p w a r d h o r i z o n t a l d i s t a n c e i n c r e m e n t i n h o r i z o n t a l d i s t a n c e ( m e s h s i z e ) w a t e r d e p t h p r o p a g a t i o n v e c t o r f l u i d d e n s i t y s u r f a c e e l e v a t i o n f u n c t i o n h o r i z o n t a l v e l o c i t y c o m p o n e n t s a v e r a g e d v e r t i c a l l y f l u i d f l o w a v e r a g e d v e r t i c a l l y , i t s h o r i z o n t a l c o m p o n e n t s ( w ^ = u h d x ) s t r e s s d u e t o f r i c t i o n w i t h the b o t t o m f r i c t i o n c o e f f i c i e n t a c o e f f i c i e n t r e l a t e d b y Y ^ = g / C ^ t o De C h e z y ' s c o e f f i c i e n t , C^ I s h i g u r o ' s l i n e a r i z e d f r i c t i o n c o e f f i c i e n t ( c m / s e c ) m e a n e n e r g y p e r u n i t s u r f a c e a r e a r e c i p r o c a l d a m p i n g f a c t o r ; Q t r o u g h to c r e s t w a v e h e i g h t ; T] m a x - Tl m m i n g e n e r a l , 2 A f o r s i n u s o i d s -w a v e s

Cytaty

Powiązane dokumenty

There exists much less data about zeolites sorption properties concerning ions of metals, that is why the purpose of this research was to study comparatively the

b) wprawdzie przenoszenie wyników badań toksykologicznych ze zwie­ rząt na ludzi może być zawsze ryzykowne, ale przy faktach, iż ślady działania rakotwórczego u

Equation (2), the experiment is done with base values of the demihull spacing waterway width H, and water depth d.. The prediction for the resistance

 podczas odbioru odpadów ze zbiorników, gdy odległości między nimi wynoszą mniej niż 100 m, obsługa śmieciarki może przemieszczać się pozostając na zewnątrz

1987.. Kryterium czasu; II. Sytuacja twórców; IV. Przeznaczenie dzieła sakralnego; VI. Dopracowany program; VII. Jak że tw órczy jest w łaśnie człowiek

43 Jan Paweł II, Veritatis splendor, nr 40. 43; Międzynarodowa Komisja Teologiczna, W poszukiwaniu etyki uniwersalnej: nowe spojrzenie na prawo naturalne, nr 12-21. Wspólnym

A model which is trained to predict data measured from a deterministic chaotic system, does not automatically learn the dynamical behavior of that chaotic system [this thesis,

The risk assess- ment is based on six criteria set for every supplier: type of commodities or products provided by the sup- plier; period of the cooperation with the supplier;