• Nie Znaleziono Wyników

One aspect of the dynamics of a coast, partly protected by a row of groynes

N/A
N/A
Protected

Academic year: 2021

Share "One aspect of the dynamics of a coast, partly protected by a row of groynes"

Copied!
22
0
0

Pełen tekst

(1)

ONE ASPECT OF THE DYNAMICS OF A COAST. PARTLY PROTECTED BY A ROW OF GROYNES

by

(2)

R I J K S W A T E R S T A A T

D I R E C T I E W A T E R H U I S H O U D I N G

AFD. KUSTONDERZOEK

EN W A T E R B E W E G I N G

' s - G R A V E N H A G E K O N I N G S K A D E 2 5 T E L E F O O N 1 8 3 2 8 0 Aan de V / e l e d e l g e s t r e n g e Heer I r . J.A. B a t t j e s A f d . Weg- e n Y/aterbouwkunde v a n de T e c h n i s c h e H o g e s c h o o l O o s t p l a n t s o e n 25 DELFT u w K E N M E R K : U W B R I E F V A N : O N S K E N M E R K : 67.162B

's-GRAVENHAGE

T E R U G : B I J L A G E N 3 29 m e i 196? O N D E R W E R P : Waarde J u r r i e n , , O v e r e e n k o m s t i g m i j n b e l o f t e j e op de h o o g t e t e h o u d e n met w a t i k b e s t u d e e r , zend i k j e h i e r b i j e e n e x e m p l a a r v a n h e t r a p p o r t : "The C o a s t a l Dynamics o f Sandwaves a n d t h e • I n f l u e n c e o f B r e a k w a t e r s a n d G r o y n e s " e n e e n e x e m p l a a r v a n h e t v o o r l o p i g r a p p o r t : "One A s p e c t o f t h e D y n a m i c s o f a C o a s t , p a r t l y p r o t e c t e d b y a Row o f G r o y n e s " .

Het l a a t s t e r a p p o r t , d a t v a n 17 a p r i l s t a m t , h e n i k op h e t o g e n b l i k a a n h e t omwerken, met w a t b e t e r e aannamen.

V/at meer h i e r o v e r v i n d j e i n b i j l a g e 3.

De d e f i n i t i e v e v e r s i e v a n h e t l a a t s t g e n o e m d e r a p p o r t z a l i k j e t e z i j n e r t i j d s t u r e n .

Met h a r t e l i j k e g r o e t e n ,

( i r . W.T. B a k k e r )

(3)

B i j b r i e f n r . 67.162B, d.d.

O p m e r k i n g b e t r e f f e n d e :

"ONE ASPECT OF TPIE DYNAMICS-OF A COAST. PARTLY PROTECTED BY A ROW OF GROYT^TES"

Een b e t e r e b e n a d e r i n g v a n h e t t r a n s p o r t m e c h a n i s m e b i j s t r a n d h o o f d e n kan w o r d e n g e g e v e n d o o r een p r o f i e l a a n t e nemen v o l g e n s f i g . 1 e n aan t e . nemen d a t e e n a e e w a a r t s t r a n s p o i ' t o p t r e e d t a l s > y^

( t e s t e i l p r o f i e l ) en een l a n d w a a r t s t r a n s p o r t a l s y.| < yg» H i e r b i j i s de g e m i d d e l d e a f s t a n d v a n de . v o o r o e v e r t o t h e t r e f e r e n t i e v l a k XZ g e l i j k aan y^ + V/; W moet w o r d e n g e z i e n a l s de a f s t a n d d i e i n e e n e v e n w i c h t s -p r o f i e l b e s t a a t t u s s e n s t r a n d e n v o o r o e v e r . - y Het i s m o g e l i j k e e n t h e o r i e t e o n t w i k k e l e n , g e b a s e e r d op de t r a n s p o r t -v e r g e l i j k i n g e n : Qy = ^ ^ y ^ ^ i - ~ d w a r s t r a n s p o r t Q. = Q„., - q. T - — - l a n g s t r a n s p o r t b i j h e t s t r a n d I O I 1 o X Q„ = Q „ - q„ - — - l a n g s t r a n s p o r t b i j de v o o r o e v e r Met de aanname, d a t h e t l a n g s t r a n s p o r t o v e r h e t s t r a n d n u l i s b i j e e n s t r a n d h o o f d , v i n d t men de k u s t v o r m e n ( f i g . 3 ) .

(4)

2 -S i ^0^2 ^ K X + . — : — ; —~ r r -O s m h K^i, • s i n h K X 0 1 + K L o q^ t g h K ^ L K L ''o"" s i n h K 1 s i n h K X 0 1 + K L 0 t g h K ^ L fig. 3 Van b e l a n g b l i j k t een r e f e r e n t i e - l e n g t e 1. O A l s de a f s t a n d 2L t u s s e n de s t r a n d h o o f d e n k l e i n e r i s dan 2L^, dan s t e l t h e t s t r a n d ( y ^ ) z i c h v r i j w e l l o o d r e c h t op de g o l f r i c h t i n g i n , t e r w i j l de vooroevex" ( y g ) geen m e r k b a r e i n v l o e d o n d e r g a a t . A l s de a f s t a n d t u s s e n de h o o f d e n g r o t e r w o r d t , g a a t de t h e o r i e g e l d e n , z o a l s o n t w i k k e l d i n h e t bovengenoemde r a p p o r t . De t r a n s p o r t v e r g e l i j k i n g w o r d t : 0 ^ ^ x Q = - q w a a r i n y op d e z e l f d e m a n i e r g e d e f i n i e e r d i s a l s i n h e t r a p p o i - t ; '^02 ^ ^0 1 1 -t g h K ^ L ÏTL O 1 + t g h K ^ L en ^1 ^ ^2 q = q^ t g h K ^ L P 1 + q q t g h K ^ L K L O

(5)

3 -V o o r g r o t e v/aarden v a n K^L ( L » L^) w o r d t p; 1 + ^2 ^ o ^ De V/aarde " ^ " u i t h e t r a p p o r t i s dus g e l i j k a a n : ^ <l2 ^^o ^2 V o o r k l e i n e w a a r d e n v a n K^L ( L « L^) w o r d t q g e l i j k aan q^.

Door h e t bouwen v a n s t r a n d h o o f d e n i s de t i j d s c h a a l t dus m a x i m a a l t e v e r l e n g e n t o t m a a l de o o r s p r o n k e l i j k e ; d i t g e b e u r t r e e d s b i j ^^2 h o o f d e n op een o n d e r l i n g e a f s t a n d v a n 2L^. Het l e g g e n v a n h o o f d e n op k o r t e r e a f s t a n d v a n e l k a a r dan 2L h e e f t d u s O w e i n i g z i n . Den Haag, 24 m e i 196?.

(6)

SYMBOIENLIJST 2 _ L o h a l v e a f s t a n d t u s s e n de h o o f d e n ^1 ^2 e v e n r e d i g h e i d s c o n s t a n t e i n v g l . v a n h e t l a n g s t r a n s p o r t b i j h e t s t r a n d . " " " " " l a n g s t r a n s p o r t b i j de v o o r -o e v e r . '* " " " d w a r s t r a n s p o r t t u s s e n s t r a n d e n v o o r o e v e r . " " " " " l a n g s t r a n s p o r t b i j de s c h i j n b a r e k u s t l i j n . l a n g s t r a n s p o r t l a n g s de k u s t l a n g s t r a n s p o r t l a n g s h e t s t r a n d l a n g s t r a n s p o r t l a n g s de v o o r o e v e r d w a r s t r a n s p o r t l a n g s t r a n s p o r t l a n g s h e t s t r a n d , a l s = O l a n g s t r a n s p o r t l a n g s de v o o r o e v e r , a l s — — = O t l a n g s t r a n s p o r t l a n g s de k u s t , a l s = O a f s t a n d t u s s e n s t r a n d en v o o r o e v e r b i j e e n e v e n w i o h t s p r o f i e l r e f e r e n t i e l i j n , o n g e v e e r i n k u s t r i c h t i n g . o v e r de d i e p t e g e m i d d e l d e a f s t a n d u i t h e t r e f e r e n t i e v l a k XZ v a n h e t s t r a n d o v e r de d i e p t e g e m i d d e l d e a f s t a n d u i t h e t r e f e r e n t i e v l a k XZ v a n de v o o r o e v e r , m i n W y-coördinaat v a n de s c h i j n b a r e k u s t l i j n

(7)

*

ONE ASPECT OP THE DYNAMICS OF A COAST, PARTLY PROTECTED BY A ROW OF GROYNES

1. A b s t r a c t

A m a t h e m a t i c a l theory w i l l be g i v e n about the phenomena t h a t o c c u r i f on a c o a s t a l a r e a groynes a r e c o n s t r u c t e d .

The t h e o r y i s a s i m p l i f i c a t i o n : i t j u s t d e a l s - a h o t t t one a s p e c t . The s t a r t i n g p o i n t i s the c o a s t a l e q u a t i o n of Pelnard-Considère [1_ and a l i n e a r i s a t i o n between the t r a n s p o r t a l o n g the groyne and the s i z e of the " s t e p " i n the c o a s t l i n e a t the groyne.

The change of the c o a s t l i n e , caused by c h a n g i n g boundary c o n d i t i o n s , by s t a t i o n a r y t r a n s p o r t and by the - s t r a i g h t e n i n g " of the c o a s t a r e c o n s i d e r e d .

The c o n c l u s i o n i s drawn, t h a t i n the middle of a row of g r o y n e s the same p r o c e s s e s o c c u r a s w i t h o u t g r o y n e s , but on a l a r g e r t i m e s c a l e . Hear the edges of the row t h e r e a r e edge e f r e c t s . t h a t cause b i g g e r e r o s i o n , and a c c r e t i o n than without g r o y n e s .

2. D e f i n i t i o n s and a s s u m p t i o n s

m the t h e o r y of Felnard-Oonsidère only the i n f l u e n c e of waves i s t a k e n i n t o a c c o u n t .

A c c o r d i n g to t h i s t h e o r y , the p r o f i l e of the c o a s t i s s c h e m a l i s e d ( f i g . 1) a s a h o r i z o n t a l a r e a A,

a t a depth D, where no t r a n s p o r t t a k e s p l a c e , because the waves a r e not a b l e to move the m a t e r i a l a t t h i s depth, and an a r e a B, which moves to and f r o

We d e f i n e the " c o a s t l i n e " y a s the l i n e t h a t l i n k s a l l p o i n t s a l o n g the c o a s t w i t h the mean y ^ i where y^ i s the d i s t a n c e to a v e r t i c a l r e f e r e n c e l i n e

( f i g . 1 ) :

D

'If

(8)
(9)

6

-5. I n f l u e n c e of a row of g r o y n e s

We c o n s i d e r a c o a s t , where o v e r a l o n g s t r e t c h g r o y n e s a r e c o n s t r u c t e d a t time t = 0.

What i s the i n f l u e n c e of the g r o y n e s on the c o a s t ?

We w i l l c o n s i d e r t h r e e i n f l u e n c e s , w h i c h c a n g i v e an i m p r e s s i o n about the p r o c e s s e s t h a t o c c u r ( f i g . 6 ) :

1° the i n f l u e n c e of the boundary c o n d i t i o n s ( f i g . 6 b , c ) ; 2° the i n f l u e n c e of the s t a t i o n a r y t r a n s p o r t ( f i g . 6 d , e ) ;

(10)

5.1 The I n f l u e n c e o f the boundary c o n d i t i o n s • We c o n s i d e r a c o a s t l i n e ^¥^\s s t r a i g h t a t time t w i t h o u t s t a t i o n a r y t r a n s p o r t (Q^ = 0).(!^ ' J l ) NO STATIONARY TRANSPORT Y 0 ( y = 0 ) , MOVING BOUNDARY SAME BOUNDARY CONDITION NO STATIONARY TRANSPORT 7-U REST 7

FIC.7^ coastline at tiive t

FIG . 7" coastline at time t, if no groynes would have been constructed

We assume, t h a t the row of g r o y n e s b e g i n s a t x - 0, and t h a t t h e motion of t h e c o a s t i s g i v e n i n x = - o o .

We w i l l show, t h a t t h e f o r m a t i o n o f t h e c o a s t l i n e ( y i f o r x > 0. y^ f o r X < o f c'a!n be found from t h e c o a s t l i n e y that' would e x i s t a t t h e same t i m e , i f no g r o y n e s would have been c o n s t r u c t e d , by t h e f o l l o w i n g o p e r a t i o n : i a t h e c o a s t l i n e o f t h e p r o t e c t e d part^'ban be found by r e d u c i n g t h e x - s c a l e of y by a f a c t o r i and by m u l t i p l y i n g t h e y - s c a l e ^ - i t h a f a c t o r (1 + r ) . i n w h i c h : 1^ 1 1 + ( 9 )

(11)

4

9

-The above mentioned p r o c e d u r e can be put i n t o f o r m u l a ae:

i f X ^ 0 t h e n y^'(x) = (1 + r ) y ( p x ) ( 1 0 a )

The r e d t t c t i o n o f - t h e x - s c a l e i s r e a s o n a ) ) l e : t h e ^ / t i m e - s c a l e of , i h e / boundary c o n d i t i o n x = 0 f o r tHe p a r ^ / o f the c o a s t w i t h x > Ö r e m a i n s

same^,dr y

/^^^^^^^^^^

( 5 ) / t h e x - s c a l e must be ^^ " 0 0 '

b the c o a s t l i n e of the u n p r o t e c t e d p a r t y^ c a n be found a s the sum of the o r i g i n a l y p l u s a " r e f l e c t e d y"; the l a t t e r one b e i n g the r e f l e c t i o n of the o r i g i n a l y ( f o r x > O) w i t h r e s p e c t to the y - a x i s and m u l t i p l i e d w i t h the r e f l e c t i o n f a c t o r r , g i v e n i n eq. ( 9 ) : i f X < 0 t h e n y^ ( x ) - y ( x ) + r . y (-x) ( l O b j I n f i g . 8 the method of c o n s t r u c t i o n i s v i s u a l i s e d . Y , Y i f i g . 8 The f o l l o w i n g p r o o f can be g i v e n . It w i l l be s e e n t h a t y ^ s u f f i c e s the c o a s t a l e q u a t i o n ( 4 ) , a s i t i s a s u p e r p o s i t i o n of two s o l u t i o n s of t h i s e q u a t i o n , it—hetealreadybeen' -shown, t h a t y ' s u f f i c e s the c o a s t a l e q u a t i o n w i t h c o a s t a l c o n s t a n t , s o We 3*94—have- t o show t h a t the boundary c o n d i t i o n s a t x = 0 a r e f u l f i l l e d .

(12)

4

These c o n d i t i o n s a r e :

y^iO, t ) = y.|(0, t ) , w h i c h i s c o r r e c t : ( 0 , t ) = y\{0, t ) - (1 + r ) y (0, t )..(a)

2° Q(x - - 0 ) - Q(x = + 0 )

As » 0, t h i s g i v e s , a c c o r d i n g t o ( 1 ) and ( 8 ) :

^ i i r " ^ 5 T - ^ o r X . 0 ( b )

Prom (10a) and (10b) one f i n d s r e s p e c t i v e l y :

^ PTrL;^'

P(1 * , so U - 1 . p(i

^^^/x-O 4 = 0 v^xy^^Q U x ; ^ . o S u b s t i t u t i n g t h i s i n ( b ) , one f i n d s : 1 - r q' < . y " P Q • w h i c h i s c o r r e c t , a c c o r d i n g t o ( 9 ) . j'V.ii'--: ^. ^

We w i l l show now, t h a t the c o a s t l i n e o f the p r o t e c t e d p a r t i s y ' g i v e n i n ( 1 0 a ) .

The p r o t e c t e d p a r t b e g i n s a t x . 0. A c c o r d i n g t o ( a ) t h e time s c a l e of t h e boundary c o n d i t i o n a t t h i s p l a c e r e m a i n s the same f o r y ( t h e c o a s t l i n e i f np g r o y n e s were c o n s t r u c t e d ) and f o r y^'.

The c o a s t a l c o n s t a n t pf y' i s a f a c t o r ~ s m a l l e r t h a t h e c o a s t a l P

c o n s t a n t o f y, a c c o r d i n g to ( 9 ) , and so the x s c a l e must be a f a c t o r

-s m a l l e r , a c c o r d i n g to ( 5 ) . ^ T h e r e f o r e , i f y ( p x ) i s a s o l u t i o n o f t h e c o a s t a l e q u a t i o n f o r t h e

u n p r o t e c t e d c o a s t , t h e n y ( x ) i s a s o l u t i o n o f t h e c o a s t a l e q u a t i o n f o r t h e p r o t e c t e d c o a s t . As mentioned i n c h a p t e r 3, the y - s c a l e c a n be c h o s e n a u x i l i a r y and may be m u l t i p l i e d , f o r i n s t a n c e w i t h a f a c t o r (1 + r ) .

Then one g e t s y j ( x ) - (1 + r ) y ( p x ) a c c o r d i n g t o ( 1 0 a ) , w h i c h must be a s o l u t i o n of the c o a s t a l e q u a t i o n ( s ) f o r t h e p r o t e c t e d c o a s t .

As t h e u n p r o t e c t e d p a r t y^, t h e p r o t e c t e d p a r t y.,', and the p o i n t x - 0 a l l s u f f i c e the r e q u i r e d c o n d i t i o n s , t h e c o a s t l i n e g i v e n i n eq. ( 1 0 a ) and

(13)

. - 10 - . . _ _ 5.2 The I n f l u e n c e of the s t a t i o n a r y t r a n s p o r t

We c o n s i d e r a c o a s t l i n e , w h i c h i s a s t r a i g h t l i n e a t time t = 0 ( y « o ) , and r e m a i n s a t r e s t f o r x » oo .

A l l a l o n g the c o a s t the s t a t i o n a r y t r a n s p o r t i s Q^, b e f o r e the c o n s t r u c -t i o n of -t h e g r o y n e s a -t -t = 0. C o n s i d e r f i r s t the s i t u a t i o n of f i g . 9a (computed s i t u a t i o n I l a o f f i g . 6 ) , Q o / / / / / / / / y / / / / y / / ) / y )

/

/'

/ I

/ / / :

/'

1 1

/ I

1

C o a s t l i n e a t time t = 0 P i g . 9a C o a s t l i n e a t time t P i g . 9b

(14)

- li»

On the l e f t - h a n d s i d e a t i n f i n i t y the t r a n s p o r t i s Q^, on t h e

r i g h t - h a n d s i d e i t i s ; t h e r e f o r e the s e d i m e n t a t i o n p e r u n i t time must be Q - Q ' . With the same method a s g i v e n i n 5.1 one c a n proof, t h a t t h e

o 0

f o l l o w i n g " d e l t a " w i l l o c c u r ( f i g . 9 b ) .

ïhe b r a n c h y ^ i s the b r a n c h , t h a t would o c c u r , i f a r i v e r would debouch a t X » 0 on an u n p r o t e c t e d s h o r e , b r i n g i n g to the s h o r e p e r u n i t of time a q u a n t i t y of sediment Q j * '

• ^o •

p u t t i n g a l l i t s sediment on the l e f t - h a n d s i d e of the r i v e r - m o u t h .

The b r a n c h y ' i s the b r a n c h t h a t would o c c u r i f t h a t r i v e r debouched

H q' 3E

on a p r o t e c t e d s h o r e w i t h c o a s t a l c o n s t a n t ^ , b r i n g i n g a q u a n t i t y Q ^ j ,

I I .

P 0

p u t t i n g a l l i t s m a t e r i a l on the r i g h t - h a n d s i d e of t h e r i v e r - m o u t h . The b r a n c h y^'^ i s a r e f l e c t i o n of b r a n c h y^. w i t h r e s p e c t t o the y - a x i s , but on a s m a l l e r x - s c a l e ( f i g . 1 0 ) :

P i g . 10

The f o r m u l a s of y^. and y^'j c a n be found w i t h the t h e o r y of P e l n a r d - C o n s i d e r e and a r e g i v e n i n annex 1.

I n annex 2 the shape of the d e l t a i s g i v e n a s a f u n c t i o n of — .1, i n which 1 i s the d i s t a n c e between the g r o y n e s .

The maximum a c c r e t i o n a t x = 0 i s r e l a t i v e t o ^ ^ t :

(15)

12

-The f o r m u l a s f o r the t r a n s p o r t a l o n g t h e c o a s t c a n be found w i t h t h e a i d of ( 1 ) and ( 8 ) . They a r e g i v e n i n annex 1.

The t r a n s p o r t a l o n g the u n p r o t e c t e d c o a s t a t a l o n g d i s t a n c e of the b e g i n n i n g of the row of g r o y n e s i s Q^, a l o n g the p r o t e c t e d c o a s t a t a l o n g d i s t a n c e of the b e g i n n i n g - S | , and j u s t a t t h e b e g i n n i n g i t i s ^ .

P ^ I f one c o n s i d e r s the r e a l c o a s t l i n e y^^. i n s t e a d o f the v i r t u a l c o a s t l i n e

^ I I * ^^^^ f i n d s f o r the s t e p a t t h e f i r s t g r o y n e :

a ^ 0

V. — V m w —

''^l ^ r M. p-tt

V ^ 1

T h i s s t e p does not change i n the c o u r s e of time.

Q'o 1 1 1 1 1 1 1 1 1 1 1 1. J Q o / / / / / / / / / / / / / / / / / / / / / / / / y / //////// Y f f _ _ _ _ _ P i g . 11b ( 1 2 )

The c o m p u t a t i o n o f the s c o u r h o l e a t t h e l e e - s i d e of a row of g r o y n e s . ( f i g . 11) i s q u i t e t h e same a s t h e ' c o m p u t a t i o n of the " d e l t a * * on the o t h e r s i d e .

B r a n c h y ^ ^ j and y ^ ^ a r e the same a s b r a n c h y^'^ and y^ r e s p e c t i v e l y , r e f l e c t e d w i t h r e s p e c t t o the x- and the y - a x i s ( s e e annex 1 ) . The maximum

s c o u r i s g i v e n by y^^^Q i n ( 1 1 ) .

By e n l a r g i n g the d i s t a n c e between t h e g r o y n e s a t the end o f t h e row, or t h e i r p e r m e a b i l i t y , one w i l l be a b l e t o s p r e a d the e r o s i o n more e v e n l y o v e r a l a r g e r a r e a .

C o n s i d e r i n g t h e i n f l u e n c e o f the s t a t i o n a r y t r a n s p o r t and o f t h e

boundary c o n d i t i o n s , i t was assumed, t h a t t h e phenomena n e a r A i n f i g . 6 a d i d not a f f e c t t h e phenomena n e a r B. The c o a s t l i n e was s c h e m a t i s e d a s one s e m i - i n f i n i t e u n p r o t e c t e d and one s e m i - i n f i n i t e p r o t e c t e d peo't ( f i g . 6 ) . The i n f l u e n c e of t h e phenomena w h i c h take p l a c e n e a r A w i l l a t t e n u a t e q u i c k on t h e p r o t e c t e d p a r t from A t o B and t h e r e f o r e t h e i r i n f l u e n c e c a n be

(16)

15

-The i n f l u e n c e of the s t a t i o n a r y t r a n s p o r t a t A w i l i be, t h a t a f t e r some time the g r o y n e s a r e c o v e r e d by sand i n w h i c h c a s e the t h e o r y does not h o l d . I t i s assumed, t h a t the g r o y n e s a r e l e n g t h e n e d b e f o r e they a r e c o v e r e d and a r e s h o r t e n e d i n c a s e of heavy e r o s i o n . The f i n a l s i t u a t i o n i n the c a s e

of s t a t i o n a r y t r a n s p o r t would be *

original coastline

final c o a s t l i n e

the s i t u a t i o n g i v e n i n f i g . 12, where everywhere the t r a n s p o r t i s Q^. I t i s v e r y u n r e a l i s t i c to c o n s i d e r t h i s c a s e i n d e t a i l , because l o n g b e f o r e the s i t u a t i o n w i l l have been a l t e r e d by human i n t e r f e r e n c e ( b u i l d i n g more g r o y n e s and so o n ) .

5.3 The i n f l u e n c e of the s t r e t c h i n g of the c o a s t l i n e

I n 5.1 and 5.2 i t was assumed, t h a t the c o a s t l i n e was a s t r a i g h t l i n e a t the moment of c o n s t r u c t i o n of the g r o y n e s . We w i l l now f i r s t compare the dynamics of a p r o t e c t e d c o a s t y* and an u n p r o t e c t e d c o a s t y, i f the b o u n d a r i e s r e m a i n a t r e s t and i f t h e r e i s no s t a t i o n a r y t r a n s p o r t .

At t « 0 we assume y » y ( f i g . 13a and 13t))

no s t a t i o n a r y transport rest' s a m e cunve (t c o a s t l i n e at time t r t( no stationary transport rest no s t a t i o n a r y transport P i g . 13a P i g , 13b

The c o a s t s y and y have a d i f f e r e n t c o a s t a l c o n s t a n t (.q

The t i m e - s c a l e i s r e l a t e d w i t h the c o a s t a l c o n s t a n t , a c c o r d i n g to e q u a t i o n ( 5 ) : n n t c c c o n s t a n t . n

(17)

As the c o a s t l i n e i s g i v e n a t time t <= 0 a s a f u n c t i o n of x, the x - s c a l e of y and y i s the same and t h e r e f o r e the t i m e - s c a l e n i s e q u a l to — ^

* " c c C o n c l u s i o n :

At a p r o t e c t e d c o a s t the same p r o c e s s e s o f the u n p r o t e c t e d c o a s t w i l l o c c u r , a t a l o n g e r t i m e - s c a l e t , i n w h i c h : t ' - p ^ t . (1 + , ^ ) t However, m o s t l y o n l y a c e r t a i n p a r t of the c o a s t l i n e i s p r o t e c t e d . IT P i g . 14 Prom the f o r e g o i n g i t w i l l be c l e a r , t h a t t h i s l o n g e r t i m e - s c a l e o n l y o c c u r s i n a r e a I V of f i g . 14, t h a t t h e r e w i l l be no i n f l u e n c e i n the a r e a s I and V I I , and t h a t t h e r e w i l l be d i s t u r b a n c e s n e a r A and B i n the a r e a s I I , I I I , V and V I . The l a s t - m e n t i o n e d a r e a s w i l l i n c r e a s e i n c o u r s e of time ( p r o p o r t i o n a l to f t ) .

A g r a f i c a l method f o r computing the c o a s t l i n e i n t h i s c a s e i s the method of Schmidt, about which w i l l d e a l a n o t h e r paper.

6, C o n c l u s i o n s 1.

2.

3.

I t depends of the c a s e whether g r o y n e s w i l l work f a v o u r a b l y o r n o t . One h a s to pay the a c c r e t i o n on one p l a c e w i t h the e r o s i o n on a n o t h e r . With the a i d of g r o y n e s one can more o r l e s s choose t h e s e p l a c e s . I f anywhere e r o s i o n o c c u r s , where i t i s not t o l e r a b l e , one f i r s t h a s to c l a s s i f y the cause of e r o s i o n .

a r e a II

One c a u s e of e r o s i o n can be a g u l l y o r a r i v e r - m o u t h , w h i c h w i t h d r a w s sand from the c o a s t . With the a i d of some g r o y n e s , one can s t o p the e r o s i o n on the s i d e of

(18)

- 15 -

•I

the row o f g r o y n e s , o f f the g u l l y ( a r e a I I i n f i g , 1 5 ) . One i n c r e a s e s the e r o s i o n i n a r e a I , n e a r the g u l l y .

4. Another c a u s e o f e r o s i o n c a n be the l e e - s i d e s c o u r on a row o f g r o y n e s . One c a n s p r e a d t h i s e r o s i o n o v e r a l a r g e r a r e a by i n c r e a s i n g the d i s t a n c e between the g r o y n e s o r by i n c r e a s i n g t h e i r p e r m e a b i l i t y ( e x p r e s s e d i n the p e r m e a b i l i t y f a c t o r x^, ( 2 ) ) a t the end o f t h e row.

5. A t h i r d c a u s e c a n be, t h a t the c o a s t l i n e h a s not found y e t i t s e q u i l i b r i u m . One c a n stop the e r o s i o n by p r o t e c t i n g a l l t h i s p a r t w i t h g r o y n e s and by a d d i t i o n a l a r t i f i c i a l n o u r i s h m e n t . One c a n f i n d t h e e c o n o m i c a l optimum between the number of g r o y n e s and t h e amount of a r t i f i c i a l n o u r i s h m e n t . 6. I f a c o a s t a c c r e t e s , because i t h a s not found y e t i t s e q u i l i b r i u m o r

b e c a u s e o f a d e l t a , s u p p l y i n g sand, the e f f e c t o f a row o f g r o y n e s c a n be: d i m i n i s h i n g the a c c r e t i o n i n the a r e a of the g r o y n e s . T h i s i s the i n v e r s e of the c a s e s , mentioned i n c o n c l u s i o n s 3 and 5.

(19)

L I S T OF SYMBOLS

D » w a t e r depth a t h o r i z o n t a l p a r t of the bottom ( a r e a A i n f i g . 1 ) . 1 = d i s t a n c e between two s u c c e s s i v e g r o y n e s . n ^ s c a l e of t o a s t a l c o n s t a n t " . c c D - time s c a l e , n^ = s c a l e i n x - d i r e c t i o n . ny. = s c a l e i n y - d i r e c t i o n . n „ « v e r t i c a l s c a l e . z p = \| 1 + ^ ' x - s c a l e of phenomena w h i c h o c c u r a t an u n p r o t e c t e d s c a l e i s p t i m e s the x - s c a l e of the phenomena a t the p r o t e c t e d c o a s t , i f the boundary c o n d i t i o n s a r e the same. q - p r o p o r t i o n a l i t y c o n s t a n t i n the t r a n s p o r t e q u a t i o n ( 1 ) . L a r g e q means

l a r g e " s e n s i b i l i t y " of the c o a s t f o r changement of the c o a s t a l d i r e c t i o n . * q q - = p r o p o r t i o n a l i t y c o n s t a n t i n the t r a n s p o r t e q u a t i o n ( 8 ) ; w i t h p r e s p e c t to the v i r t u a l c o a s t l i n e . Q - l i t t o r a l d r i f t . ^ s t a t i o n a r y t r a n s p o r t » t r a n s p o r t a t p l a c e s where the c o a s t a l d i r e c t i o n i s p a r a l l e l to the x - a x i s ( = 0 ) . Qo Q = — T ' = t r a n s p o r t a t p l a c e s where the v i r t u a l c o a s t l i n e i s p a r a l l e l 0 p^; I to the X - a x i s ( § ^ = 0 ) . r = P " , ; r i s a r e f l e c t i o n c o e f f i c i e n t . P + < t = t i m e . ' 2 t * p t X ^ r e f e r e n c e l i n e , about i n c o a s t a l d i r e c t i o n . y = mean d i s t a n c e from r e f e r e n c e l i n e of a r e a B ( f i g . 1 ) . y y - c o o r d i n a t e of " v i r t u a l c o a s t l i n e " ( t h e l i n e t h a t l i n k s the m i d d l e between the g r o y n e s ) .

(20)

. 2 -y-j^ « y on l e f t h a n d s i d e o f a g r o y n e , y^, =^ y on r i g h t h a n d s i d e of a g r o y n e . y^ « h o r i z o n t a l d i s t a n c e of c o n t o u r l i n e of depth z from r e f e r e n c e l i n e . Ai * p r o p o r t i o n a l i t y c o n s t a n t . L a r g e M- means l a r g e " p e r m e a b i l i t y " of the g r o y n e .

(21)

s t a t i o n a r y

transport Q stationary transport Qo

• X X < 0 X > 0 (x=0) x < L ( x = L ) X > L branch branch ( r e a l c o a s t l i n e ) branch y|j ( v i r t u a l c o a s t l i n e ) branch y^ ( r e a l c o a s t l i n e ) branch y' ( v i r t u a l c o a s t l i n e )

b r a n c h yj^^ (real coastline )

branch y^^ (real c o a s t l i n e )

y n ( ' < ) = y , ( - p x : y ; ( x ) = - y ^ ( L - x ) = - y , | p ( x - L ) | y t v ^ x ) = - y i ( L - x ) in w h i c h erf X 1 P-1 QQ •IK P ^ q / e - ' ^ d t erfc X = 1 - erf X 3 J L B y i ^ x •dx = - p Y o ( ^ { l - e r f ( p x y : ^ ) ) y , / n [ w e r f ( ( L - x ) \ | : ^ ) ; J i y n r . B x • ^ ^ ) ^ - ^ - H p x \ U , )

y

Aqt I N F L U E N C E OF S T A T I O N A R Y T R A N S P O R T D E V E L O P M E N T O F C O A S T L I N E R ' J K S W A T E R S T A A T D I R E C T I E y^.zn W. A F D . K U S T O N D E R Z O E K Getek. ft Gewijz Gezien

5 ^

A c c A N N E X 1

A3

6 7 . 1 0 A

(22)

Y,Y'

X

-1.0

INFLUENCE OF STATIONARY TRANSPORT

S H A P E OF C O A S T L I N E A S FUNCTION OF D I S T A N C E B E T W E E N T H E G R O Y N E S

ANNEX 2

INFLUENCE OF STATIONARY TRANSPORT

S H A P E OF C O A S T L I N E A S FUNCTION OF D I S T A N C E B E T W E E N T H E G R O Y N E S R I J K S W A T E R S T A A T D I R E C T I E W. en W. A F D . K U S T O N D E R Z O E K G t l c k . G t w i j z . Gezien A c c . R I J K S W A T E R S T A A T D I R E C T I E W. en W. A F D . K U S T O N D E R Z O E K

Nr. 67.106

Cytaty

Powiązane dokumenty

Democratic bureaucracy will continue to be in deadlock over which goals take priority, oversight bodies will persist in avoiding the difficult task of assessing effectiveness,

Figures 4–7 suggest that the formation of the interface structure required for transforma- tion is related to the driving force: the incubation time is found to be

Przynajm niej część tych uciekinierów przebierała się w moim mieszkaniu (ul. Tarczyńska 12) i była przekazywana opiekunom upoważnio­ nym przez konspiracyjną

Psychoanalityk bada pacjenta w trakcie rozmów, które tamten prowadzi, obserwuje chorego w jego językow ym «mitotwórczym» zachowaniu i poprzez tę m owę chorego

2 konstytucji w okresie stanu wojennego, mając - obok opisanych niżej prerogatyw oraz uprawnień kontrasygnowanych, z których ko­ rzystał tak w czasie pokoju, jak

„Wszyscy zgodzili się co do jednego: kierow nik zespołu adwokackiego jest nie tylko pierw ­ szą osobą w zespole, ale wręcz instytucją adw okatury i podstawowym

materialized into a ‘sediment' of identity: a sense of a feeling who we are, to who and who not we belong, how we do the things we do. These feelings are more abstractly labeled

Problem poruszany w tym rozdziale został przedstawiony w następujących punktach: „Pierwszy pro- jekt schematu De Ecclesia na temat władzy biskupiej w Kościele