• Nie Znaleziono Wyników

Note on the velocity and temperature distributions attained with suction on a flat plate of infinite extent in compressible flow

N/A
N/A
Protected

Academic year: 2021

Share "Note on the velocity and temperature distributions attained with suction on a flat plate of infinite extent in compressible flow"

Copied!
9
0
0

Pełen tekst

(1)

TECHNISCHE HOGESCHOOL VLIEGTUIGBOUWKUNDÉ'

TECHNISCHE U^ ^ELFT

umm: ^^ \2 Juli 1950

Kluyverweg 1 - 2629 HS ^Sm^ No.3

August, 1947 T H E C O L L E G E O F A E H O W A U T I C S C R A N F I E L D

Note on the velocity and temperature distributions attained with suction on a flat plate of infinite extent

in ^compressible flow

-by-A.D. Young, M.A.,

of the Department of Aerodynamics

-SUMMRY-The problem considered by Griffith and Meredithl for incompressible flow is here

considered for compressible flow, it boing assumed that there is. no heat transfer by

conductior. at the plate. Essentially, the method consists of estabiishing a correspondence between the velocity and temperature profiles for incompressible flow and those for

compressible flow, the lateral ordinates being scaled by factors which are fi;üactions of the ordinates and of Mach number.

The results of calculations covoring a range of Mach niAmboPs up to 5.0 aro shown in Figs. 1 and 2.

(2)

-2-1. Notation X

u

V

T

k

c V

J

r

r

distance measured parallel to the plate in direction of main stream upstream of plate

distance measured normal to the plate from the surface of the plate

velocity component in x direction velocity component in y dj.-rection density

temperature

coefficient of visocity thermal conductivity

specific heat at constant volume specific heat at constant pressure

M,c.-/k (Prandtl number, assumeji constant) mechanical equivalent of heat

Cp/c^ (assumed constant) J Op T^. /^ -— (shear gtress) dy

i

s x j f f i x

suffix

r

M

&

1 refers to quantities measured at lar-ge normal distances from the plate (y--^ ex- ), w refers to quantities measured at the plate d e f i n e d Isy y V 1 - ^

ar,

Un ( T - 1) J «p T,

(I-1)

v

(a^L is the spee$i of sound in the main stream)

(3)

-3-2.

Introduction

The classic solution due to Griffith and Meredith-^ of the velocity distribution attained v/ith

suction on a flat plate of infinite extent in incompiessible flow is of special interest, since it is a solution of the genoral equations of motion and does not depend on the usual assumptions of boundary layer theory. The

corresponding problem for compressible flow is )f)y no

means as simple in its most general form. ïiowey>j^, if the usual assumptions of bo^mdary layer thJË^ory afe made, it permits of an exact solution which is easily c^btained, This solution may have no practical importano'e at the moment, but it v/as felt to have sufficient intrinsic interest to be worth recording.

3. Analysis

The equation of motion in the boimdary layer of a flat plate at zero incidence in steady compressible flow is ^ u , U •- -4- V

ex

'ÓU

^ y

^ •>) y (/^ ^ y^

(1)

The equation of b o n t i n u i t y i s

ex ^ d y \

= 0 ( 2 )

The energy equation i s

>> T ^ T

J Op u £_t, ^ J Cp V

1) X "^y

l . f k l£\ju

( 3 )

We are interested in the problem of the final velocity and temperatijire profiles far downstream from the plate leadiiig edge when

A s 0.

"Sx

(4)

>4-Hence, the above equations become

Ov d u d / ,, du / ^ ' ^ ( 4 )

"" d y ay i^' dy

p V = c o n s t . = P 1 "^1 (5) ^ dy dy V f^ <iy/ M ^ y / • • • • • • v ^ O y where i = J Cp ï , a n d o ' = A^ Qp ( P r a n d t j L ' s number k assumed constant),

The gas equation leads to

-^- - ïi - _ii. •••• (7)

^ 1 T i

It will be assumed thfiit the variation of ^ with T is given by

ü

J^^JjJ\

(8)

whereoo= c o n s t . For a i r a t normal t e m p e r a t u r e s LO i s al^out 0 , 7 6 , b u t i t i n c r e a s e s s l i g h t l y w i t h T .

The boundary c o n d i t i o n s a r e

u = u , p = p , V = V •, i = i , du = 0 a t y = Oo 1 ^ \ 1 1 1 dy

VI, = 0, ^ = 0 at y = 0, if no heat transfer by dy conduction is assumed to occur at

the plate.

If in eqiiation (6) we change the independent variat)le from y to u. writing'f (u) = U, ^u ^ j_ _ ^^^^^ ^,^^

I dy

eliminate pv by means of equation (4), we obtain

(i_.r) a < 3^+.T/i2'C+c)=o (9)

du du Vdu'" J

(5)

5 -From (4) and (5) d T ' ^ D T :/ rr. du

^

'

- ri ^1

f ]

and hence

r = ^^ r^ u-w 0^

where C i s a c o n s t . I f v/e v ; r i t e Y = v a l u e of'T" a t t h e w a l l , w 1 ^^ F u r t h e r , , s i n c e i = O, when u = u , G - - p -^r u ^ 1 ^ 1 1 1 T h e r e f o r e , ~ ^ 3 V ^ ( u ^ - u ) ^

v i l w

(10) E q u a t i o n (9) can t h e n be w r i t t e n d i du d 2 i

(1 - c r ) ^ V f. - o V (u _ u) ^ - i - o ' = 0 ..(11)

T h i s e q u a t i o n i s r e a d i l y s o l v e d t o g i v e ^ 1 - ^ = - (T ^ 2 2 (2 - O " ) 1 - .vU Un / NOT ^ 2 h „ }L

cr

Un . ( 1 2 )

satisfying the conditions i = 1, , when u --^ u, , and

di _ 0, v;hen u = 0. ou I t i s of i n t e r e s t t o n o t e t h a t a t t h e w a l l where u = 0 , 2

i^^.

i t h

1 2 w (13) / c i X l Q . a • n e ,* • •

(6)

-6-and hence the total energy at the wail differs from

that in the main stream only by the quantity

/ 2 2 ' f V - V I w 1 du From (10) we h a v e , s i n c e ' T ' = M . — , / dv dy u Ü - = 1 - exp

1 '

»y p V, I Ê1 Let r? - - "^1 -^ P (14) and l e t

I

1T

with J a 0, when 75= o.

Then, from (14)

u

u.

= 1 - exp

.(f)

1

and from (12)

(15)

(16)

i . i =

x r : i _

^ 2(2

-cr)

exp.

{2S).- ^ exv,((rS)

.(17)

Writing © = i/i , b = (-y - 1) ] \ ,

9-1 (T

then

b ^

(2 - (T)

F iS)

where F ( ^ ) =

''•t > • • • • > : o

Dxp.^rï) - exp. (2^)

(18)

(O 1

F-T-om (16) and (18) we-.can express — & — as

"1 b/2

functions of ^ only, independent of Mach number,

To derive the actual velocity and temperature

distributions for any given Mac^ number we need to

evaluate the relation between ^ a n d t) (or y) given

by (15). \

/From.

(7)

-7-From (15)

= r5

i t b r

2(2 -.r)

dr

(19)

In general, the integral on the right hand side of (19) must be evaluated either numerically or graplxLcally, giving 'j! a,s a function of S and M-, . Since Vi

is neg.ative, only negative values of S need bei^|

considered an.d it will be found that values of/j j greater than 10 may be ignored. Having determined Tp (or y) for a comprehensive range of values of ^ and M

we can then, for each Mach number, replot

u , Q- 1

—- and

"--\ b/2

as functions of 7/ , usin^ the

basic (or incompressible) profiles given by (16) and (18)'

For the special case CO = 1,0, (19) can be integrated outz'ight to give

-^1 =

^

f

2 (2 -cr-) 2 exp

(crƒ)

-

exp, (2^1

2 -t 1

"

5 ^ ^

2

2 (20).

4. CalciiLati.^ns and results

The velocity and temperature disti'ibutions have been calculated for6a= 0,76 and M-^ = 0, 1.0, 2.0, 3.0, 4,0 and 5,0, CT' being taken as 0.72. For comparison, calculations have also been made for CA.Ï = 1.0 and Mj^ = 1.0, 3.0 and 5.0. The resulting velocity distributions

3 /as,,,.

K Tiiis process of establishing a transformation of the lateral ordinate y , which converts the temperature and v;el«city profiles for incompressible flow to those for compressible flow, was first used by Hantsche a.nd V/endt in Ref.2, They then applied it to the boundary layer on a flat plate in compressible flov/ without

suction for the special case where CO = 1.0. However, it seems capable of much v\?idür application, and in a

'• latür paper it is hopeu to use it for more general

problenTS of the boundary layer on a finite flat plate both v/ith and without suction in compressible flow,

(8)

-8-as functions of TJ are shown in Pig.l, ai-.d the corresponding temperature distributions are sho\;a in P i g . 2 , It will be noted that there is a

thickening of the velocity and temperatui'e ^o^onda^-j layer with increase of Mach number, and thJ.s process is enlianced by an increase of 'oO .

o O o —

REFEREIN CES

-No. A u t h o r T i t l e

Griffith and Meredith The possible improvement in

air ci'af t p e r f o rman c e due to the use of boundary layer

suction, .iy H.A.E.. Report iTo ^ E..35OI. (A.R.C..25]-?)' See .also ' M o d e m

Developments in Plviid Dynamics' Vol„II. p.534

(Claren don Pre s s ) .

Hantsche and VJendt ^..-um liompressj.b-litatseinflus" bei der laminaren Grenzschicht der ebenen Plantte» Jahrbuch der Deutschen L u f t f alir t f o r 3 oh"an,Q; 1940, P-517. oOo

(9)

COLLEGE REPORT No. 8. I;0 0-8 01-6

1 !^

0-2

P

JL

L

f''

hf,

f/\

/ / J

/A

^ , X" 10

'y

yy

^ ^ 20 ^ 30 -^ ^

>1

40 V, "^^^ ^ , - ' - ' 50 : : ^ F' 60 7-0 _ ^ -w-076\ - „ w«10 J A M=0 B M=1 C M-2 D M=3 E M=4 F M«5 80 9-0 100 FiG. 1. FiQ. 2.

Cytaty

Powiązane dokumenty

Temat archiwów pojawiał się na łamach „Dziennika Polskiego” w niewiel- kim stopniu, pisano głównie o Archiwum Państwowym w Krakowie, które po- wstało z

роз’яснює сторонам мету, порядок проведення врегулювання спору за участю судді, права й обов’язки сторін; під час проведення спільних

Niestety płaszcz cementowy uzyskany z zaczynu lekkiego wykazuje w początkowym cza- sie hydratacji niskie wartości parametrów mechanicznych (wytrzymałość na ściskanie,

For the large-scale commercial farmers the three narratives that were used to justify the reform process seem to apply (or at least not proven invalid by this research) and

Rzecz w tym, że jednym aktem ustawodawczym zostaną zburzone zasady, jakimi w cywilizowanym świecie rządzi się wymiar sprawiedliwości i jego najbliższe

В том же самом разделе обращает на себя внимание сравнение тектоники и атектоники в дра- матических произведениях Гоголя

Na potrzeby tego artykułu wykorzystano wywiady pogłębione typu IDI, przeprowadzone z przedstawicielami władz lokalnych oraz urzędnikami gmin należących do OMW,

(a) in the pure-water cavity, and (b) in the cavity filled with 15.3 mm hydrogel spheres in BCT packing... the active hot/cold walls. Consequently, there is less interaction between