• Nie Znaleziono Wyników

Magnetic properties of Cu3.9Fe3.4V6O24 with lyonsite structure

N/A
N/A
Protected

Academic year: 2021

Share "Magnetic properties of Cu3.9Fe3.4V6O24 with lyonsite structure"

Copied!
1
0
0

Pełen tekst

(1)

Magnetic properties of

Cu Fe V O with

3.9

3.4

6

24

lyonsite structure

1

1

1

1,2

3

J. Typek , G. Zolnierkiewicz , M. Bobrowska , N. Guskos , A. Blonska-Tabero

1

Institute of Physics, West Pomeranian University of Technology, Szczecin, Al. Piastow 48, 70-311 Szczecin, Poland.

2

Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece.

3

Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Szczecin,

Al. Piastow 42, 71-065 Szczecin, Poland.

0 2 4 6 8 1 0 1 2 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 S us ce pt ib ili ty [1 0-4 em /( g O e) ] 0 .1 k O e 1 k O e 1 0 k O e 7 0 k O e R ec ip ro ca ls us ce pt ib ili ty [1 0 4 g O e/ em u] T e m p e ra tu re [K ] 0.000 0.002 0.004 0.006 0.008 0.010 0 50 100 150 200 250 300 0 5 10 15 20 25 30 0.000 0.002 0.004 0.006 c · T [ e m u × K /g ] Temperature [K] Temperature [K] 0.0 0.1 0.2 0.3 0.4 10 20 30 40 50 60 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 T=300 K M a g n e ti z a ti o n [ mB /f .u .] T=2 K T=5 K

Magnetic field [kOe]

0 2 4 6 8 10 -10 -5 0 5 10 -40 -30 -20 -10 0 Magnetic field [kG] T=70 K E P R a b s o rp ti o n d e ri v a ti v e [a rb . u n it s ] T=4 K 0 50 100 150 200 250 300 2.0 2.5 3.0 3.5 4.0 4.5 50 100 150 200 250 300 1.998 2.000 2.002 2.004 2.006 g -f a c to r Temperature [K] g -f a c to r Temperature [K] 40 80 120 160 200 240 280 1.17 1.18 1.19 1.20 0 50 100 150 200 250 300 1 2 3 4 5 6 7 L in e w id th [k G ] Temperature [K] L in e w id th [k G ] Temperature [K] 0.00 0.05 0.10 0.15 0.20 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 L n ( D H [G ]) Reciprocal temperature, T-1 [1/K] 7 K 30 K 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 0.5 1.0 1.5 2.0 2.5 3.0 3.5 3.370 3.375 3.380 3.385 0.6 0.7 0.8 L in e w id th [k G ] Resonance field [kG} 4 K 6 K 10 K 5 K 7 K 8 K L in e w id th [k G ] Resonance field [kG] 44 K 300 K 16 K 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 0 50 100 150 200 250 300 2 4 6 8 In te g ra te d in te n s it y IEP R [a rb . u n it s ] R e c ip ro c a l in te g ra -te d in te n s it y 1 /IE P R [a rb . u n it s ] T · IEP R [ a rb . u n it s ] Temperature [K] 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 TCW=-3.1 K R e c ip ro c a l in te g ra te d in te n s it y [a rb . u n it s ] Temperature [K] TCW=-73.3 K M a g n e t i c f i e l d [ k O e ] C o o l i n g m o d e C u r i e c o n s t a n t C [ 1 0- 4 e m u K / g O e ] E f f e c t i v e m a g n e t i c m o m e n t [ ìB/ f . u . ] C u r i e - W e i s s c o n s t a n t TC W [ K ] N e e l t e m p e r a t u r e [ K ] Z F C 5 . 9 7 0 . 0 1 F C 2 4 4 . 6 5 - 1 3 4 - Z F C 2 . 7 5 0 . 1 F C 1 0 2 9 . 5 8 - 4 2 - Z F C 2 . 5 0 1 F C 1 0 9 9 . 9 0 - 4 2 - Z F C - 1 0 F C 1 0 6 9 . 7 6 - 3 9 - Z F C - 7 0 F C 1 0 6 9 . 7 6 - 4 0 -

The synthesis of Cu Fe V O was performed by the standard solid-state 3.9 3.4 6 24

reaction method according to the reaction:

3.9 CuO + 1.7 Fe O + 3 V O = Cu Fe V O2 3 2 5 3.9 3.4 6 24

Electron paramagnetic resonance study (EPR) were carried out on a conventional X–band (í = 9.4 GHz) Bruker E 500 spectrometer with the 100 kHz magnetic field modulation. EPR measurements were carried in the 4–300 K temperature range using an Oxford Instrument helium-flow cryostat.

The dc susceptibility measurements were carried out in the 2-300 K temperature range using an MPMS-7 SQUID magnetometer and in magnetic fields up to 70 kOe in the zero-field-cooled (ZFC) and field-cooled (FC) modes.

Experimental

The compound Cu Fe V O is a new vanadate, which has been obtained recently in the 3.9 3.4 6 24

ternary oxide system CuO-V O -Fe O . It is known from literature that the components of this 2 5 2 3

system are active in catalytic processes such as, for example, oxidation reactions of: benzene to phenol, methanol to formaldehyde, isobutane to isobutene or toluene to benzaldehyde. As the compound contains magnetic iron ions it could display interesting magnetic characteristics. Very interesting magnetic phenomena were found in many similar vanadate compounds. It is probable that magnetic ions could play an important role in the determination of the compound's catalytic properties so the knowlegde of its magnetic state is a crucial factor. Two complimentary methods of magnetic characterization were employed: dc magnetization measurements as a function of temperature and an extenal magnetic field, and electron paramagnetic resonance (EPR) in the microwave frequency range.

Introduction

H C H J g kT kT H J g J g C H J g kT kT H J g J g C H M B B B B 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 coth coth ) ( ú+ u u e ë é ÷ ÷ o ö ç ç e a -÷ o ö ç e a + ú u u e ë é ÷ ÷ o ö ç ç e a -÷ o ö ç e a = m m m m

Modified Langevin equation:

Table 2. Values of parameters in the modified Langevin equation obtained from fitting experimental points M(H) (see Fig. 4)

3+

As the temperature decreases, the Fe magnetic moments experience short range AFM correlations. The evidence for it is that, for T>2T , the EPR resonance shows signifant g-shift and a strong T-N

dependence of the line broadening expected for a short range magnetic interaction in AFM materials above the Neel temperature T :N

The solid line in Fig. 9 shows the fitting of the data (in 7<T<30 K range).

3 -1.64

The fitting parameters are: ÄH =548(39) G, C =19(2)·10 G/K0 1 ,

EPR

TN =1.1(5) K, n=1.6(4).

In Fig. 12 the temperature dependence of the reiprocal integrated intensity is presented. The experimental values follow the Curie-Weiss law, I=C/(T-T ), in two different temperature ranges. In the low CW

temperature range (7-30 K) T =-3.1 K, in the high-temperature range CW

(40-120 K) T =-73.7 K.CW

EPR

Figure 1. Temperature dependence of the dc magnetic susceptibility ÷(T) (left axis) and reciprocal

-1

susceptibility ÷ (T) (right axis) in ZFC mode measured at four different magnetic fields (H=0.1, 1, 10, 70 kOe).

Figure 2. Temperature dependence of the dc magnetic susceptibility ÷(T) in ZFC and FC modes in the low temperature range registered at four different magnetic fields (H=0.01, 0.1, 1, 10 kOe) Figure 3. Temperature dependence of ÷?T product for the

Cu Fe V O3.9 3.4 6 24 compound. The inset shows this dependence in the low temperature range.

Figure 4. Isothermal magnetization at three different temperatures: T= 2 K and T=5 K (upper panel), and T=300 K (lower panel). The solids lines are the best fits to Langevine function.

Table 1. Values of magnetic parameters of the Cu Fe V O compound calculated from the 3.9 3.4 6 24

dc magnetization measurements. The Curie-Weiss law was applied in 70-250 K range.

Figure 5. Selection of the registered EPR spectra of Cu Fe V O at different temperatures.3.9 3.4 6 24

Figure 6. An example of fitting of the experimental EPR spectra of Cu Fe V O3.9 3.4 6 24 (black line) with Lorentzian lineshape function (red line).Upper panel T= 4 K, bottom panel T=70 K

Figure 7. Temperature dependence of the g-factor. The inset shows the same dependence in an extended g-factor scale.

Figure 8. Temperature dependence of the peak-to-peak lnewidth. The inset shows the same dependence in an extended linewidth scale.

Figure 9. Temperature dependence of linewidth in the log(Ä)-1/T frame

Figure 10. Linewidth dependence on the resonance field at different temperatures. The insets shows this dependence in an extended scale.

Figure 11. Temperature dependence of the EPR integrated intensity (upper panel), reciprocal of integrated intensity (middle panel) and the product of integrated intensity and temperature (bottom panel).

( )

EPR n N T T C H T H =D+- -D( ) 0 1 T [K] C1 g 1J1 g2J2 C2 C3 2 0.025 10.666 2.497 1.667 0.00001 5 1.538 3.471 12.212 0.127 0 300 1 9.303 0 0 0 Fe V O Cu

Figure 12. Temperature depenence of the reciprocal integrated intensity.

Cytaty

Powiązane dokumenty

Dla tych samych kroków czasowych co dla analizy termicz- nej przeprowadzono obliczenia wytrzymałościowe, w przypadku których obciążeniami, oprócz ciężaru własnego i

Presented paper con- siders the numerical analysis of velocity and temperature maldistribution due to the influence of strong magnetic field.. The analysis was

An increase of the inner-core size implies a decrease of the resonance amplitude caused by the supplementary Ekman layer added at the Inner Core Boundary (ICB);

After studying the application of magnetic water theory and significant achievements in scientific researches and their practical application in the building materials produc-

Distribution of magnetic field above the strip of electrical steel magnetized by c-yoke system (B – on upper figure): a) result of 3D magnetic field computation (theory), b)

Albert przyjmuje więc poza zmysłem po­ wszechnym (sensus communis), który zresztą w Summie de ho­ mine zalicza do zmysłów zewnętrznych, pięć zmysłów w

Reasumując  przeprowadzone  rozważania,  na  aprobatę  zasługuje 

Kompozytor nie może wprawdzie komponować „muzyki dokład­ n e j” (nie chodzi tu przecież o dokładność graficz­ ną, czysty zapis), może jednak komponować