• Nie Znaleziono Wyników

The Power of Tests Based on the Length of Rune

N/A
N/A
Protected

Academic year: 2021

Share "The Power of Tests Based on the Length of Rune"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S F O L IA OECONOMICA 48, 1905_____________________

C ze slaw Dom nriski*, A n d rz e j Tom aszewlcz

THE POWER OF T EST S BASED ON THE LENGTH OF RUNS

1. In t r o d u c t io n

The p a p e r le a c o n t in u a t io n o f the r e s e a r c h c o n c e rn in g the f o llo w in g t e s t e based on the le n g th o f runs (s e e [ 2 ] ) :

- a t e s t based on the maximum le n g th o f run s on one of the median ( S A ) ,

a t e s t based on a s m a lle r among the maximum le n g th s of runs above and below th e median ( S ^ ) ,

a t e s t based on a b ig g e r among the maximum le n g t h s of runs above and below the median ( S ^ ) .

These t e s t s c o u ld be a p p lie d I n v e r i f i c a t i o n o f h yp o th e se s on in d ep en d en ce o f the sequence o f o b s e r v a t io n s , In d e te rm in a ­

t io n o f th e tre n d In th e tim e s e r i e s , in v e r i f i c a t i o n o f the h y p o th e s is on the l i n e a r i t y o f the e c o n o m e tric model w it h one o r more In d e p e n d e n t v a r i a b l e s .

The aim o f t h i s p a p e r i s to fo rm u la te some c o n c lu s io n s con­ c e r n in g th e power o f t e a t s based on th e le n g th o f runs w hich a re a p p lie d in v e r i f i c a t i o n o f the h y p o th e s is on in ­ dependence o f sub seq u en t e le m e n ts in a sam p le.

I Ye s h a l l c o n f in e o u r c o n s id e r a t io n to th e ca se o f s t a t i o n a ­ r y Markov c h a in w it h two s t a t e s w h ich a re t r a d i t i o n a l l y denoted

' * as A and B and th e t r a n s i t i o n m a tr ix PAA PAB 1 cr O H L « o ' P BA PBB «1 1 - q * * 0 r . , L o c t u r e r a t th e I n s t i t u t e o f E c o n o m e tric s and St8 ' t l s t i c s . U n i v e r s i t y o f Ł ó d ź .

(2)

t.pt Pn ^ be a d i s t r i b u t i o n of t h i s c h o in f o r each ^ e ft « * { ‘ V V ’ 0 < % < 1 * 0 < q l < 1 i and l e t An " { A ' B } n be a s e t o f a ll- n - o le m o n t seq u ences formed from e le m e n ts A and 13. Thus, wo s h a l l c o n s id e r th e p r o b a b i l i t y sp a ces

( 1 ) M„ v - ( a .2 n ,J- " * Pm n , ^a) f o r * e e .

The fo rm u la te d c o n c lu s io n s a re based on the n u m e r ic a lly de­ term in ed power o f t e s t e b a s in g on the d i s t r i b u t i o n o f the leng th- of ru n s f o r n * 1 ,2 , . . . .

100

and on e e v e r o l dozen p a i r s chosen from th e s e t ft. The c o m b in a t o r ia l fo rm u la e o f p r o b a b i l i t y co n n ecte d w it h run s d i s t r i b u t i o n p re s e n te d in the l i t e r a t u r e ( c f . [ 3 ] , [ 4 ] ) a re in c o n v e n ie n t f o r n u m e r ic a l c a l c u l a ­ t i o n s . I t i s more e f f i c i e n t to use r e c u r s iv e fo rm u la e e s p e c i a l ­ l y in the caso when th e c a l c u l a t i o n s a re made f o r sub seq uent v a lu e s o f n,

2. R e c u r s iv e Fo rm u lae f o r U n i v a r i a t e Runs D i s t r i b u t i o n s

Wo s h a l l a s s ig n to each sequence

u * ( xA , Xg# . . . .

the f o llo w in g num bers:

Na(u ) - number o f e le m e n ts A in sequence u , La (l>) number o f rune c o n s is t in g o f e le m e n ts A , L ( u ) - t o t a l num b er.of ru n s .

Assume th a t seq u ences u e ^ a re th e r e a l i z a t i o n s o f the s t a t i o n a r y Markov c h a in w it h th e t r a n s i t i o n m a tr ix

p p

AA BA

P P

AB BB

w here 0 < PA B , P ^ < 1. H ence, the s t a t i o n a r y p r o b a b i l i t i e s

a re g iv e n by the fo rm u la e „

P P

( 2 ) pA « R (X « A ) - p---v V ~ * P B “ P ^X 1 " B ) “ P--- + ~W ~

A J AB BA a J AB + BA

(3)

Under th e se assu m p tio n s th e p r o b a b i l i t y d i s t r i b u t i o n on the a e t can be p re s e n te d by the fo rm u la

1 (Na - L ) L ( L - L ) (n - N - L ♦ La ) ,

AB BA

where n d e n o te a sample s i z e , ” th e number o f A - ty p e o-le m en ts in the sam p o-le, l (w) - t o t a l number of ru n a , l a^ ' number o f runs c o n s is t in g of A - typ e e le m e n ts .

E q u a tio n ( 3 ) r e s u l t s im m e d ia te ly from th e i d e n t i t y

( 4 ) P ( u ) - P C X j- X j) p C X jj- X jJX j. X j) . . . p ( xn ^ n l xn- l " xn - i )

a f t e r ta k in g in t o a c c o u n t e q u a tio n ( 2 ) ,

D e term in e f o r g iv e n n th e f o llo w in g rundom v a r i a b l e s ;

f>A - th e maximum le n g th o f run » c o n s is t in g o f A - typ o e l e ­ m ents,

S _ - the maximum le n g th of runs c o n s is t in g o f e - ty p e e le - D

m ents,

s o * min { s a* s a í* S G - max { s A . S Q} .

H avin g t h i s n o t a t io n we can fo rm u la te th e f o llo w in g theorem s whose p r o o f s , as o f l i t t l e i n t e r e s t , a re o m itte d . T h e o r e m 1. The d i s t r i b u t i o n o f v e r i a b l e SA d e te rm in ­ ed on M » i s e x p reaso d by the r e c u r s iv e fo rm u la n | v ( 5 ) P ( S A - s ) - Q ^ in . s ) ♦ Q ^ tn .s ), where n-e Q ^ C n .s) - Y ] Q j ( n - v , s ) q0 ( l - q 1) v " 1, v-1 8-1 8 Q i ( n , 8 ) • /..J ( n - s , v ) qA ( l - q 0 ) a_1 ♦ 1 v »0 w «l ' ' under i n i t i a l c o n d it io n s q£(

0

.

0

> . Qj(O.O) . - - Í - .

(4)

T h e o r e m 2. The d i s t r i b u t i o n o f v a r i a b l e S „ d e te rm ln -6 ed on ^ l a ex p ro ssed by th e r e c u r s i v e fo rm u la ( 6 ) P ( S G- s ) - Q ® (n ,s ) ♦ Q j ( n . s ) , where s Q ® (n ,s ) - X j Q? h ( n - s , v ) qh ( l - q 4 h ) 8" 1 v

«0

" i “ n * X Ql - h (n “ w' 8^ w «l f o r h ■ 0 , 1 , a t i n i t i a l c o n d it io n s ■fi/n \ _ nG/ Q“ ( 0 , 0 ) - Q ^(O .O )

*

0**1

The d i s t r i b u t i o n o f v a r i a b l e S0 can be d e te rm in e d on th e ba­ s i s o f th e f o llo w in g r e l a t i o n

( 7 ) P ( s < s ) - P ( S A < s ) ♦ P (S _ < s ) - P ( s _ c s ) .

3. Power E v a lu a t io n

On th e b a s is o f th e r e c u r s iv e fo rm u la e p r e s e n te d in § 2 th e pow er o f random ized t e s t s was d e te rm in e d n u m e r ic a lly f o r n « 1 , 2 , . . . » 100 end f o r some p a i r s ( p . j o ) , where

( 8 ) p - pa ^ - ^ q ^ » e m 1 -

*0 * V

The p ro c e d u re was as f o l l o w s t A A - i f S < ea - 1 , th e n HQ »• g » 0 i s a c c e p te d , - i f S > Ba , th en Hq I s r e j e c t e d in f a v o u r o f H j i j > 0 , - i f S * ■ » £ - ! , th e n H0 i s a c c e p te d w it h p r o b a b i l i t y r „ . L e t f o r th e d e te rm in e d n , p , s i g n i f i c a n c e l e v e l a and g * o C'9) Fa ( b ) " P ^S A < 8 ^» 8 “ ° » 1 *

(5)

The c r i t i c a l v a lu e o f the t e s t based on SA s t a t i s t i c w i l l be t h e r e f o r e

(1 0 ) s^ • min | s j F a ( » ) > 1 - a } •

To t h i s v a lu e th e ran d o m iz in g p r o b a b i l i t y c o rre s p o n d s

w hich was p re s e n te d in [ 2 ] .

I n the same way random ized t e s t s based on s t a t i s t i c s S g , Sp and S G w ere d e te rm in e d .

The r e s u l t s o f power c a l c u l a t i o n f o r the t e s t s S ^ , S Q ( v e ­ r i f y i n g the h y p o th e s is HQ : £ « 0 ) f o r a ■ 0 .0 5 , p * 0 . 5 , 0 . 7 , 0 . 9 . and £ - 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 .9 end n - 5 , 10, . . . , 100, as w e l l as f o r a s im p le a l t e r n a t i v e h y p o th e s is H j i g ■ ^ p re s e n te d in T a b le s 1-4, a llo w to fo rm u la te th e f o llo w in g con­ c lu s i o n s .

1 . The power o f t e s t s b e in g c o n s id e re d l e th e h ig h e s t f o r p ■ 0 . 5 . (T h is io co n flrra o d by a lr e a d y quoted r e s u l t o b ta in e d by B a t e m a n [ l ] ) .

2. The t e a t based on SA s t a t i s t i c p ro ve d to be s tr o n g e r than the t e s t based on S 0 s t a t i s t i c f o r p > 0 , 5 , e x c lu d in g th e c a s e s o f v e r y s tro n g c o r r e l a t i o n ( g > 0 . 7 ) .

3. Among the t e s t s o f th e ru n s le n g th the most f r e q u e n t ly used t e s t S G p ro ve d to be s tr o n g e r th an t e s t s S A and S B , e x c lu d ­ in g th e c a s e s of b ig asym m etry ( g > 0 . 6 ) and o f v e r y s tro n g au­ t o c o r r e l a t i o n ( f > 0 . 7 ) .

4 . The t e s t S G i s s t r o n g e r than the t e s t SQ o n ly f o r ;p c lo s e to 0 .5 and f o r n o t v e r y s tro n g a u t o c o r r e l a t i o n a t a r e l a t i v e l y s m a ll s iz e of sa m p le s.

5. W ith th e in c r e a s e o f p the d i f f e r e n c e betw een the power o f t e a t s SA and Sq, and S 0 and SQ d e c re a s e s r a p i d l y (e x c lu d ­ in g th e c a s e e o f v e r y s m a ll n (n < 1 5 ) ) . These d i f f e r e n c e s r e ­ main s i g n i f i c a n t o n ly in th e c a s e o f s tro n g a u t o c o r r e l a t i o n >

(6)

Power o f t e s t » o f runs S^ f o r soma p a i r s ( p . £ ) and a ■ 0 .0 5 n p - 0 ,5 p ■ C>.7 p - 0 .9 e e 6 0 .1 0 .3 0 .5 0 .7 0 .9 0 .1 0 .3 0 .5 0 .7 0 .9 0 .1 0 .3 0 .5 0 .7 0 .9 5 68 118 190 289 420 59 81 109 148 184 52 57 62 67 73 10 74 145 243 360 467 69 124 214 353 562 55 67 81 98 118 15 78 165 292 436 524 71 134 236 386 586 58 79 107 143 190 20 02 184 336 505 583 73 146 265 432 625 62 93 140 207 306 25 84 197 371 560 634 75 157 294 485 668 65 110 183 302 492 30 87 212 406 613 682 77 168 320 532 712 68 123 221 391 683 40 90 232 455 686 756 80 183 363 605 785 69 127 229 404 694 50 93 250 500 746 814 82 197 400 664 839 70 133 243 428 714 60 95 268 542 795 859 84 208 431 711 879 71 139 260 458 741 60 98 290 593 853 916 87 227 482 781 932 73 152 295 526 807 100 101 313 644 898 950 89 242 522 830 961 75 163 327 588 872 N o t e s A l l p r o b a b i l i t i e s have been m u l t i p l i e d by 1000. T a b l e 2 Pow er o f t e s t a o f run s S B f o r some p a l r a (p ,£ > ) and a «■ 0 .0 5 p - 0 .5 p - 0 .7 p - 0 .9 n e 4* 0 .1 0 .3 0 .5 0 .7 0 .9 0 .1 o • 0 .5 o • Nl 0 .9 0 .1 0 .3 0 .5 0 .7 0 .9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 5 68 118 190 289 420 73 127 185 241 285 76 114 133 134 116 10 74 145 243 360 467 82 167 263 338 344 90 154 191 193 146 15 78 165 292 436 524 88 194 319 415 401 96 180 238 246 178 20 82 184 335 505 583 91 214 365 482 455 102 207 284 299 209

(7)

T a b le 2 (c o n t d .)

1

2

3 1 4 5 1

6

7

8

9

10

11

12

13 14 15 16 25 04

— —1

197 371 560 634 95 236 411 545 507 108 234 32fl 349 240 30 87

212

406 613 682

100

259 456 602 556 115 260 370 395 270 40 90 232 455

686

756 104 286 512 678 633 126 311 447 479 327 50 93 250 500 746 814 107 303 553 734 696 142

360

515 552 380 60 95 268 542 795 B59

110

322 593 782 749 155 401 571 612 427 80 98 290 593 853 916 116 361 667 856 830 150 421 616 682 504

100

301 313 644 898 950

122

401 731 906 885 161 442 659 741 572

N o t a : A l l p r o b a b i l i t i e s have boon m u lt ip liâ t ) by 1000.

T a b 1 o 3 Power o f t e n t s o f runo Sq fo r some p a i r s (p,£>) and a » 0 .0 5 n P ■ 0 . 5 P -

0

.7 p - 0 .9 P S ______ ....*

0 .1

0 .3 ] 0 .5 0 .7 0 .9

0 .1

0 .3 0 .5 0 .7 0 .9

0 .1

0 .3 0 .5 0 .7 0 .9 5 54 59 56 43 18 58 67

66

51

21

71 90

102

81 34

10

70

120

175

202

124 75 135 192

211 122

90 153 106 176 90 15 78 159 261 335 234 87 189 304 366 239 96

100

237 241 14C

20

85 197 350 460 350 91

2 11

353 440 325

102

207 284 298 135 25 89 217 397 543 406 94 231 402 523 406 103 234 328 340 255 30 91 235 443 614 517 99 256 452 590 479 115 260 370 395 260 40

101

289 550 741 654 106 296 527 685 593 128 311 447 479 323 50 103 304 588 796 741 108 309 561 737 672 142 360 515 55? 378 60 107 333 646 053 812

1 1 1

326 598 759 735 155 401 571 612 427 80 116 385 730 917 899 116 364 669

020

825 158 .421 616 682 504

100

119 409 773 948 944 123 403 732 061 084 161 442 659 741 572 N o t e » A l l p r o b a b i l i t i e s have boen m u l t i p l i e d by 1000.

(8)

T a b l e 4 Power o f to o t s o f rune Sg f o r some p a i r s ( p , £ ) and a • 0 .0 5 n p * 0 .5 P ■ 0 . '7 P - 0 .9

S

e

0 .1

0 .3 0 .5 0 .7 0 .9 0 .1 0 .3 0 .5 0 .7 0 .9 0 .1 0.3 •0.5 0.7 0 .9 5

73

143 253 418 652 60 86 123 175 248 52 57 63 •70 79 10 80 179 344 579 862 69 126 226 406 739 55 67 81 99 124 15 85 209 419 701 954 71 135 247 443 778 58 79 107 143 196 20 89 233 480 780 980 73 147 276 497 838 62 93 140 208 313 25 92 249 519 827 991 75 158 304 551 900 65 110 183 302 500 30 95 267 562 869 996 77 167 329 594 926 68 123 221 391 691 40 98 292 618 914 999 80 183 371 663 963 69 127 229 404 702 50 101 313 665 944 1O00 82 197 407 717 980 70

133

243 428 722 60 104 337 711 966 1000 84 208 437 759 989 71 139 260 450 749 80 108 360 756 981 1000 87 227 487 820 997 73 152 295 526 815

100

111 387 802 991 1000 89 243 527 861 999 75 163 327 586 879 N a t e i A l l p r o b a b i l i t i e s have been m u l t i p l i e d by 1000. BIBLIO G RAPH Y

[ 1 ] B a t e m a n G, ( 1 9 4 8 ) ; On th e Power F u n c t io n o f the Long­ e s t Run as a T e s t f o r Randomness in a Sequence o f A l t e r n a t i v e s " B io r a e t r ik a " 35, p . 97-112.

[ 2 ] 0 o n a r t 3 k l C . , T o i o a s z e w i o z A , ( i 9 6 0 ) , Va­ r i a n t s o f T e s ts Based on th e Len g th o f Rune. P a p e r p re s e n te d a t the c o n fe re n c e "P ro b le m s o f B u il d in g and E s t im a t io n o f L a rg e E c o n o m e tric M o d e ls“ , P o l a n lc a Z d r 6 J .

[ 3 ] M o o d A. M. (1 9 4 0 ), The D i s t r i b u t i o n T h e o ry o f R u n s. Ann*, o f M ath. S t a t i s t . 11, p . 367-392.

[ 4 ] 0 » a t o d P . S . (1 9 5 8 ); Runs D e term in e d in a Sam ple by an A r b i t r a r y C u t, B e l l System Tech n. O our. 37, p . 55-58.

(9)

C z e sła w Dom ański, A n d rz e j Tom aszewlcz

MOC TESTÓW OPARTYCH NA DŁUGOŚCI S E R I I

A r t y k u ł d o ty c z y a n a l i z y mocy te s tó w o p a r ty c h na m aksym alnej d łu g o ś c i a e r l l z je d n e j s tr o n y m ediany ( S . ) , m n ie js z e j z maksy­ m alnych d łu g o ś c i s e r i i z k a ż d ej s tr o n y m eolany ( S ) , w ię k s z e j z maksymalnych d łu g o ś c i s e r i i z k a ż d e j s tr o n y m ediany w e r y f i ­ k u ją c y c h h ip o te z ę o n ie z a le ż n o ś c i k o le jn y c h elem ontów w p r ó b ie . W ś w i e t l e przeprow adzonych badań uzyskano m iędzy in n ym i n a s tę p u ­ ją c e w n io s k it t e s t S G o k a z a ł s ię m o c n ie js z y od te s tó w S A i Sr, w yjąw szy p rz y p a d k i d u że j a s y m e t r i i i a u t o k o r e l a c j i ; t e s t Sq J e s t m o c n ie js z y od t e s t u S D t y l k o w przypadku p b l i s k i c h 0 ,5 i m a łs j a u t o k o r e l a c j i ; moc rozw ażanych te s tó w J e s t n a jw ię k s z a d la p ■ 0 ,5 .

Cytaty

Powiązane dokumenty

The main methodological principle of our study consists, first of all, in exploration of the interconnections between the constituents of oil – and gas-

Meijin Lothar Sieber (10 dan jujutsu), Honorary President of the IPA, established norm for jujutsu that 1) a black belt in jujutsu is a license to have real evidence of self-

W raz z nielicznym personelem tego arch iw u m za­ bezpieczał rozproszone po dw orach, kościołach i urzęd ach poniem ieckie ak ta arch iw aln e i podjął się

3.4 mm; d) Twisting moment of panel with thick stringers at applied displacement of 2.2 mm.. An analytical approach is developed to predict the initiation of skin-stringer

6 shows the maximum relative L 2 error as a function of the number of model evaluations by testing the model at the random points after each iteration.. On the same figure, we

niew ykonyw ane przez organy ad m

In case of using the Word 2007 or later versions of the program, the formulas must be created in MathType strictly complying. with provided recommendations concerning type style

the steering performance of ships during full-scale trials and model tests&#34;, Symposium on Ship Steering /'titomatic Control, Genoa,.