• Nie Znaleziono Wyników

Notes on the Optimum Chemical Balance Weighing Design

N/A
N/A
Protected

Academic year: 2021

Share "Notes on the Optimum Chemical Balance Weighing Design"

Copied!
11
0
0

Pełen tekst

(1)

FOLIA OECONOMICA 269, 2012

[91]

Bronisáaw Ceranka*, Maágorzata Graczyk**

NOTES ON THE OPTIMUM CHEMICAL BALANCE

WEIGHING DESIGN

Abstract. In the paper, the model of the chemical balance weighing design, i.e. model in that the result of experiment we can describe as linear function of unknown measurements of objects with known factors, is presented. Additionally, we assume that the measurement errors are uncorrelated and they have different variances. The problem is to estimate unknown measurements of objects. The existence conditions setting the optimum design and new construction method of the matrix determining the conditions of the experiment, are presented.

Key words: balanced bipartite weighing design, chemical balanced weighing design, ternary balanced block design.

I. INTRODUCTION

We consider the linear model y Xwe, that describe how to determine unknown measurements (weighings) of p objects using

n

measurement operations according to the design matrix X

xij , where xij 1,0,1,

n

i 1,2,..., , j 1,2,...,p. We will denote by y an nu1 random vector of the observed measurements, w is a pu1 vector representing unknown measurements of objects. It is assumed that there are not systematic errors, moreover the errors have different variances and they are uncorrelated, i.e. for the nu1 random vector of errors ,e E

e 0n and E

ee' V2G, where

» » ¼ º « « ¬ ª 2 ' ' 1 1 2 2 1 G 0 0 0 0 G G n n n n , where 1 , , 2 1 2 1 n n aI G I G (1) 0 !

a is known scalar, n n1n2, 0n is nu1 vector of zeros, G is an

n

u

n

positive definite diagonal matrix of known elements, E

˜ stands for the expectation

*

Professor, Department of Mathematical and Statistical Methods, PoznaĔ University of Life Sciences.

** Ph.D., Department of Mathematical and Statistical Methods, PoznaĔ University of Life Sciences.

(2)

of

˜ and

˜ is used for the transpose of '

˜ . It is obvious that we have many interesting possibilities of the patterns of the dispersion matrix. For each form of the matrix G, the conditions determining the optimum chemical balance weighing design and the construction of the design matrix must be investigated separately. In the literature, for instance in the paper of Banerjee (1975), the matrix X of elements equal to –1, 0, 1 is called weighing matrix and can be interpreted as a weighing design for the two–pan scale or chemical scale, the relevant design is called a chemical balance weighing design. The structure of the matrix G given in (1) may be useful when the measurements are taken in two factories with different precisions. For the estimation of unknown measurement of objects, using the weighed least squares method we obtain

XG X

XG y

wˆ ' 1 1 ' 1 and Var(wˆ) V2

X'G1X

1 provided X is full column rank, i.e. r X( ) p.

For G In, some problems concerning the optimality criterions and the construction methods of the chemical balance weighing designs are considered in the literature. For details see Raghavarao (1971), Banerjee (1975), Wong and Masaro (1984), Shah and Sinha (1989), Pukelsheim (1993). For diagonal matrix

G, the conditions determining optimal design and the series of the optimal chemical balance weighing designs are given in Ceranka and Graczyk (2003).

Let us consider the design matrix of the chemical balance weighing design in the form » ¼ º « ¬ ª 2 1 X X X , (2)

where Xh is the

n

hu

p

matrix of elements equal to – 1, 0, 1, h 1,2. For X in (2) and G in (1), we get from Ceranka and Graczyk (2003)

Definition 1. Any nonsingular chemical balance weighing design matrix X

in (2) with V2G for G in (1), is called optimal if the variance of each estimator of unknown measurements of objects attains the lower bound, i.e.

, ) ˆ ( Var 2 1 2 m am wj  V

where mh max

^

m1h,m2h,...,mph

`

,mjh denotes the number of nonzero elements in the jth column of the matrix Xh, h 1,2, j 1,2,...,p.

(3)

Theorem 1. Any nonsingular chemical balance weighing design matrix X

in (2) with V2G for G in (1), is optimal if and only if

1 2

. 1 ' p m am I X G X   (3)

In practice, we are not able to construct the design matrix of the optimum chemical balance weighing design for any number of objects and any number of measurements. Because of this, the aim of the present paper is to wide the number of possible combination of p and n by constructing the design matrix of the optimum chemical balance weighing design for p1 objects from the design matrix of the optimum design for p objects. Based on the matrix X in

(2) of the optimum chemical balance weighing design we form the design matrix for p1 objects as

>

X d

@

X* , where

>

' '

@

' 2 1 n n 0 1 d , (4)

where 1s denotes the su1 vector of ones.

Theorem 2. Any nonsingular chemical balance weighing design X in (4) *

with V2G for G in (1), is optimal if (i) the condition (3) is satisfied, (ii) X1n 0p

1

'

1 and

(iii)am1m2 an1.

Proof. For the design matrix X in (4) with * V2G for G in (1), we obtain

» » ¼ º « « ¬ ª   1 1 ' ' 1 1 ' * 1 ' * 1 1 n a a n n X 1 1 X X G X X G X . (5)

Considering (5) and the optimality condition (3) we have X1n 0p

1 ' 1 and , 1 1 ' p an I X G

X  that complete the proof.

In the next sections, we will consider the methods of construction of the optimum chemical balance weighing design X* based on the incidence matrices of the balanced bipartite weighing designs and the ternary balanced block designs.

(4)

II. BALANCED DESIGNS

Now, we remind the definition of the balanced bipartite weighing design given in Huang (1976) and of the ternary balanced block design given in Billington (1984).

The balanced bipartite weighing design is an arrangement of v treatments in

b blocks such that each block containing k distinct treatments is divided into 2 subblocks containing k1 and k2 treatments, respectively, where k k1k2.

Each treatment appears in r blocks. For every pair of treatments, both treatments appear in the different subblocks in

O

1 blocks and in the same subblock in

O

2 blocks. The integers v, b, r, k1, k2, O1, O2 are called the

parameters of the balanced bipartite weighing design. The parameters are not independent and they are related by the following identities vr bk,

2 1 1 2 1 k k v v b O  ,

2 1 2 2 1 1 1 2 2 1 1 k k k k k k    O O ,

2 1 1 2 1 k k v k r O  . Let

N

* be the incidence matrix of such a design with elements equal to 0 or 1 and

' 2 1 2 1 ' * * v v v r I 11 N

N O O  O O . If in the balanced bipartite weighing design

k

1

z

k

2, then each object occurs in r 1 blocks in the first subblock and in r 2 blocks in the second subblock, r 1 r 2 r and

1 1 2 2 1 1 2 1 , 2 1 k v r k v r O  O  .

Any ternary balanced block design is a design that describe how to replace

v

treatments in b blocks, each of size k in such a way that each treatment appears 0, 1 or 2 times in rblocks. Each of the distinct pairs of treatments appears

O

times. Any ternary balanced block design is regular, that is, each treatment occurs alone in

U

1 blocks and is repeated two times in

U

2 blocks, where

U

1 and

U

2 are constant for the design. It is straightforward to verify that

1

1

2

2

, 2

,r 1 2 v 1 k  2 k

bk

vr U U O U U . N is the incidence matrix

of such a design with elements equal to 0, 1 or 2 and moreover

' 2 1 ' 4 Iv 1v1v NN U  U O O .

III. OPTIMAL DESIGNS

Let N1* be the incidence matrix of the balanced bipartite weighing design

with the parameters v,b1,r1,k11,k21,O11,O21. From the matrix * 1

(5)

matrix N1 by replacing k11 elements equal to +1 of each column that correspond to the elements belonging to the first subblock by – 1. Thus each column of the matrix

N

1 will contain

k

11 elements equal to – 1,

k

21 elements equal to +1 and

v



k

11



k

21 elements equal to 0. Let

N

2 be the incidence matrix of the ternary balanced block design with the parameters

22 12 2 2 2 2

,

,

,

,

,

,

b

r

k

O

U

U

v

. Next, from the matrices

N

1 and

N

2 we construct the chemical balance weighing design X* in the form (4) for

>

@

' 1 1 1

N

N

X



,

X

2

N

'2



1

b2

1

'v,

n

1

2

b

1

,

n

2

b

2

,

p

v



1

, as

»

»

»

¼

º

«

«

«

¬

ª





2 2 1 1 ' ' 2 ' 1 ' 1 *

b v b b b

0

1

1

N

1

N

1

N

X

. (6)

Lemma 1. Any chemical balance weighing design X* in the form (6) with

G

2

V

for G in (1), is nonsingular if and only if

k

11

z

k

21 or

v

z

k

2. Proof. For the design matrix X* in (6) and G in (1) we have

»

¼

º

«

¬

ª

 1 ' * 1 ' *

2ab

v v

0

0

T

X

G

X

, (7) where

' 2 2 2 11 21 2 2 v v v a b r 11 I T K  O O   O ,

1 21 11

2 2 22 2 2 O O U O K a r   r   . Thus

¸¸ ¹ · ¨ ¨ © §     ¸ ¹ · ¨ © §   2 2 2 2 21 11 2 21 11 11 1 1 * 1 ' * 2 1 2 det k k v r k k k k v abKv O X G X . Evidently 0 ! K . Hence det *' 1 *¸ 0 ¹ · ¨ © §  X G

X if and only if

k

1

k

2 and

v

k

2.

Theorem 3. Any nonsingular chemical balance weighing design X* in the form (6) with

V

2

G

for G in (1), is optimal if and only if the conditions

(i) 2a

b1r1

b2 U12 0 and (ii) 2a

O21O11

b2O22r2 0 are simultaneously fulfilled.

(6)

Proof. For X* in (6) and G in (1), we obtain (7). The conditions (i)–(iii) of Theorem 2 imply the above result for

m

1

2

r

1

,

m

2

b

2



U

12.

For special forms of the matrix G, based on Huang (1976), Billington and Robinson (1983), Ceranka and Graczyk (2004a,b, 2005) we formulate theorems given parameters of the optimum chemical balance weighing design. Based on the parameters of the balanced bipartite weighing design and the ternary balanced block design, we form appropriate incidence matrices and then the design matrix of the optimum chemical balance weighing design. The existence conditions of the balanced bipartite weighing designs are determined by the relation between subblock sizes. For any

0

2 1 1 12 2 !   r b b

a U given by (i) of the Theorem 3, the condition (ii) will be always true if O21O11 0 and

0 22 2 2  r b O . If

O

21



O

11

0

then

2 1 11  c c k and

, 2 1 21  c c k ,... 3 , 2 c . Hence we obtain

Theorem 4. If the parameters of the balanced bipartite weighing design are

equal to

v

t

,

, 2 1 , 1 1 2 , 1 1 2 11 2 1 2 2 1      c c k c t s r c c t st b

, 1 1 2 2 2 1   c c t st b

s c c k c c k c t s r     21 11 21 11 2 1 , 2 1 , 2 1 , 1 1 2 O O

and the parameters of the ternary balanced block design are of the form

(i) v t, b2 ut,r2 u

t2

, k2 t2, O2 U12 u

t4

, ,..., 6 , 5 , 22 u t U

except the case u 1 and t 5, for 9 4u,

(ii) v t, b2 ut,r2 u

t3

,k2 t3,O2 u

t6

,U12 u

t9

, U22 3u, ,... 11 , 10 t , and for

9

9u, (iii)v t,b2 ut,r2 u

t4

,k2 t4,O2 u

t8

,U12 u

t16

,U22 6u, ,... 18 , 17 t , and for

9

16u, (iv) v t, b2 4t, r2 4

t2

, k2 t2,O2 U12 4

t4

, U22 4, t 5,6,..., and for

9

16, (v) v t,b2 2t,r2 2

t1, k2 t1, O2 2

t2

, U12 2

t1,U22 2, ,... 4 , 3 t , and for 9 2,

(7)

,... 2 , 1 ,u

s , c 2,3,..., t! , then c2 X* in the form (6) is the optimum chemical balance weighing design with

V

2

G

for G in (1), where

2 21 2 2 1 1 1 4 b c c c t t s I G    9 .

Proof. It is easy to check that the parameters of the balanced bipartite weighing design and the ternary balanced block design satisfy the conditions of the theorem 3.

Theorem 5. If the parameters of the balanced bipartite weighing design are

equal to v 2t2,

, 2 1 , 2 1 , 1 1 2 2 , 1 1 2 4 21 11 2 2 1 2 2 2 2 1       cc k c c k c t s r c c t st b s 21 11 O

O and the para-meters of the ternary balanced block design are of the form (i)

2 12 2 2 2 2 2 2 2 , 1 4 , 1 2 , 1 2 2 , 4 , 2t b t r t t k t t t t t v   O  U , U22 tt

1 and for W t2, (ii)v 2t2,b2 4tu,r2 2u

2t1

, k2 t

2t1

,O2 4u

t1,U12 2tu,

U

22

t

u



1

and for W tu, ,... 3 , 2 ,c

t , 2t2!c2, s 1,2,..., then X* in the form (6) is the optimum chemical balance weighing design with V2G for G in (1), where

2

21 2 2 2 2 1 1 2 1 2 2 b c c c t t s I G    W .

Proof. It is easy to see that the parameters of the balanced bipartite weighing design and the ternary balanced block design satisfy (i) and (ii) of the theorem 3.

Now, we consider the case O11O21z0 and b2O22r2 z0 having the following theorems.

Theorem 6. If the parameters of the balanced bipartite weighing design are

of the form

(i) v 9, b1 18, r1 10, k11 1, k21 4, O11 2, O21 3, (ii) v 9, b1 36, r1 28, k11 2, k21 5, O11 10, O21 11

and the parameters of the ternary balanced block design are equal to

9

2

k

(8)

the form (6) is the optimum chemical balance weighing design with

V

2

G

for G in (1), where 1 2 1 2I b G .

Proof. The proof is straightforward by checking that the parameters of the balanced bipartite weighing design and the ternary balanced block design satisfy the conditions of Theorem 3.

Theorem 7. For a given

a

, if the parameters of the balanced bipartite weighing design and of the ternary balanced block design are of the form

(i) 2 3 a and v 9,b1 18,r1 10,k11 2,k21 3,O11 3,O21 2 and 6 , 3 , 6 , 5 , 15 , 27 , 9 b2 r2 k2 O2 U12 U22 v , (ii) 4 1 a and v 9, b1 36, r1 16, k11 2,k21 2, O11 4,O21 2 and 2 , 8 , 7 , 6 , 12 , 18 , 9 b2 r2 k2 O2 U12 U22 v , (iii) 3 1 a and v 25, b1 100,r1 28,k11 1,k21 6,O11 2,O21 5 and , 24 , 1 , 47 , 25 , 49 , 49 , 25 b2 u r2 u k2 O2 u U12 u U22 v (iv) 5 1 a and v 49, b1 294,r1 54,k11 1,k21 8,O11 2,O21 7 and 48 , 1 , 95 , 49 , 97 , 97 , 49 b2 u r2 u k2 O2 u U12 u U22 v , ,... 2 , 1

u , then X* in the form (6) is the optimum chemical balance weighing design with

V

2

G

for G in (1), where

1 2 1 1 b aI G .

Proof. Any computation show that the parameters of the balanced bipartite weighing design and the ternary balanced block design satisfy (i) and (ii) of the theorem 3.

IV. EXAMPLE

Let n1 20,n2 10 and p 6. Then exists the balanced bipartite weighing design given in Theorem 4 (i) with t 5, s 3, c 2 and with the parameters

1 , 8 , 10 , 5 b1 r1 k11

(9)

» » » » » » ¼ º « « « « « « ¬ ª 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 2 2 1 2 1 2 2 2 2 2 2 1 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 1 2 2 2 * 1 N ,

where

1

h denotes the element belonging to the hth subblock, respectively,

2 , 1

h . From above matrix we form the matrix

N

1 as

» » » » » » ¼ º « « « « « « ¬ ª           0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 N .

From Theorem 4 (i) with t 5, u 2, there exists the ternary balanced block design with the parameters v 5, b2 10,r2 6,k2 3,O2 U12 U22 2 given by the incidence matrix

2 2 2 1 1 0 0 0 0 0 0 1 0 0 0 2 2 1 0 0 0 0 1 0 0 1 0 0 2 2 0 0 0 2 0 0 1 0 1 0 2 0 0 0 2 0 0 2 0 1 1 ª º « » « » « » « » « » « » ¬ ¼ N .

Form

N

1 and

N

2 we form the matrix X* in (6). » ¼ º « ¬ ª * 2 * 1 * X X X is the optimum chemical balance weighing design for V2G, where G1 0 I,5 20, where

(10)

» » » » » » » » » » » » » » » » » » » » » » ¼ º « « « « « « « « « « « « « « « « « « « « « « ¬ ª                                              » » » » » » » » » » » » » » » » » » » » » » ¼ º « « « « « « « « « « « « « « « « « « « « « « ¬ ª                          0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 , 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 * 2 * 1 X X . V. CONCLUSIONS

The theory and practice of the chemical balance weighing design is presented. There are given new construction methods of optimal design based on the incidence matrices of a balanced bipartite weighing design and a ternary balanced block design. The above example shows how to construct the design matrix and how estimate unknown measurement of objects in considered model.

REFERENCES

Banerjee K.S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operations

Research, Statistics, Marcel Dekker Inc., New York.

Billington E.J. (1984), Balanced n-array designs: a combinatorial survey and some new results,

Ars Combinatoria, 17, 37–72.

Billington E.J., Robinson P.J. (1983), A list of balanced ternary designs with Rd15 and some necessary existence conditions, Ars Combinatoria, 16, 235–258.

Ceranka B., Graczyk M. (2003), Optimum chemical balance weighing designs. Tatra Mountains

Math. Publ., 26, 49–57.

Ceranka B., Graczyk M. (2004a), Balanced ternary block under the certain condition, Colloquium

Biometryczne, 34, 63–75.

Ceranka B., Graczyk M. (2004b), Balanced bipartite weighing design under the certain condition,

(11)

Ceranka B., Graczyk M. (2005), About relations between the parameters of the balanced bipartite weighing design, Proceedings of the Fifth Workshop on Simulation. S.M. Ermakov, V.B.

Melas, A.N. Pepelyshev, Eds. Saint Petersburg University Publishers, 197–202.

Huang Ch. (1976), Balanced bipartite block designs, Journal of Combinatorial Theory (A), 21, 20–34.

Pukelsheim F. (1993), Optimal Design of Experiment, John Wiley and Sons, New York.

Raghavarao D. (1971), Constructions and Combinatorial Problems in designs of Experiments, John Wiley Inc., New York.

Shah K.R. Sinha B.K. (1989), Theory of Optimal Designs. Springer-Verlag, Berlin, Heidelberg. Wong C.S., Masaro J.C. (1984), A-optimal design matrices

n N ij

x u

X with xij –1, 0, 1,

Linear and Multilinear Algebra, 15, 23–46.

Bronisáaw Ceranka, Maágorzata Graczyk

UWAGI O OPTYMALNYM CHEMICZNYM UKàADZIE WAGOWYM

W pracy rozwaĪa siĊ model chemicznego ukáadu wagowego, tzn. model w którym pomiar moĪe byü przedstawiony jako liniowa funkcja nieznanych miar obiektów o znanych wspóáczynnikach. Dodatkowo zakáada siĊ, Īe báĊdy wykonywanych pomiarów są nieskorelowane i mają róĪne wariancje. Naszym celem jest wyznaczenie nieznanych miar obiektów. W pracy podano warunki wyznaczające ukáad optymalny oraz konstrukcjĊ macierzy, która opisuje sposób przeprowadzenia eksperymentu.

Cytaty

Powiązane dokumenty

Bardziej konsekwentna w adaptacji fleksyjnej okazuje się redakcja „Gazety Polskiej” – w przypadku 10 spośród 33 nazw wszystkie ich użycia w tym periodyku podlegają

Przyjąć bowiem możemy, że o ile poststrukturalizm dzieli ze strukturalizmem wiele istot­ nych przekonań - wyróżniona rola języka i procesu tworzenia znaczeń, krytyczny stosu­

Koncepcja Latoura, a także actor- network theory, reprezentowana między innymi przez Johna Lawa są, podobnie jak konstruktywizm społeczny, próbami skonstruowani

Strumienia nowych pomysłów naukowych, prowadzących do nowych urządzeń technicznych bezustannie redefiniujących stosunki społeczne, nie uda się istotnie

Он, уствари, није на- пустио усмени стих, као што ће то учинити Војислав Илић, него је ритмички низ у њему преуређивао увећавајући му артистичку меру

[r]

For model evaluation we made a comparison of portfolios comprising nine stocks from Warsaw Stock Exchange, which are built using classical Sharpe’s and proposed

Considered in this aspect, it could well be argued that if the backdrop of the First World War to the Cork setting for the Irish War of Independence in Peeler carries the influence