• Nie Znaleziono Wyników

High throughput process development for the purification of rapeseed proteins napin and cruciferin by ion exchange chromatography

N/A
N/A
Protected

Academic year: 2021

Share "High throughput process development for the purification of rapeseed proteins napin and cruciferin by ion exchange chromatography"

Copied!
15
0
0

Pełen tekst

(1)

High throughput process development for the purification of rapeseed proteins napin and

cruciferin by ion exchange chromatography

Moreno-González, Mónica; Chuekitkumchorn, Pattra; Silva, Marcelo; Groenewoud, Roos; Ottens, Marcel

DOI

10.1016/j.fbp.2020.11.011

Publication date

2021

Document Version

Final published version

Published in

Food and Bioproducts Processing

Citation (APA)

Moreno-González, M., Chuekitkumchorn, P., Silva, M., Groenewoud, R., & Ottens, M. (2021). High

throughput process development for the purification of rapeseed proteins napin and cruciferin by ion

exchange chromatography. Food and Bioproducts Processing, 125, 228-241.

https://doi.org/10.1016/j.fbp.2020.11.011

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Food

and

Bioproducts

Processing

jo u r n al ho m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f b p

High

throughput

process

development

for

the

purification

of

rapeseed

proteins

napin

and

cruciferin

by

ion

exchange

chromatography

Mónica

Moreno-González,

Pattra

Chuekitkumchorn,

Marcelo

Silva,

Roos

Groenewoud,

Marcel

Ottens

DepartmentofBiotechnology,DelftUniversityofTechnology,vanderMaasweg9,2629HZDelft,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26May2020

Receivedinrevisedform9

November2020

Accepted22November2020

Availableonline30November2020

Keywords:

Canolamealproteins

Highthroughputexperimentation

Chromatography

IonExchange

Columnsimulation

a

b

s

t

r

a

c

t

Proteinsderivedfromplantresourcessuchasoilseedmeals,canolaandsunflower,are

con-sideredaviablealternativetoanimalproteinsforfoodconsumption.Thisworkpresentsa

rationalmethodology,usinghighthroughputexperimentation(HTE),fortheseparationof

cruciferinandnapin,thetwomajorproteinsofcanolameal,bychromatography.Eight

dif-ferentmixedmodeandionexchangeresinswereevaluatedatdifferentconditionswiththe

aimofcapturingnapinandidentifyingadsorption/desorptionbehavior,easeofdesorption

andselectivity.POROS50HSresultedasthemostpromisingresin.Theobtainedequilibrium

adsorptiondatafornapinandcruciferinwasusedinamechanisticchromatographymodel

andcomparedwithexperimentalresultsshowingaverygoodagreement.Themodelwas

usedtoidentifycolumnoperatingparametersthatleadto>98%yieldandpurityforboth

proteins.Subsequentlyaconceptualdownstreamprocessingwasproposed.

©2020TheAuthors.PublishedbyElsevierB.V.onbehalfofInstitutionofChemical

Engineers.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Globalproteindemandhasrisenasaresultofgrowing

pop-ulation and in order to satisfy this demand protein with

appropriatequalityneedstobegeneratedfromanimaland

plantsources(Wanasundaraetal.,2016).Valorizationof

agri-foodbyproducts,suchasoilseedmeal,couldhelptosatisfy

thedemandofthefuturefoodsupplyacrosstheworld.Canola

mealisacompetitiveplant-basedproteinsource,itcontains

∼40%proteincontent;∼12%ofcrudefiber,3%phenolic

com-poundsand3%ofphyticacidamongothers(Lomascoloetal.,

2012;Wanasundara,2011;Wanasundaraetal.,2017).Proteins

fromthismealhavepotentialapplicationsinbakeryproducts

asemulsifiers,indiaryand dressingproductsaseggwhite

proteinreplacement(Kodagodaetal.,1973),inbeveragesas

proteinsupplement,meatbinders,mayonnaiseandin

cheese-∗ Correspondingauthor.

E-mailaddress:M.Ottens@tudelft.nl(M.Ottens).

like products(Wanasundara et al., 2016). Moreover,canola

proteins are reported tohave antiamnestic, anti-oxidative,

antihypertensive, anorectic and antithrombotic properties

(Wanasundara,2011;Wanasundaraetal.,2016).

Napinandcruciferinarethetwomajorproteinsincanola

meal,theseare storageproteinswithdifferent

characteris-tics.Napin(2Salbumin)isabasicproteinwithanisoelectric

pointaround11andamolecularweightbetween12-14kDa.

HighlysolubleinwateratawidepHrange,stableathigh

tem-peratures (75◦C)(Jyothietal., 2007;Pereraet al.,2016)and

holdsfoamingproperties(AiderandBarbana,2011;Schmidt

etal.,2004;Wanasundaraetal.,2016a).Napinprotein

consti-tutesaround20%oftheproteincontentofcanolameal,while

cruciferinrepresent60%(Wanasundara,2011).Cruciferin(11S

globulin)hasanisoelectricpointofaround7.2anda

molec-ular weightbetween230−300kDa,muchhigherthan napin

protein. Thisproteinresemblesstructuralfeaturesofother

seedstorageproteins(Adachietal.,2003)andhaswell

orga-nizedstructurallevels(Wanasundaraetal.,2017).Incontrast

withnapin,cruciferinpossessesgelling,bindingand

emulsi-https://doi.org/10.1016/j.fbp.2020.11.011

0960-3085/©2020TheAuthors.PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisisanopenaccessarticle

(3)

fyingpropertieswhichmakesitaninterestingproductforfood

applications(AiderandBarbana,2011;Wanasundara,2011).

Several methods have been described to successfully

extractproteinsfromdefattedoilseedmealsincludingsolvent

extraction,aqueousandalkalineextractionassistedwithsalt

andenzymes.Thereportedproteinyieldsvarybetween50%

and80% (Contreras etal., 2019; Fetzeretal., 2018; Pickardt et al., 2009; Vuorela et al., 2004). Despite the high protein

levelincanolamealextracts,thepresenceofglucosinolates,

phyticacidandphenolics,whicharealsoco-extracted,could

limitapplicationoftheproteinsinfoodproducts.Therefore,

effectiveseparationtechniquessuchasmembraneprocesses

(AkbariandWu,2015;Ghodsvalietal.,2005;XuandDiosady,

2002)arerequiredfortheseparationofsuchantinutritional

components(Wanasundaraetal.,2017).Eventhough

pheno-licsareconsideredantinutritionalcomponents,theirrecovery

mightpresentsomeeconomicpotential.Giventheir

antiox-idativeproperties,theyhavepotentialapplicationinthefields

of cosmetics, pharmaceutical and food products (

Moreno-Gonzálezetal.,2020).

Purificationoftheextractedproteinscanbeaccomplished

byseveralmethodssuchasisoelectricprecipitationfollowed

by membrane separation (Ghodsvali et al., 2005; Xu and

Diosady,2002)andproteinmicellarformation(Murrayetal.,

1980),beingisoelectricprecipitation(afteralkalineextraction)

themostapplied.However,extremealkalineconditionscan

havea negativeeffect on the functionalityof the proteins

due todenaturalization, loss ofessential amino acids and

lysinoalanineformation(Fetzeretal.,2018;Gerzhovaetal.,

2015;Houetal.,2017;Rommietal.,2015).Inaddition,high

pHmightcreateprotein-polyphenolscomplexes,whichmake

proteinproductsdarkandhavebitterflavor.Similarly,

pro-teinprecipitationmightreducethesolubilityofproductsand

promotesproteindenaturationcausedbyglobulinaggregates

(Bérotetal.,2005;RaabandSchwenke,1984).Moreover,

co-precipitationofbothproteinsmightoccurleadingtoprotein

mixturesratherthanindividualproteinisolates.Application

ofmore selective and milder conditions, such as aqueous

extractionandchromatographycouldbeappliedtokeep

pro-teinfunctionalityandimprovepurityofeachproteinproduct.

Studiesinpurificationofcanolaproteinsbychromatography

havebeenevaluated(Bérotetal.,2005;Pudeletal.,2015;Zhang

et al.,2007)using cationexchangeresins (CEX),

hydropho-bicinteraction (HIC) and size exclusion(SEC), showingthe

promisingpotentialofapplyingthistechnology.

Thisstudypresentsarationalstrategyfortheseparation

ofcruciferin and napin proteinsfrom canolameal extract

bypreparativeproteinchromatography.Proteinextractionis

assumedtobedoneatpH6andat0.3MNaCl.Thestrategy

involves theevaluation ofdifferentcation exchangeresins

(CaptoS,POROS50HS,CMSheparoseandMacroPrep50)and

mixedmoderesins(CaptoMMC,NuviacPrime,PPAHyperCel

andToyopearlMX-Trp-650M)atdifferentpHvaluesandsalt

concentrationstoidentifyadsorption/desorptionconditions

withthegoalofcapturingnapin.Resinscreeningwasdoneby

meansofhighthroughputexperimentation(HTE)

Addition-ally,resinselectionwasdonebyestablishingaresinselection

criteriabasedonnapincapacity,selectivity,easeofdesorption

and resinprice. Theobtainedequilibriuminformationwas

usedinacolumnadsorption/desorptionmodelwhichisthen

usedtosuggestaconceptualdownstreamprocessforthe

sep-arationofthetwomajorproteins(cruciferinandnapin)from

canolamealextract.

2.

Materials

and

methods

2.1. Chemicals

Forpreparationofthebuffersandsolutionsanalyticalgrade

chemicalswereused.Bis-tris(>98%),tris-HCl(>98%),

acetoni-trile(HPLCgrade),hydrochloricacidanalyticalreagent(37%),

trifluoroaceticacid(>99%)wereobtainedfromSigma-Aldrich,

theNetherlands.Sodiumchloride(>99%)waspurchasedfrom

J.T. Baker, Denmark, sodium hydroxide from Mallinckrodt

Baker, The Netherlands, and Ethanol:Emsure absolute for

analysiswasobtainedfromMerck,TheNetherlands.

Theusedproteinsare:napinisolate(>98%,ABIN1995012),

cruciferin isolate (>98%, ABIN1995013) and rapeseed

pro-tein mixture(57% napinand 43% cruciferin,ABIN1995014).

Theproductswere acquiredfromantibodies-online,GmbH,

Germany.As cruciferinisolatepresentedverylimited

solu-bilitypropertiesinwater,itwasdecidedtousetherapeseed

proteinmixturetoperformbinaryadsorptionexperiments.

Napinisolate,cruciferinisolateandrapeseedprotein

mix-ture were characterized by SDS-PAGE under non-reducing

conditions and reducing conditions (reducing agent TCEP

solution).SDS-PAGEwasperformedona4–12%Bis-TrisGel

(NuPAGETM Novex) at constant voltage (200V). The

non-reduced samplewas preparedwithNuPAGETM LDSsample

buffer. The reduced sample was incubated with LDS

sam-plebufferbeforeloadingongel.NuPAGEMark12TMwasused

asamolecularmarker. Theelectrophoresiswascarriedout

usingMESSDSasrunningbuffer.Afterrunning,thegelwas

stainedinGelCodeTM BlueSafeProteinStainanddestained

withMilli-Qwater.AllSDS-PAGEreagentswereobtainedfrom

ThermoScientific,TheNetherlands.

2.2. Resins

Threemixedmodecationresins:CaptoMMC(GEHealthcare,

Sweden), Nuvia cPrime(Bio Rad, USA) and Toyopearl

MX-Trp-650M(Tosoh,Japan);onemixedmodeanionresin,PPA

HyperCel(PallLifeSciences,France),twostrongcationresins,

Capto S (GE Healthcare, Sweden) and POROS 50HS

(Ther-moFisherScientific, TheNetherlands) andtwoweakcation

resins,CMSepharoseFastflow(GEHealthcare,Sweden)and

MacroPrep50CM(BioRad,USA),wereusedtoevaluatenapin

andcruciferinadsorption.Thecharacteristicsofallresinsare

showninTable1.

2.3. Buffersolutionandpreparations

For buffersatpH4,pH5,pH6andpH8,lacticacid,acetic

acid,bis-trisandtris-HClwereusedrespectively.Allbuffers

werepreparedbydissolvingtheamountofsaltcorresponding

to50mMinMilli-Qwater,adjustingthepHusing2MHClor

2MNaOH.Thesaltconcentrationwasadjustedto0.1M,0.3M,

0.7Mand1.0MbyaddingthecorrespondingamountofNaCl

beforecompletingbufferfinalvolume.Allbufferswerefiltered

previoustouseusingfilterswith0.45␮mporesize.

Napin stock solution was preparedby dissolving napin

protein(8g/L) inthe appropriatebuffer and filteredwitha

disposable0.22␮mPVDFfilter.Thisnapinstocksolutionwas

dilutedtodifferentnapinconcentrations(from1to8g/L)using

Milli-Qwater.

In binary component experiments, protein mixture

(4)

Table1–MixedmodeandIonexchangeresins.

Name/Type pKa Matrixcompositiona Liganddensitya

(mmol/L)a

CaptoMMC Mixedmodeweakcationexchanger ∼4.6b Highlycross-linkedagarose 80

NuviacPrime Mixedmodeweakcationexchanger ∼4.5b Macroporoushighlycross-linked

hydrophilicpolymer

65 ToyopearlMX-Trp-650MMixedmodeweakcationexchanger 2.9and9.4c Methacrylicpolymermatrix 110

PPAHyperCel Weakanionexchanger 8 Highporositycross-linked

cellulose

65

CaptoS Strongcationexchanger 1.2 Highlycross-linkedagarosewith

dextransurfaceextender

125

POROS50HS Strongcationexchanger 1.2 Cross-linked

polystyrene-divinylbenzene

104

CMSepharoseFastflow Weakcationexchanger 4.7 Cross-linkedagarose 80

MacroPrep50CM Weakcationexchanger 4.7 Methacrylatepolymerbased 210

a Providedbyresinsuppliers. b Basedon(ZhuandCarta,2016).

c BasedonthepKaofthetryptophanligand(NationalCenterforBiotechnologyInformation,2020).

Thesolutionwassonicatedatroomtemperaturefor30minin

ordertoincreasethesolubilityofcruciferin.Afterthat,

insol-ubilizedproteinwasremovedbyfilteringwithadisposable

0.22␮mPVDFfilter,thisstocksolutionwasdilutedtoevaluate

cruciferineffectonnapinadsorption.

2.4. Analyticalmethods

Insinglecomponentnapinexperiments,theconcentrationof

the proteinwasmeasured spectrophotometrically,

measur-ingthe absorbanceat280nmusingthe spectrophotometer

InfiniTePro200platereader(Tecan,Switzerland).The

mea-surementwas performed with100␮L of liquid solution in

a96-well half-area microplate (UV-STAR®, Greiner bio-one,

Germany)

To measure the concentration of both proteins, in the

proteinmixtureexperiments,reversephaseliquid

chromatog-raphy(RPC)wasapplied.TheanalysiswasdoneusinganUltra

High Performance Liquid Chromatography system (UHPLC

Ultimate3000)(ThermoScientific,USA)equippedwitha

Zor-bax 300 SB-C8 Rapid Resolution HD column (2.1×100mm,

1.8␮m)(Agilent,USA).Thecolumnwasequilibratedwith20%

acetonitrilesupplementedwith0.1%Trifluoroaceticacid(TFA)

at0.3mL/minkeepingcolumntemperatureat30◦C.The

sam-plewasinjectedandagradientofacetonitrilestartedfrom

20%to75%in7min,detectionwasdoneat280nm.Thenthe

columnwaswashedwith75%acetonitrilesupplementedwith

0.1%TFAfor5minbeforethenextinjection.Napin

calibra-tionlineswere evaluatedusingnapinproteinisolate.Since

cruciferinisolatedidnotshowtheexpectedcharacteristics,

asthe polypeptide profiledidnot show the corresponding

bands(Supplementarymaterial),astandardcurvecouldnot

beobtained.Therelativechangeofconcentrationwasusedto

evaluatecruciferin.Assumingthattheratiobetween

equilib-riumconcentrationandinitialconcentrationisproportional

topeakarearatio



Ce

Cfeed =

Areapeakafteradsoprtion Areapeakoffeed



determinedby

UHPLC.

2.5. Batchadsorptionexperiments

Batch experiments were performed in order to determine

adsorptionequilibriumisothermsofnapinandcruciferinat

differentadsorption/desorptionconditionsondifferentmixed

modeandionexchangeresins,inordertoseparateboth

pro-teins.

2.5.1. Adsorptionequilibriumisotherms

Napinadsorptionequilibriumisothermswereevaluatedusing

aTecanEVOFreedom200roboticstation(Tecan,Switzerland)

equipped with an orbital mixer (Te-shake), an automated

vacuum system (Te-VacS),aplate reader(InfiniTe Pro200),

a roboticmanipulator (RoMa) arm(to movemicroplates to

thedifferentpositionsoftheroboticstation)andtwoliquid

handingarms(LiHaandMCA96).Theprocedureinvolvesthe

different stepsofthe chromatographyrununtiladsorption

(washing,equilibrationandadsorption).Aknownamountof

eachresin(15.6␮Lor23.4␮L)wasaddedtothewellsofa96

deep-wellfilterplate(catalognumber:MDRLN0410)from

Mil-lipore,USA.ResinswereaddedusingMediaScout®ResiQuot

resinloader(Atoll,Germany).Resinwerewashedtwotimes

withMilli-Q waterusing thevacuumsystem (Te-VacS)and

equilibratedwiththecorrespondingbufferfor20min.under

agitation(1200rpm).Equilibrationbufferwasremovedby

cen-trifugation with an Eppendorf centrifuge 5810 R (rotation

speed 4000rpmfor3min).Aftercentrifugation,resins were

contactedwith312␮Lofnapinsolutionsunderagitationuntil

equilibriumwasreached(2hat1200rpm).Onceequilibrium

was reached,the filterplate was centrifuged tocollect the

supernatant and equilibrium concentration was measured

spectrophotometrically (see2.4 Analytical methods).Napin

experimentswereperformedinduplicate.

EffectofpHandionicstrengthwereevaluatedfornapin

adsorptionbyperformingexperimentsat4differentpH(pH

4,5,6,8)keepingNaClconcentration(0.3M)constantandat

pH6varyingsaltconcentrationfrom0.1Mto1MNaCl.This

allowstoidentifydesorptionconditions.

Napinadsorptioncapacitywascalculatedaccordingtothe

massbalanceEq.(1)

qp,eq=

Cp,load∗Vload−Cp,eq(VH+Vload)

Vresin

(1)

Whereqp,eq istheadsorptioncapacity(mg/mLresin),Cp,loadis

theproteininitialconcentration(mg/mL),Vload isvolumeof

theliquidphase(mL)Cp,eqistheproteinequilibrium

concen-tration(mg/mL),VHistheholdupvolume(mL)andVresinisthe

(5)

Aftercentrifugation,someliquidcouldremainintheresin.

Thisliquidholdupwas determined usingthe method

sug-gested by Nfor et al. (2010). The resins were placed in a

deep-wellfilterplateandequilibratedwith350␮Lof1MNaCl.

After45minthefilterplatewascentrifugedwith5810R

cen-trifuge(Eppendorf,Germany) for3minat4000rpmandthe

flowthroughwascollectedtomeasureconductivity.Thiscycle

wasrepeateduntiltheconductivityofflowthroughwasequal

totheconductivityof1MNaClsolution. Consequently,the

equilibratedresinswerecontactedwith312␮LofMilli-Qwater

andincubatedovernightwithoutagitation.Aftercontacting,

thefilterplatewas centrifugedand theconductivityofthe

flow-through was measured.All the conditions were done

intriplicate.Theconductivity was measuredwitha

multi-parameteranalyzerC832(ConsortNV,Belgium).

Theholdupvolumewasmeasuredusingthesaltmass

bal-anceEq.(2)

CS,initial∗VH= CS,final∗ (VH+VW) (2)

Initialsaltconcentrationinallresinswas1MNaCl(CS,initial),

VHisholdupvolume(mL),CS,finalisthefinalsalt

concentra-tionaftercontactingwithMilli-QwaterandVW istheadded

volumeofMilli-Qwater.

Since cruciferin has low solubility in water, cruciferin

adsorptionisothermswereevaluatedusingtheprotein

mix-ture. A similar procedure to the one applied for napin

adsorptionisothermswasusedwiththeproteinmixturein

theliquidhandlingroboticstation.Theevaluatedconditions

were:pH6and 0.3MNaCl sincetheyare the same

condi-tionsintheproteinextract(adsorptioncondition).Cruciferin

experimentswereperformedinduplicate.

As the absolute cruciferin liquid concentration values

could notbemeasured,cruciferin adsorptioncapacitywas

determinedbydividingEq.(1)bythereferenceconcentration

(C0)(Eq.(3)),assumingthatCCp,eq

0 =

Areaatequilibirum Areaofreference

qp,eq=qCp,eq

0 =

Cp,load∗Vload−Cp,eq(VH+Vload)

VresinC0

(3)

Thereference cruciferin area peaks were the ones

cor-responding to the conditions of 0.3M NaCl and Napin

concentrationofaround6g/LforexperimentsatpH6(feed

condition).

2.5.2. Parameterestimation

Adsorptionisothermexperimentalresultsofnapinwere

fit-tedtoalinearisothermortoaLangmuirtypeisotherm(Eq.

(4)).Thistoidentifythe initialisotherm slope,which isan

indicationoftheaffinityofnapintotheresin.

qp,eq=

bp,iqmaxp,i Cp,i

1+bp,iCp,i

(4)

whereqmax

p,i isthemaximumadsorptioncapacity(mg/mLresin)

andbp,iistheLangmuirconstantalsoknownasequilibrium

constant (Carta and Jungbauer, 2010). Theinitial isotherm

slope,attheevaluatedconditions,wasusedtoevaluateresin

selection(see2.6Resinselection).

Themostsuitableresinequilibriumdata(POROS50HS)was

fittedtothemixedmodeisotherm,developedbyNforetal.

(2010).Thisisothermsisbasedonthethermodynamic frame-workofMollerupetal.(2008).Amoredetailexplanationofthis

isothermisfoundinsection2.8.1Mixedmodeisothermmodel

ofthispaper.Thefittedparametersofthisisothermmodel

were:1)thethermodynamicequilibriumconstant(Keq);2)the

stoichiometriccoefficientofsaltcounterion(v);3)the

param-eterthatdescribesthedifferencebetweenwater-proteinand

protein–protein interactions (Kp)and 4) the parameter that

describes the difference between water – protein and salt

–proteininteractions(Ks).Aspreviouslymentioned,binary

componentexperiments(napin+cruciferin)wereperformed

usingaproteinmixturepowder.Binarycomponent

adsorp-tionexperimentsshowedahighernapinadsorptioncapacity

thannapinsinglecomponentexperiments.Forisotherm

mod-ellingthis was adjusted byconsideringthe valueobtained

frombinarymixtureexperimentalresults,whichcorresponds

to44mg/mL.

DataregressionsweredoneusingMATLABR2017bandthe

functionlsqcurvefit.Inthemixedmodemodel,qpappearsin

both sidesofthe equation(Eq. (7)) Thenumericalsolution

ofthisequationwasfoundusingthefsolvefunctionof

MAT-LABanditwascombinedwiththeregressionusinglsqcurvefit

optimizer.Thus,theprocedureoftheparameterregressionis

applyinglsqcurvefitoptimizertominimizethesumofsquared

residualsbetweentheexperimentaldataandthenumerically

solvedadsorptiondatausingfsolvefunction.

Inaddition,asbinarymixtureexperimentpresentedavery

low change in cruciferin concentration. A linear isotherm

modelwasconsideredforthisproteinbyestimatingisotherm

slopebyfittingalinearcurvetotheexperimentaldata.

2.6. Resinselection

Thegeneratedequilibriumdatawasusedtoselectthemost

suitableresinfortheseparationofbothproteins.Thedesired

scenario is the adsorption of napin while cruciferin flows

through.Theselectioncriteriaweredefinedassuggestedby

Sevillanoetal.(2014),consideringnapinadsorptioncapacity

atfeedconditions(pH6and0.3MNaCl)andnapindesorption,

whichwasevaluatedusingtheinverseofthelowestisotherm

slopedeterminedattheevaluatedconditions.Thethird

crite-rion,selectivity,wasevaluatedusingtheratiobetweennapin

andcruciferinisothermslopesatadsorptionconditions.The

fourthcriterionwasthepriceoftheresinobtainedfromthe

differentsuppliers. Aweightbetween0and1wasgivento

eachcriterion,being0.5fornapincapacity,0.3fornapin

des-orption,0.1forselectivityand0.1forprice. Thereasonfor

givingalowweighttotheselectivitycriterionhadtodowith

theobservedpoorbindingofcruciferinontomostofthe

eval-uatedresins.

Eachcriterionwasnormalizedandresinscorewas

calcu-latedusingEq.(5).

Resinscore=



weight∗ criterion

maximumvalueofcriterion (5)

2.7. Columnadsorption/desorptionexperiments

The highestscoring resin,POROS 50 HS, was used to

per-formpulsecolumnexperimentsusingnapinandtheprotein

mixture(napin+cruciferin).Theexperimentswereperformed

inanAKTATMAvantsystem(GEHealthcareBio-SciencesAB,

Uppsala,Sweden)atroomtemperature(25◦C)operatedwith

Unicorn7.0software.Conductivity,pHandUVat280nm

sig-nalsweremonitoredduringtheexperiments.

AValiChrom11.3–100 POROS® 50 HS(Repligen,Sweden)

(6)

and the total bed heightwas 10cm, providing a total

col-umnvolumeof9.8mL.Extraparticleandtotalporositieswere

determinedbypulseinjectionsofbluedextranand1MNaCl

respectively.Theobtainedvalueswere0.83totalporosity(␧T)

and0.3forextraparticleporosity(␧b).

Fornapinand proteinmixtureexperiments,the column

was equilibrated with 50mM bis-tris pH6 with 0.3M NaCl

bufferfor5columnvolumes(CV)at2.5mL/min.Then1mL

ofnapinsolutionat6g/Lwasinjectedinthecolumn(10.1%

CV),columnwaswashedwiththeequilibrationbufferfor5CV

inordertoremovenon-bindingsubstratesoutofthecolumn.

Stepelutionwasdonebyapplying5CVofelutionbuffer,

Tris-HClpH8with0.7MNaCl.Aftereachexperiment,thecolumn

wasregeneratedwith1MNaClsolutionfor5CVas

recom-mendedbysupplier.

Forrapeseedproteinmixture,12g/Lofproteinmixturewas

dissolvedin50mMBis-TrispH6with0.3MNaClbuffer.This

correspondsto6.84g/Lofnapinand5.16g/Lofcruciferin.The

proteinmixture solution was then sonicatedfor 30min in

ordertoincreaseproteinsolubility.Thesolutionwasfiltered

with0.22␮mPVDFfilterbeforeinjectionincolumn.Afteruse,

thecolumnwasstoredin20%(v/v)ethanolassuggestedby

supplier.

2.8. Chromatographymodeling

2.8.1. Mixedmodeisothermmodel

ThemixedmodeadsorptionisothermmodelfromNforetal.

(2010) was appliedin this work. Themodel is a

combina-tionofHICandIEXmodelsfromMollerup(2007).Thismixed

modeisothermisbasedontheassumptionthataprotein(P)

bindsto namountofligand(L)byhydrophobicinteraction

andconcurrentlyexchangeswithvamountofsaltcounter-ion

(S)generatingaprotein-ligandcomplex(Ln+v)inafixed

stoi-chiometryasshowninEq.(6).Thestoichiometriccoefficient

ofsalt counterionisdefinedasthe ratiobetweenthe

pro-teinbindingchargedividedbythechargeofthesaltcounter

ion



v= zp

zs



. Inthis work,sodium chloride wasused as a

saltcounterion.Thesinglecomponentadsorptionisotherm,

basedon reactioninEq.(6),resultsinthe isothermmodel

describedinEq.(7). P+vSL+nL ↔PLn+v+vS (6) qp cp = A∗



1−qqmaxp p



v+n ∗˜p (7) whereA= ˜Keq()v+n



1 zscs



v



1 c



n and˜p=exp (Kpcp+Kscs) (8)

In Eq. (7), qp is the adsorbed protein concentration

(mg/mLresin), cp is the protein concentration in solution

(mg/mL),Keqisthermodynamicequilibriumconstantof

reac-tion(mL/mg),csistheconcentrationofsaltinliquidphase.c

ismolarityofthesolution(assumedtobewaterconcentration

(Mollerup,2007))andqmax

p ismaximumadsorptioncapacityof

protein(mg/mLresin),isliganddensityofthemixedmode

resinswhichareassumedtobeequalforHICandIEXligands

(mmol/L)andwasobtainedbasedonsupplierspecifications.

Theactivity coefficient ofthe protein ( ˜p) was determined

usingtheVan derWaalsequationofstateshowninEq.(8)

assuggestedbyMollerup(2006).Kpparameterdescribesthe

differencebetweenwater-proteinandprotein–protein

inter-actionswhileKsparameterdescribesthedifferencebetween

water– proteinand salt –proteininteractions (Nfor et al.,

2010).Inthe model,(1− qp

qmax

p )describesthe fractionoffree

ligands,whichis1ifnoproteinisboundanddecreases

asymp-toticallytozero.Thisisothermincorporatestheeffectofsalt

concentrationinthetermCs.

ThemixedmodeisothermdescribedinEq.(7)reducesto

theHICandIEXisothermmodelsderivedbyMollerup(2006)

whenv=0(electrostaticinteractionsnotpresent)andn=0(no

hydrophobicinteractions),respectively.

2.8.2. Columnchromatographymodel

Column chromatography was simulated based on the

transport-dispersive columnmodelwhich canbedescribed

percomponentasshowninEq.(9)

∂cp,i ∂t +



1ε b εb



∂qp,i ∂t = −v ∂cp,i ∂x +DL,i ∂2cp,i ∂x2 (9)

where,εbisthebedporosity,vistheinterstitialvelocityofthe

mobilephase(m/s),andDListheaxialdispersioncoefficient

(m2/s)

Masstransfercanbequantifiedbythe liquid-filmlinear

drivingforceapproximation.Thesolidstationaryphase

con-centrationterm ∂qp,i

∂t isdefinedasfollowsinEq.(10):

∂qp,i ∂t =kov,i



Cp,i−C∗p,eq,i



(10)

kov,iistheoverallmastranferscoefficient(1/s)andC∗p,eq.isthe

bulkequilibriumconcentrationwhichisobtainedusingthe

mixedmodeisotherm(Eq.(7)).Mixedmodeisotherm

param-eterswereusedtomodelnapinchromatographywhilealinear

isothermwasconsideredtomodelcruciferinchromatography.

The film masstransfer coefficient isdefined in Eq.(11)

(FelingerandGuiochon,2004). 1 kov,i= dp 6∗kf + d2 p 60∗εp∗Dp (11)

wheredpistheparticlediameter(m),kfisthefilmmass

trans-fer coefficient (m/s), εp isthe intraparticleporosity and Dp

is thepore diffusivity(m2/s). To determineadditional

rele-vantmodelparameters,correlationspresentedinTable2were

used.

ColumnboundaryconditionsaredescribedbyDanckwerts

fordispersivesystemsanditisassumedthatthecolumnis

notpreloadedwiththeproteinsCp(t=0)=0andqp(t=0)=0.

C (t,x=0)=Cinlet− DL uh · ∂C (t,x=0) ∂x (12) ∂C (t,x=L) ∂x =0 (13)

wherexistheaxialposition.Eq.(12)representstheboundary

attheinletofthecolumnandEq.(13)theboundarycondition

atthecolumnoutlet.Aspulseexperimentswereperformed,

theinjectionprofileismodelledasarectangularpulsewith

aconstantfeedconcentrationforagiventime,wheretpulse=

Vinj/˚v,where˚visthevolumetricflowrate(m3/s)andVinjis

theinjectionvolume.

Pulse Cinlet(t)=Cfeed,i at 0<t<tpulse (14)

(7)

Table2–Engineeringcorrelationsforcolumnmodelling.

Masstransferparameter Correlation Reference

Hydrodynamicradius StokesEinstein LeVanetal.(1999)

Freediffusivity Young Youngetal.(1980)

Filmmasstransfercoefficient Wilson&Geankoplis WilsonandGeankoplis(1966)

Poretortuosity Wakao&Smith WakaoandSmith(1962)

Porediffusivity Brenner&Gaydos BrennerandGaydos(1977)

Axialdispersioncoefficient Gunn Gunn(1987)

Pressuredrop Karman-Cozeny CartaandJungbauer(2010)

Eq.(9)isapartialdifferentialequation,dependentontime

andcolumnposition,thatcanbeapproximatedtoanordinary

differentialequationbyspatialdiscretization.Themethodof

lineswasusedtodiscretizeEq.(9)inspace.Thesetofordinary

differentialequationswassolvedinMATLABR2017busingthe

ODEsolverode15s.

3.

Results

and

discussion

3.1. Resinandproteinscharacteristics

Theusedproteinisolates,cruciferin,napinandprotein

mix-turewere analyzedbySDS-PAGE (Supplementarymaterial).

Napinandtheproteinmixtureshowedexpectedbandprofiles

thatwerecomparabletotheonesreportedelsewhere(Perera

etal.,2016).Cruciferindidnotshowntheexpectedprofileand

thesolubilityofthisproteinisolateinanyofthetested

condi-tionswasverylimited,thereforetheproteinmixturewasused

toevaluatecruciferinisotherms.

Toavoid an overestimation of the adsorbed phase

pro-teinconcentration, theresin liquid hold-upwasevaluated.

Theobtainedvalueswere9.3␮L,8.7␮L,7.0␮L,9.2␮L,10.0␮L,

9.8␮L,12.4␮Land8.5␮LforCaptoMMC,NuviacPrime,

Toy-opearlMX,PPAHyperCel,CaptoS,POROS50HS,CMSepharose

and MacroPrep50 CM respectively. These hold up volumes

correspond to ∼3−4% of the total volume applied in the

adsorptionexperiments(350␮L).

3.2. Napinadsorptionequilibriumisotherms

Napinadsorptionequilibriumisothermsweredeterminedfor

allresinsatfeedconditions,(0.3MNaClatpH6).Resultsare

shown inFig. 1, wherethe experimentalnapin adsorption

capacityisplotted againstthe equilibriumbulk

concentra-tion.Fromthefigure,onecanobservethatatfeedconditions,

thehighestadsorptioncapacityisobtainedusingresinCapto

MMC,followed byNuviacPrime,POROS HS, PPAHyperCel,

Toyopearl, Capto S, MacroPrep and CM Sepharose.Most of

theresinsshowedamaximumlimitintheamountadsorbed,

which can be described with a Langmuir isotherm model

(Eq.(4)).ResinsCaptoSandCMSepharosepresentedalinear

behavior.Theexperimentaldatawasfittedwithtwoisotherm

models-Langmuirorlineartype.

InadditiontotheresinisothermshapepresentedinFig.1,

theaffinityofnapintotheresinswasalsoobtainedby

deter-miningtheinitialisothermslopes.Theinitialisothermslopeis

anindicationoftheinteractionstrengthbetweentheprotein

andtheresin.Thelargertheisothermslope,thestrongerthe

interaction.Atfeedconditions,theisotherms’initialslopes,

foreachresin,canberankedfromlargesttosmallest:

Cap-toMMC,NuviacPrime,POROSHS, PPAHyperCel, Toyopearl,

Macro Prep, Capto S and CM Sepharose. Absolute values

(obtainedfromfitting)canbefoundinTable3.

Fig.1–Napinadsorptionisothermsonmixedmodeand ionexchangeresinsatpH6and0.3MNaCl.Symbols representexperimentalresults.Errorbarsresultedfrom duplicateexperiments.LinesrepresentLangmuirisotherm forCaptoMMC,NuviacPrime,POROSHS,Toyopearl,PPA HypercelandMacroPrepandlinearisothermforCaptoS andCMSepharose.

Thedifferencebetweenthenapinbindingstrengthonto

the different resins can be explainedbased on the pKaof

theresins(Table1),theisoelectricpointofnapinprotein-in

thiscasearound11-andtheproteinnetchargeatthe

eval-uated conditions.AtpH6,all resinsarenegativelycharged

and napin has a positive net charge. Therefore, attractive

electrostaticinteractionsarepossible.However,thereisalso

salt presentedinthe medium(NaCl) whichcould promote

hydrophobicinteractionsbetweennapinandthemixedmode

resins.Asaltconcentrationof0.3MNaCl–whichcanbe

con-sideredmedium-,provedtobealreadytoohighfortheweak

ion exchangers here evaluated (CM Sepharoseand

Macro-Perp)andevenforthestrongcationexchangerCaptoS.Asthe

preferablescenarioistheadsorptionofnapinatpH6and0.3M

NaCl,CMSepharose,Macro-PrepandCaptoSresinswere

dis-cardedassuitablecandidatesduetothepoorbindingofnapin

undersuchconditions.

TheeffectofionicstrengthandpHwasevaluatedforall

resinsinordertodeterminesuitabledesorptionconditions.

3.2.1. EffectofpHonnapinadsorption

Theionicstrength andpHmighthaveasignificant impact

onthe adsorptionofnapinonmixedmodecationicresins,

cationexchangeresinsandtheanionmixedmoderesinhere

evaluated.ExperimentswereperformedatdifferentpHvalues

keepingthesaltconcentrationconstantat0.3MNaCl,which

correspondtothesameionicstrengthasintheproteinextract.

NapinisothermresultsareshowninFig.2andFig.3.

From Fig. 2, one cannotice that for Capto MMC,Nuvia

(8)

Table3–NapinisothermslopeonmixedmoderesinandionexchangeresinatpH6andpH8anddifferentNaCl(Cs)

concentration.

Resin pH CS(M) Isothermslope

(mL/mLresin)

Resin pH CS(M) Isothermslope

(mL/mLresin) CaptoMMC 6 0.1 1185.4+245.2 Capto S 6 0.1 146.1+12 0.3 437.6+266.1 0.3 1.4+0.1 1.0 23.1+7.9 0.7 Notadsorbed 8 0.1 1114.4+248.8 8 0.1 25.2+3.8 0.3 99.3+25.6 0.3 0.2+0.0 0.7 17.8+6.8 0.7 Notadsorbed NuviacPrime 6 0.1 620.9+78.3 POROS50HS 6 0.1 453.8+76.2 0.3 67.5+17.23 0.3 52.5+14.9 1.0 1.3+0.01 0.7 0.7+0.9 8 0.1 276.6+57.5 8 0.1 108.9+22.5 0.3 20.2+3.5 0.3 6.0+1.8 0.7 2.1+0.2 0.7 Notadsorbed Toyopearl 6 0.1 97.4+13.6 CM Sepharose 6 0.1 8.5+3.0 0.3 5.9+5.02 0.3 0.3+0.0 1.0 0.4+0.2 0.7 Notadsorbed 8 0.1 52.4+9.1 8 0.1 13.5+1.9 0.3 1.8+0.3 0.3 0.2+0.0 0.7 0.5+0.1 0.7 Notadsorbed PPAHyperCel 6 0.1 1.9+0.1 MacroPrep 6 0.1 67.4+14.8 0.3 8.5+3.4 0.3 3.6+1.3 1.0 13.0+3.7 0.7 Notadsorbed 8 0.1 7.7+7.5 8 0.1 19.8+2.6 0.3 15.4+2.8 0.3 0.8+0.1 0.7 35.4+7.9 0.7 Notadsorbed

Fig.2–NapinadsorptionisothermsatdifferentpHkeepingsaltconcentrationat0.3MNaCla)CaptoMMCresin,b)Nuvia cPrimeresin,c)Toyopearlresinandd)PPAHyperCelresin.Symbolsrepresentexperimentalresults.Errorbarsresultedfrom duplicateexperiments.LinesrepresenttheLangmuirisotherm.

capacitywithincreasingpH.Thiscanbeexplainedbythe pro-tein’snetchargeandtheresinligand’spKa.Theweakcation exchangersarenegativelychargedatpHhigherthanthepKa, whiletheoppositeoccursforweakanionexchangers,which arepositivelychargedatpHlowerthanthepKa.Strongcation exchangersarepractically alwayschargedatanypH(Carta andJungbauer,2010).Theinteractionsbetweenmixedmode

resinsandproteinshavebeenexplainedbydifferentauthors

(Nforetal.,2010).TheinteractionisstrongestclosetothepKa

oftheligandanddecreasesifthepHisclosetothepIofthe

protein,whichisclearlyobservedhereforToyopearl,Capto

MMC,NuviacPrimeandPOROSHS.AtpH4,thenetcharge

ofnapinisaround12whileatpH8,thenetchargedecreases

significantlytoaround4.Thenetchargeofnapinat

(9)

Fig.3–EffectofionicstrengthonnapinadsorptiononCaptoMMC,POROSHSandPPAHyperCelatpH6andpH8.Symbols representexperimentalresults.Errorbarsresultedfromduplicateexperiments.Linesrepresentthemixedmodeisotherm thatthedatahasbeenfittedto.

sequence(obtainedfromtheRCSBProteinDataBank(PBD))

andEq.(16)(Supplementarymaterials).

znet=



i Nbasic,i 1+10pH−pKai − Nacidic,i 1+10pH−pKai (16)

Whereznet isthe net chargeNbasic,i isthe numberofbasic

aminoacidsandNterminal,andNacidic,iisthenumberofbasic

aminoacidsandCterminal.

Theoppositebehavior isobservedwith theweak anion

mixed mode resin PPA HyperCel: an increase in

adsorp-tion capacitywithanincrease ofpH.Sincethe pKaofthe

PPA HyperCel resin ligand is around 8, the resin is

posi-tivelycharged.Becausenapinisalsopositivelychargedatall

theevaluatedpH values,thereisanelectrostaticrepulsion

betweenthe resin and the protein.The adsorptionis

con-sequentlyaresultofthehydrophobicinteractions between

napinandtheresinandtheelectrostaticrepulsion.ThepH

hasabiginfluenceontheadsorptionofnapininPPAresin,

astheisothermslopeandisothermshapechangewithpH:

thereisahighernapinaffinitytotheresinatahigherpH.

However,theadsorptioncapacityisstilllowerthanthe

max-imumobtainedatfeedconditionpH6and0.3MNaClwith

otherresins(e.g.40mg/mLbyCaptoMMC),whichdecreases

PPAresinscore.

Eventhough,thereisanotoriouschangeonnapin

adsorp-tionatdifferentpHvalues,theCaptoMMCresinistheleast

influenced,showingafavorableisothermevenatpH8.On

theotherhand,napinadsorptionstrengthonNuviacPrime,

POROS 50 HS and Toyopearl is significantly reduced. The

isothermslopesofallthe resinsatdifferentconditionsare

indicatedinTable3.

Theisothermsloperepresentstheaffinityoftheproteinto

theresin(thebindingstrength)whichisclearlymuchhigher

forCaptoMMCatalmostanypHvalue.However,thisisnot

necessary an advantage,as a higher pH might be needed

todesorbnapinwiththisresin,possiblyinterferingwithits

nativestructure,stablebetweenpH3–12(Wanasundara,2011),

(10)

Theseresultscanbeusedtoidentifydesorptionconditions

ofthebestperformingresin.

3.2.2. Effectofionicstrengthonnapinadsorption

Higher ionic strength is known to promote hydrophobic

interactionsduetotheso-called“salting-out”effect.Three

dif-ferentsaltconcentrations(ionicstrengths)weretestedattwo

differentpHconditions.Mostofthetestedresinsshowed

sim-ilartrends:adecreaseofnapinadsorptionstrengthwithan

increaseofionicstrength.Thiscanbeobservedbythelower

isothermslopevaluesandexperimentalcapacitiesobtained

athighersaltconcentrations(SeeFig.3andTable3).This

sug-geststhatnapinadsorptiononmixedmoderesinsismainly

controlledbyionicinteractions.

TheexceptionwasPPAresin,whichpresentedanincrease

innapin adsorptionwith increasing salt concentration. As

previouslymentioned,sinceforthisresinelectrostatic

inter-actionsarerepulsive,anincreaseinthebindingcapacityof

napinshouldbemainlyduetoanincreaseinthestrengthof

hydrophobicinteractions.Nosignificantimprovementinthe

adsorptionofnapinwas observedbetweenpH6and pH8,

atdifferentsaltconcentrations.Thismightsupportthefact

thatnapinadsorptiononPPAHyperCelischaracterizedonly

byhydrophobicinteractionsinthatrange.

Basedontheisotherm slope,onecannotice thatCapto

MMChasthelargestaffinityfornapin.However,thismight

complicatethedesorptionand recoveryoftheproteinafter

thecapturestep,asevenathighpHandsaltconcentrations

theisothermisfavorable.Asaconsequence,especiallyharsh

conditions(e.g.pHhigherthanthepIofthenapin)mightneed

tobeapplied.Thedeterminednapinisotherm slopesatall

testedconditionsareshowninTable3.

Fromtheobtainedresultsitisclearthattheeffectofionic

strengthismoresignificantthantheeffectofpH,especiallyfor

thePPAHyperCelresin.Whencomparingtheresultsforthat

resin(Fig.3eandf),theisothermsseemtooverlap.Thiswas

expected,astheadsorptionofnapinoccursmainlythrough

hydrophobicinteractions.Thiseffectcanbeevaluatedby

com-paringtheratiobetweentheisothermslopesattwodifferent

saltconcentration(ataspecificpH)andtheratiobetweenthe

isothermslopesattwodifferentpHconditions(ataspecific

saltconcentration).

Similar isotherm trendsto the onesdetermined inthis

workwereobservedintheresearchofNforetal.(2010).The

authorsevaluatedlysozyme(similarpIandmolecularweight

asnapin)adsorptiononCaptoMMCandPPAHyperCel.The

adsorptioncapacityoflysozymewasinthesameorderof

mag-nitudeastheoneobtainedfornapininthiswork.Inaddition,

similarisothermcurveswereobservedwhencomparingtwo

pHvaluesandonesaltconcentration.

Allthisinformationwasusedtoselectthemostsuitable

resinfornapincapture.

3.3. Proteinmixtureadsorptionexperiments

Batch adsorptionexperiments were performed using

solu-tionsofaproteinmixture(napin+cruciferin),toevaluateboth,

theeffect ofcruciferinonnapin’sadsorptionand to

deter-minecruciferin’sadsorptionisotherms.Atfeedconditions,it

isexpectedthatcruciferinpoorlybindstotheresins,asthepH

isclosetothepIofthisprotein(∼7).Acomparisonbetweenthe

expectednapinadsorptioncapacityandtheadsorption

capac-ityobtainedfromtheexperimentsusingtheproteinmixture

wasdoneandtheresultscanbefoundinFig.4.

Fig.4–Napinadsorptioncapacitycomparisonbetween expectedcapacityandexperimentallyobtainedfrom proteinmixtureexperimentsatpH6and0.3MNaCl. Expectedcapacitywascalculatedfromsinglecomponent isotherm.

Thepresenceofcruciferinseemstoenhancenapin

adsorp-tionatpH6and0.3MNaClforPOROSHSandCaptoSwhere

higher adsorption capacities than expected were obtained.

Thisbehaviormightbeexplainedbythechargeofthe

pro-teins.AtpH6,bothcruciferinand napinpossessapositive

netcharge,allowingcruciferintobindtotheresinsaswell.

However,cruciferinisconsideredalargeprotein,andin

solu-tion withnapin, the positivecharge oncruciferin’s surface

mighthaveresultedinastrongelectrostaticrepulsionofnapin

molecules.Bycreatingalessfavorablechemicalenvironment

intheliquidsolution,thepresenceofcruciferinmightthenbe

improvingtheadsorptionofnapinmoleculesontothetested

resins.

In all experiments (Supplementary material), cruciferin

showedaverysmallchangeinconcentrationafter

equilibra-tionwiththeresins,whichindicatedalowbindingstrength.

OnlyresinPPAHyperCelshowedarelativelyhighcruciferin

concentrationchange.Thecruciferin’sisothermslopevalues

were obtained by fitting a linear curve to the

experimen-tallyobtainedcapacities(asfunctionoftheequilibriumliquid

concentrations).Theobtainedvalueswere2.0+1.3,0.8+0.1,

2.3+1, 22.1+8.2, 1.6+0.5 and 0.9+0.7mL/mLresin for Capto

MMC,NuviacPrime,Toyopearl,PPAHyperCel,POROSHSand

Capto S respectively. Cruciferin’s isotherm slope is

signifi-cantly lower than the oneof napin for resin Capto MMC,

NuviacPrimeandPOROSHS,suggestingapreferential

bind-ingofnapintotheseresins.Napinisothermslopevalueswere

slightlyhigherforresinsCaptoSandToyopearlandcruciferin’s

isotherm slopewas higherthan napin’sisothermslopefor

resin PPA HyperCel. Asdiscussed before,for PPAHyperCel

resin,bindingismainlycharacterizedbyhydrophobic

inter-actions.Because,cruciferinisamorehydrophobicmolecule

thannapin,thismightexplainthehigheraffinitytowardsthis

resin.Alltheobtainedresultswereusedtoidentifythemost

suitableresinforthecaptureofnapin.

3.4. Resinselection

Themostsuitableresin fortheseparationofnapinan

cru-ciferin was selected using the previously definedselection

criteria (2.6 Resin selection). 1) Napin adsorption capacity

atfeedconditions(pH6with0.3MNaCl),2) bestdesorption

conditions(basedonthelowestisothermslopeobtainedfor

(11)

Table4–Valuesofeachcriterion(napincapacity,selectivity,resinpriceanddesorption)usedforresinselectionand resinscores.

Napincapacitya(mg/mL) Selectivityb(-) 1/slopedesorptionc(mL

resin/mL) Price/highestprice(-) Resinscore

CaptoMMC 40.0 219.9 0.1d 0.8 66%

NuviacPrime 34.3 81.3 0.8e 0.8 57%

Toyopearl 14.1 2.5 2.6f 1.0 37%

PPAHyperCel 26.6 0.4 0.5g 1.0 41%

POROSHS50 30.0 33.0 5.6h 0.5 75%

a Napincapacityat0.3MNaClandpH6.

b Ratiobetweennapinancrucferinisothermslopesat0.3MNaClandpH6. c Inverseofisothermslope:

d at0.7MNaClandpH8; e at1.0MNaClandpH6; f at1.0MNaClandpH6; g at0.1MNaClandpH6; h at0.7MNaClandpH8.

price.Adsorption(napincapacity)and desorptionwere the

two criteria with higher importance in the selection

pro-cess.Aspreviouslymentioned,resinsCaptoS,CMSheparose

andMacroPrepwherediscarded,astheyshowedsignificantly

lower napincapacity comparedtothe other resins atfeed

conditions.TheresultsareshowninTable4.

EventhoughresinCaptoMMCpossessesthehighestnapin

capacity(in allconditions tested)andselectivity,this resin

wasnotselectedasthemostpromising.Thereasonhasto

domainly withdesorption, possiblyrequiring a pHhigher

thannapin’spI,which,aspreviouslymentioned,canleadto

problemswiththestructuralstabilityofnapin.Therefore,

des-orbingatapHabovethepIisnotrecommended.Thebest

performing resin in terms of desorption performancewas

POROSHS, sinceitsresultsindicatethatdesorption canbe

performedathighsaltconcentrationwithoutincreasingthe

pHtoahigher valuethan napin’spI.Despite beingsecond

bestondesorptioncriteria.theToyopearlresinalsoshowed

amuchloweradsorptioncapacityfornapinwhencompared

toCaptoMMC andNuviacPrimeatfeedconditions.

There-fore,theToyopearlresinscoredthelowestintheadsorption

capacitycriterion.

PPAHyperCelandPOROSHSshowedcomparable

adsorp-tion capacities at feed condition. Nevertheless, from the

experiments performed with the protein mixture it was

clear that cruciferin also interacts with resin PPA

Hyper-Celhavinganevenlarger isothermslope than napin. This

wasobservedwiththeobtainedselectivityvaluewhichwas

lowerthanunity,indicatingthatatpH6and0.3MNaCl,

cru-ciferininteractsmorefavorablywithPPAHyperCelresinthan

napin.

Thelastevaluatedselectioncriterionwasresincost,with

resinPOROSHSbeingthe cheapestone,asthepricerange

isaroundhalfthepriceobtainedforthemixedmoderesins.

Eventhoughthiscriterionwasevaluatedwithalowerweight,

itwastakenintoaccount,asprocesseconomicsisasignificant

factorinprocessdevelopment.

3.5. Mixedmodeisothermparameterestimation

NapinadsorptiondataobtainedforPOROSHSresinwasused

inorder tofit theisotherm modeldescribed in 2.8.1Mixed

mode isotherm model. Since POROS HS is a strong cation

resin,therearenohydrophobicinteractionspresentedandthe

parameternfromEq.(7)wassettozero.Inordertoreducethe

complexityofsolvingthenon-linearsystem,themodelwas

linearizedbyapplyingthenaturallogarithminbothsidesof

theequationandtheregressionwasperformedasexplained

in2.5.2Parameter estimation.Theexperimentaldatafrom

thethreeevaluatedsaltconcentrationswerefittedto

deter-minethesetofparametersKeq,v,KpandKs,foreachpHvalue.

Themaximumadsorptioncapacity(qmax

p )wasobtainedfrom

adsorptionequilibriumexperimentsfromproteinmixtureand

theobtainedvaluewas44mg/mLresin.Theregressed

parame-tersareshowninTable5.

Thestoichiometriccoefficient(v) ofthe saltcounter ion

at pH6 was higher than at pH8, which was expected. For

thissystem,visequaltoproteinbindingcharge.AtpH

val-uesapproachingthepIoftheprotein(napinpI∼11),thenet

chargeoftheproteinapproacheszero(lower)andthe

electro-staticbindingstrengthbecomesweaker,resultinginalower

bindingcapacity.Kpistheparameterthatdescribesthe

differ-encebetweenwater-proteinandprotein–proteininteractions

(Mollerup,2006).TheregressedKpforbothpHvalues(6and

8)hadapositivevalue,suggestingthatinteractionsbetween

protein-water were stronger than protein-protein

interac-tions. Thisalso matches the observations obtainedin this

workandthedatafromliterature,indicatingahigh

solubil-ityofnapininwater.SimilartoKp,theparameterKsdescribes

thedifferencebetweenwater–proteinandsalt–protein

inter-actions (Mollerup, 2006). The obtained Ks values at both

evaluatedpHconditionswerearoundzero,implyingthatthe

strength ofprotein-saltinteractionsisnotsignificantly

dif-ferentthanprotein-waterinteractions.Byanalyzingthetwo

differentinteraction parameters-Kp andKs -,thestrength

ofwater-protein,protein-saltandprotein-proteininteractions

couldbeinferred.Inthissystem,giventhatKp>0andKs≈0,

protein-waterinteractionsweredominant.

ThepHvalueofmobilephasehasaninfluenceonthe

bind-ingchargeoftheproteinwhichconsequentlychangesthev

valueanditisexpectedtobelowerwhenthepHiscloserto

thepIoftheprotein.InordertoincludetheinfluenceofpHon

thestoichiometriccoefficient,approachesliketheonefrom

Pirrungetal.(2018)couldbeused.ThevforPOROSdecreases

withincreasingofpHwhichcorrespondstotheinfluenceof

pHonelectrostaticinteractions.

Alinearisothermmodelwasconsideredforcruciferin

(12)

Table5–IonexchangeisothermparametersofnapinproteininPOROSHSresinatpH6andpH8.

lnKeq v KP(mM-1) KS(mM-1) R2 SD

POROSHSpH6 6.6+0.3 1.9±0.4 2.3±2.7 −5×10-3+1×10-3 0.97 0.2

POROSHSpH8 5.8±0.2 1.2±0.2 0.8±1.0 −9×10-3+8x10-3 0.98 0.1

3.6. Columnchromatography

Twopulseexperimentswereperformedatsmallscale(∼10mL columnvolume)usingeitherasolutionofnapinora solu-tionofproteinmixture(napin+cruciferin).Theexperimental resultswere comparedwith the model output and can be foundinFig.5.Thedataobtainedfromthechromatography

stationwasnormalizedforeasiercomparisonwiththe

mod-elingresults.

AscanbeseeninFig.5,themodelisinexcellentagreement

withtheexperimentalresultsfornapinassinglecomponent

andalsowhennapinisinthepresenceofthesecondprotein,

cruciferin.Analyzing napinresults(Fig.5a),onecannotice

thatnodesorptionofnapinoccursafter5CVofwashingstep,

whichsuggestsastrongbindingattheseconditions(asshown

bythedeterminedisotherm).Elutionwithhighsalt

concen-tration(0.7MNaCl)and pH8showsaverysharp peak.This

wasexpectedasattheseconditions,napincapacityinPOROS

HSisclosetozero.HighsaltandpHconditionswerechosenin

ordertohavehighrecovery,whichcorrespondto100%based

onmassbalance(evaluatedbynumericalintegration).Note

thathighpHmightnotbeneededtofullydesorb this

pro-tein.Afterdesorption phase,the columnwaswashed with

aconcentratedsaltsolution(1MNaCl)untilnoabsorbance

at280nmwasdetected.Themaximumnapinconcentration

detectedwas6.8+0.1g/L.

Protein mixture chromatogram is presented in Fig. 5b.

Napinelutionprofileusingthisbinarymixturecorresponds

to the one obtained using single component napin. After

applyingtheelutionbuffer,againasharp peakisobserved

withapeakmaximumataround6.0CV(approximatelyone

columnvolumeaftertheswitchinconditions).Inthis

exper-iment, anextra peakisobserved duringthe washing step,

whichmightcorrespondtocruciferinprotein.Usingalinear

isothermmodelforcruciferinprotein(slope1.6mL/mL)and

performingthesimulation,onecanobservedapeakataround

1.8CV(washingstep).Comparingcruciferinsimulationresults

withexperimentalresults,itisclearthatcruciferinisotherm

slopewasoverestimated.Thisbecausetheexperimentalpeak

exitedthe columnearlier(∼1CV)andit issharperbut also

presentedtailing.Thistailingmightbecausedbythesizeof

cruciferin,whichisaround300kDa.Thedifferencebetween

theexperimentalandsimulatedresultsmightbeattributed

tocruciferinequilibriumparameter.Aspreviouslymentioned,

duringbinarymixtureexperimentscruciferindatapresented

verysmallchangeswhichweredifficulttoquantify.Besides

thesedifficulties, the model shows excellent agreement in

respecttonapinprotein.Themaximumnapinconcentration

obtainedinthechromatogramoftheproteinmixturepulse

experimentwas7.8+0.1g/L.Thisvalueishigherthantheone

obtainedintheexperimentwithpurenapinexperimentdue

totheslightlyhighernapinconcentrationapplied.

Using column experimental results from the protein

mixture, the slope of cruciferin was calculated to be

0.6mL/mLresin,whichconsequentlyincreasedtheselectivity

ofnapintoPOROSHSresinto87.0.

Thevalidatedmodelcanbethenusedforindustrialcolumn

designtoidentifycolumnsizingand operatingparameters.

Scaleupofchromatographyprocessesfromlaboratoryresults

isusuallydonebykeepingbedheightandvelocityconstant

andchangingcolumndiameter.However,thismakes

scalabil-ityinflexible,oftenresultingincolumnvolumesthatcannot

satisfythedesiredcapacityorthatdomarchthecapacities

foundatpilotand industrialscale,wherecompaniesoften

possessalreadyexistingequipment.Pre-determinedvolumes

(Stabyetal.,2017),withfixedcolumndiameterandadjustable

headers. The use of the previous model could reduce the

numberofexperimentsorinvestmentrequiredtosatisfy

pro-duction.

The following section describe the use of the previous

modeltodesignanionexchangecolumnfortheseparation

oftheseproteins.Themodelwasappliedtoahypothesized

casestudy consideringthe productionofrapeseedmealin

theNetherlands.Thiscasestudycanbeusedasbaseforlarge

scalepurificationofoilseedmeals.

3.7. Adsorptiveprocessdesignforthepurificationof napin,cruciferinandsinapicacidfromrapeseedmeal

Rapeseedproductionhassignificantlyincreasedinthe last

years, havinga globalproduction of75 million Mtin2018

where 25 million Mt were produced in Europe (Food and

AgricultureOrganizationoftheUnitedNations(FAO),2019).

Asmentionedbeforethemainproductobtainedfrom

rape-seedisoilforhumanconsumption, usuallyextracted from

theseedbymechanicalandsolventextraction(Fetzeretal.,

2018;Wanasundaraetal.,2017).Asbyproduct,rapeseedmeal

withahighproteincontent(∼40%drybasis),mainly

consist-ingofcruciferinandnapin(Contrerasetal.,2019;Lomascolo

et al., 2012; Wanasundara et al., 2017)isgenerated. In the

Netherlands,around3500MTofrapeseedmealwere

gener-atedin2018,correspondingtoaround1400MToftotalprotein.

Aconceptualdownstreamprocess(DSP)ofrapeseedmealfor

thepurificationofproteinsandpolyphenolsisshowninFig.6.

TheDSPincludes:anaqueousextractionassistedwithsalts

(Bérotetal.,2005)tosolubilizethedifferentcomponentsin

themeal,followedbyasmallmoleculeseparation(phyticacid,

polyphenolscompounds,carbohydrates)usingultrafiltration

with acut-off membraneof3kDa. Theprotein rich

reten-tateissenttoanionexchange(IEX)columnwherenapinis

capturedandcruciferinflowsthrough.Thepermeatecanbe

furtherprocessedtorecoversinapicacid(majorpolyphenolin

rapeseedmeal)usingadsorption(hydrophobicresins),as

rec-ommendedbyMoreno-Gonzálezetal.(2020)andSilvaetal.

(2018a) orliquid-liquid extraction(withorganic solventsor

ionicliquids)assuggestedbySilvaetal.(2018b).Thepurified

fractions of napin and cruciferin, obtained after the

chro-matographycolumn,arethensenttoanothermembraneunit

toremovethesaltsbeforebeingsenttothefinaldryingstage.

Following the adsorptionmethod forsinapic acid recovery

fromMoreno-Gonzálezetal.(2020),elutionandregeneration

(13)

mix-Fig.5–ModelpredictionvsExperimentaldataofNapin(a)andProteinmixture(b)onPOROS50HScolumn.Loading conditionpH6and0.3MNaCl,stepelutionatpH8and0.7MNaCl.Concentrationdatawasnormalized.

(14)

tureswhichcanberecoveredbydistillationandrecycledtothe

column.Toobtainsinapicacidcrystals,amultipleeffect

evap-orationcanbeusedtocrystalizethepolyphenol(Silvaetal.,

2018b).Theevaporatedsolventisdirectedtothedistillation

columnandsinapicacidcrystalsarethenfiltered,washedand

dried.

Consideringthattheannualproductionofrapeseedinthe

Netherlandsis5836tons(FoodandAgricultureOrganization

ofthe United Nations (FAO), 2019) and assuming that the

firststagesoftheprocess(aqueousextraction,centrifugation,

smallmoleculesseparation)accountanoverallproteinyield

of90%theinitialproteinextractflowratecanbeestimated.

Theionexchangecolumnforproteinpurificationcanbe

sizedusingthepreviousmodel.TheselectedresinPOROS50

HShasapolymericmatrix(rigidparticles)andaparticlesizeof

50␮mandbasedonsupplierspecification,thisresinpossesses

high mechanicalresistance (100bars). For astainless-steel

column,a maximumof 50barpressure drop was setfor a

columndiameterof1m(Schmidt-Traub etal., 2013).

Maxi-mumcolumnheightusingthisresincanbeestimatedusing

Karman-Cozenyequation,anditcorrespondsto1m.

Thecolumnmodelisthenusedtodeterminetheoperation

oftheionexchangecolumn,inspecifictoidentifytheloading

volume,whichisthiscaseistwocolumnvolumes.The

load-ingvolumeislowbecausetheconcentrationofeachproteinin

theproteinrichextractisrelativelyhigh(higherthan8g/L)and

theresingetstoequilibriumsaturationwithrelativelylow

vol-ume.Forthissimulation,anisothermslopeof0.6mL/mLresin

wasconsidered forcruciferin equilibrium.Themodel

indi-catesaresinutilizationof82%andanapinyieldof98%with

>99%purity.Intheflowthrough,cruciferinisrecovered(>99%

yieldand>98%purity).Theproductivitycalculatedwiththis

columnsize(1mdiameterand1mheight)is26.3gNapin/LR/h,

whichconsequentlyproduces52.1MT/a.Thisaccountsto12%

ofthetotalamountofnapinthancanberecoveredfromthe

rapeseedmealgeneratedintheNetherlandsusing oneion

exchangecolumn.

Itispossibletopurifytheannualproductionofrapeseed

mealbycalculatingthenumberofcolumnsneededto

oper-ateinparallel andthe number ofcyclesthat each column

can berun. It isimportant tokeep in mind that this is a

preliminaryevaluationandthatbreakthroughcurve

experi-mentsfornapinwillbestillneededtocorroboratetheselected

loading.Inaddition,forthisestimationasimilarcolumn

oper-ationintermsofdesorptionwasselected(5CV)whichcould

bereduced,asbasedonthecolumnexperiments,fullnapin

recoverymightbeachievedwithless volume.Operation of

theionexchangecolumncanalsobeadaptedtocontinuous

(Simulatedmovingbed)orsemi-continuous(CaptureSMBand

PeriodicCountercurrentChromatography,PCC)withmultiple

columnsconnectedinseriesoroperatinginparallel.In

addi-tion,economic feasibilityshould beassessedwith adetail

economicevaluationtoidentifyoverall capitalexpenditure

(CAPEX)andtheoveralloperationalcost(OPEX)and

perform-ingforinstanceacashflowanalysis.

4.

Conclusions

Highthroughputprocessdevelopment(HTPD)generates

reli-ableandsignificantinformationinashorttimeperiod.Inthe

caseofadsorptiveprocesses,HTPD,differentresinsand

condi-tionscouldbeassessedinparallelwhichallowsproperresin

choice.Thegeneratedinformationcanbeusedin

combina-tionwithmechanisticmodelstoevaluatetechnicalfeasibility

ofaprocessdesignwhichinvolvesprocessunderstandingand

contributestofastprocessdevelopment.

Declaration

of

interests

The authors declare that they have no known competing

financialinterestsorpersonalrelationshipsthatcouldhave

appearedtoinfluencetheworkreportedinthispaper.

Acknowledgments

ThisworkwassupportedbytheISPT(InstituteofSustainable

ProcessTechnology)undertheprojectCM-20-07inAdsorption

ofnon-volatilesfromfoodproducts.Thankstotheindustrial

partnersDSM,Unilever,FrieslandCampinaandRoyalCosun

fortheirvaluableinputthroughtheproject.Theauthorsare

alsothankfultoYiSongfromDelftUniversityofTechnology

foralltheprovidedlabsupport.

Appendix

A.

Supplementary

data

Supplementary material related to this article can be

found, in the online version, at doi:https://doi.org/10.

1016/j.fbp.2020.11.011.

References

Sevillano,D.M.,vanderWielen,L.A.M.,Hooshyar,N.,Ottens,M.,

2014.Resinselectionfortheseparationofcaffeinefromgreen teacatechins.FoodBioprod.Process.92,192–198.

Adachi,M.,Kanamori,J.,Masuda,T.,Yagasaki,K.,Kitamura,K.,

Mikami,B.,Utsumi,S.,2003.Crystalstructureofsoybean11S

globulin:glycininA3B4homohexamer.Proc.Natl.Acad.Sci. U.S.A.100,7395–7400.

Aider,M.,Barbana,C.,2011.Canolaproteins:composition,

extraction,functionalproperties,bioactivity,applicationsasa foodingredientandallergenicity–apracticalandcritical review.TrendsFoodSci.Technol.22,21–39.

Akbari,A.,Wu,J.,2015.Anintegratedmethodofisolatingnapin

andcruciferinfromdefattedcanolameal.LWT-FoodSci. Technol.64,308–315.

Bérot,S.,Compoint,J.P.,Larré,C.,Malabat,C.,Guéguen,J.,2005.

Largescalepurificationofrapeseedproteins(Brassicanapus L.).J.Chromatogr.B.818,35–42.

Brenner,H.,Gaydos,L.J.,1977.Theconstrainedbrownian

movementofsphericalparticlesincylindricalporesof comparableradius:modelsofthediffusiveandconvective transportofsolutemoleculesinmembranesandporous media.J.ColloidInterfaceSci.58,312–356.

Carta,G.,Jungbauer,A.,2010.ProteinChromatography:Process

DevelopmentandScale-up.JohnWiley&Sons.

Contreras,Md.M.,Lama-Mu ˜noz,A.,ManuelGutiérrez-Pérez,J.,

Espínola,F.,Moya,M.,Castro,E.,2019.Proteinextractionfrom

agri-foodresiduesforintegrationinbiorefinery:potential techniquesandcurrentstatus.Bioresour.Technol.280, 459–477.

Felinger,A.,Guiochon,G.,2004.Comparisonofthekinetic

modelsoflinearchromatography.Chromatographia60 (Suppl.1),S175–S180.

Fetzer,A.,Herfellner,T.,Stäbler,A.,Menner,M.,Eisner,P.,2018.

Influenceofprocessconditionsduringaqueousprotein extractionuponyieldfrompre-pressedandcold-pressed rapeseedpresscake.Ind.CropProd.112,236–246.

FoodandAgricultureOrganizationoftheUnitedNations(FAO),

2019.FAOSTATProductionQuantity(accessed24March2019)

http://www.fao.org/faostat/en/#data/QC.

Gerzhova,A.,Mondor,M.,Benali,M.,Aider,M.,2015.A

(15)

andconventionalextractionmethodontheextractability, compositionandphysicochemicalpropertiesofcanola proteinconcentratesandisolates.FoodBiosci.11,56–71.

Ghodsvali,A.,Khodaparast,M.H.H.,Vosoughi,M.,Diosady,L.L.,

2005.Preparationofcanolaproteinmaterialsusing

membranetechnologyandevaluationofmealsfunctional properties.FoodRes.Int.38,223–231.

Gunn,D.J.,1987.Axialandradialdispersioninfixedbeds.Chem.

Eng.Sci.42,363–373.

Hou,F.,Ding,W.,Qu,W.,Oladejo,A.O.,Xiong,F.,Zhang,W.,He,R.,

Ma,H.,2017.Alkalisolutionextractionofriceresidueprotein

isolates:influenceofalkaliconcentrationonprotein

functional,structuralpropertiesandlysinoalanineformation. FoodChem.218,207–215.

Jyothi,T.,Sinha,S.,Singh,S.A.,Surolia,A.,Rao,A.A.,2007.Napin

fromBrassicajuncea:thermodynamicandstructuralanalysis ofstability.BiochimicaetBiophysicaActa(BBA)-Proteinsand Proteomics1774,907–919.

Kodagoda,L.P.,Nakai,S.,Powrie,W.D.,1973.Somefunctional

propertiesofrapeseedproteinisolatesandconcentrates. CanadianInstituteofFoodSci.Technol.J6,266–269.

LeVan,D.M.,Carta,G.,Yon,C.M.,1999.Adsorptionandion

Exchange.In:Perry,R.H.,Green,D.W.(Eds.),Perry’SChemical Engineers’Handbook.,sevened.McGraw-Hill,NewYork,pp. 16–19.

Lomascolo,A.,Uzan-Boukhris,E.,Sigoillot,J.-C.,Fine,F.,2012.

Rapeseedandsunflowermeal:areviewonbiotechnology statusandchallenges.Appl.Microbiol.Biotechnol.95, 1105–1114.

Mollerup,J.M.,2006.Appliedthermodynamics:anewfrontierfor

biotechnology.FluidPhaseEquilibr.241,205–215.

Mollerup,J.M.,2007.Thethermodynamicprinciplesofligand

bindinginchromatographyandbiology.J.Biotechnol.132, 187–195.

Mollerup,J.M.,Hansen,T.B.,Kidal,S.,Staby,A.,2008.Qualityby

design—thermodynamicmodellingofchromatographic separationofproteins.J.Chromatogr.A1177,

200–206.

Moreno-González,M.,Girish,V.,Keulen,D.,Wijngaard,H.,

Lauteslager,X.,Ferreira,G.,Ottens,M.,2020.Recoveryof

sinapicacidfromcanola/rapeseedmealextractsby adsorption.FoodBioprod.Process.120,69–79.

Murray,D.E.,Terrence,M.J.,Barker,L.D.,Myers,C.D.,US4208323A,

USApatent1980.ProcessforIsolationofProteinsUsingFood

GradeSaltSolutionsatSpecifiedpHandIonicStrength.

NationalCenterforBiotechnologyInformation,2020.PubChem

Database.Tryptophan,CID=6305(accessedonJan.16,2020)

https://pubchem.ncbi.nlm.nih.gov/compound/Tryptophan.

Nfor,B.K.,Noverraz,M.,Chilamkurthi,S.,Verhaert,P.D.,vander

Wielen,L.A.,Ottens,M.,2010.High-throughputisotherm

determinationandthermodynamicmodelingofprotein adsorptiononmixedmodeadsorbents.J.Chromatogr.A1217, 6829–6850.

Perera,S.P.,McIntosh,T.C.,Wanasundara,J.P.,2016.Structural

Propertiesofcruciferinandnapinofbrassicanapus(canola) showdistinctresponsestochangesinphandtemperature. Plants.5,36.

Pickardt,C.,Neidhart,S.,Griesbach,C.,Dube,M.,Knauf,U.,

Kammerer,D.R.,Carle,R.,2009.Optimisationofmild-acidic

proteinextractionfromdefattedsunflower(Helianthusannuus L.)meal.FoodHydrocoll.23,1966–1973.

Pirrung,S.M.,ParrucadaCruz,D.,Hanke,A.T.,Berends,C.,Van

Beckhoven,R.F.W.C.,Eppink,M.H.M.,Ottens,M.,2018.

Chromatographicparameterdeterminationforcomplex biologicalfeedstocks.Biotechnol.Prog.34,1006–1018.

Pudel,F.,Tressel,R.P.,Düring,K.,2015.Productionandproperties

ofrapeseedalbumin.LipidTechnol.27,112–114.

Raab,B.,Schwenke,K.D.,1984.Simplifiedisolationprocedurefor

the12Sglobulinandthealbuminfractionfromrapeseed

(BrassicanapusL.).Nahrung28,863–866,

http://dx.doi.org/10.1002/food.19840280820.

Rommi,K.,Ercili-Cura,D.,Hakala,T.K.,Nordlund,E.,Poutanen,

K.,Lantto,R.,2015.Impactoftotalsolidcontentand

extractionphonenzyme-aidedrecoveryofproteinfrom defattedrapeseed(BrassicarapaL.)presscakeand

physicochemicalpropertiesoftheproteinfractions.J.Agric. FoodChem.63,2997–3003.

Schmidt,I.,Renard,D.,Rondeau,D.,Richomme,P.,Popineau,Y.,

Axelos,M.A.-V.,2004.Detailedphysicochemical

characterizationofthe2sstorageproteinfromrapeseed (BrassicanapusL.).J.Agric.FoodChem.52,5995–6001.

Schmidt-Traub,H.,Schulte,M.,Seidel-Morgenstern,A.,2013.

PreparativeChromatography,seconded.JohnWiley&Sons, Incorporated,Weinheim,Germany.

Silva,M.,Castellanos,L.,Ottens,M.,2018a.Captureand

purificationofpolyphenolsusingfunctionalizedhydrophobic resins.Ind.Eng.Chem.Res.57,5359–5369.

Silva,M.,García,J.C.,Ottens,M.,2018b.Polyphenolliquid-liquid

extractionprocessdevelopmentusingNRTL-SAC.Ind.Eng. Chem.Res.57,9210–9221.

Staby,A.,Rathore,A.S.,Ahuja,S.,2017.Preparative

ChromatographyforSeparationofProteins.JohnWiley& Sons,Incorporated,NewYork.

Vuorela,S.,Meyer,A.S.,Heinonen,M.,2004.Impactofisolation

methodontheantioxidantactivityofrapeseedmeal phenolics.J.Agric.FoodChem.52,8202–8207.

Wakao,N.,Smith,J.M.,1962.Diffusionincatalystpellets.Chem.

Eng.Sci.17,825–834.

Wanasundara,J.P.,2011.ProteinsofBrassicaceaeoilseedsand

theirpotentialasaplantproteinsource.Crit.Rev.FoodSci. Nutr.51,635–677.

Wanasundara,J.P.D.,McIntosh,T.C.,Perera,S.P.,

Withana-Gamage,T.S.,Mitra,P.,2016.Canola/rapeseed

protein-functionalityandnutrition.OCL23(4),D407.

Wanasundara,J.P.D.,Tan,S.,Alashi,A.M.,Pudel,F.,Blanchard,C.,

2017.Chapter18-proteinsfromcanola/rapeseed:current

status.In:Nadathur,S.R.,Wanasundara,J.P.D.,Scanlin,L. (Eds.),SustainableProteinSources.AcademicPress,San Diego,pp.285–304.

Wilson,E.J.,Geankoplis,C.J.,1966.Liquidmasstransferatvery

lowReynoldsnumbersinpackedbeds.Ind.Eng.Chem. Fundam5(1),9–14.

Xu,L.,Diosady,L.L.,2002.Removalofphenoliccompoundsinthe

productionofhigh-qualitycanolaproteinisolates.FoodRes. Int.35,23–30.

Young,M.E.,Carroad,P.A.,Bell,R.L.,1980.Estimationofdiffusion

coefficientsofproteins.Biotechnol.Bioeng.22,947–955.

Zhang,S.B.,Wang,Z.,Xu,S.Y.,2007.Downstreamprocessesfor

aqueousenzymaticextractionofrapeseedoilandprotein hydrolysates.J.Am.OilChem.Soc.84,693.

Zhu,M.,Carta,G.,2016.Proteinadsorptionequilibriumand

kineticsinmultimodalcationexchangeresins.Adsorption22, 165–179.

Cytaty

Powiązane dokumenty

Postęp nowości, doskonaląc potrzeby, prowadzi przede wszystkim do powstania i rozwoju przemysłu przetwór­ czego i w miarę pogłębienia się społecznego podziału pracy

Postawa jest w ięc historyczna: w iatr podnosi dawne popioły, słońce ze złotego czyni czarnym (z krw awym i oczyma).. N ie Bóg w ięc zczernił słońce, ale w

Noty o autorach 247 Gianni Vattimo Wiek interpretacji (przełożył Tomasz

2011.. To one, zdaniem pisarza, pozwalają naprawdę po­ znać „obyczaje ludu, myśli jego codzienne, uczucia serca, fantazję”, jedynie w nich pozostały „wybitne

Sam zeznawał później, iż przyczyniło się do tego czytanie pism różno- w lerczyćh10 (znał podobno prace Leliusza Socyna, Michała Serweta11 i innych

Z dzisiejszej perspektywy, gdy wiemy już, jak zakończyła się niegdyś opowieść o czeskiej socjologii oraz w jaki sposób jest dziś kontynuowana, wejście Baumana na cze- ską

Okazało się też, że choć dążenia Antiocha, by związać ze sobą Egipt na tyle, aby podczas wojny zachował on neutralność nie powiodły się, to jednak wzbudzona

This idea was further investigated by comparing the recorded wave impact times for the repetitions of the same irregular tank motions at the same scale or at different scales