• Nie Znaleziono Wyników

Large-scale transportation and storage of wood pellets

N/A
N/A
Protected

Academic year: 2021

Share "Large-scale transportation and storage of wood pellets"

Copied!
12
0
0

Pełen tekst

(1)

Delft University of Technology

Large-scale transportation and storage of wood pellets

Investigation of the change in physical properties

Gilvari, Hamid; van Battum, Coen H.H.; van Dijk, Simon A.; de Jong, Wiebren; Schott, Dingena L.

DOI

10.1016/j.partic.2020.12.006

Publication date

2021

Document Version

Final published version

Published in

Particuology

Citation (APA)

Gilvari, H., van Battum, C. H. H., van Dijk, S. A., de Jong, W., & Schott, D. L. (2021). Large-scale

transportation and storage of wood pellets: Investigation of the change in physical properties. Particuology,

57, 146-156. https://doi.org/10.1016/j.partic.2020.12.006

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Particuology

j ou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l oc a t e / p a r t i c

Large-scale

transportation

and

storage

of

wood

pellets:

Investigation

of

the

change

in

physical

properties

Hamid

Gilvari

a,c,∗

,

Coen

H.H.

van

Battum

a

,

Simon

A.

van

Dijk

b

,

Wiebren

de

Jong

c

,

Dingena

L.

Schott

a

aSectionofTransportEngineeringandLogistics,DepartmentofMaritimeandTransportTechnology,FacultyofMechanical,MaritimeandMaterials

Engineering,DelftUniversityofTechnology,TheNetherlands

bChemicalServices,UniperBeneluxNV,TheNetherlands

cSectionofLargeScaleEnergyStorage,DepartmentofProcess&Energy,FacultyofMechanical,MaritimeandMaterialsEngineering,DelftUniversityof

Technology,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15October2020 Receivedinrevisedform 27November2020 Accepted8December2020 Availableonline21January2021 Keywords:

Woodpellets

Large-scaletransportation Durability

Finesanddust Breakage

Mechanicaldegradation

a

b

s

t

r

a

c

t

Thechangeinphysicalpropertiesofwoodpellets,withafocusonparticlesizedistributionsduetopellet breakageandattrition,wasstudiedinalarge-scale(∼450ton/h)transportationsystem.Criticallocations withahighprobabilityofbreakagethroughthewholetransportationsystemwerechosenandsampled tostudytheeffectoftransportationsystemdesignandoperationonthemechanicalpropertiesofpellets. Bulkdensity,mechanicaldurability,moisturecontent,andparticlesizedistributionofpelletswere char-acterizedforeachsample.Analysisofvarianceshowedthatthereweresignificantdifferencesbetween thepercentagesofsmallparticles(<5.6mm)inthesamplestakenatdifferentlocations,especiallyatone withaverticalfreefallof7.8m.Onaverage,thisrelativelylongdropincreasedtheproportionof parti-cles<5.6mminthesamplesfrom8.73%to14.09%,andthatofparticles<3.15mmfrom4.82%to9.01%. Moreover,themeasurementsshowedawidedeviationinthemechanicaldurabilityvalues,betweena minimumof90.8%andamaximumof98.7%,whichwerenotcorrelatedtothesamplingpointsbutrelated topelletproperties.Itcanbeconcludedthatpellettransportationsystemsrequiremorededicateddesign strategiestopreventbreakageandattrition.

©2021ChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyof Sciences.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/).

Introduction

Worldwideuseofwoodpelletsasarenewableenergycarrier

hasincreased sharply, from∼12millionmetric tonsin 2008to

56millionmetrictonsin2018(Calderón,Gauthier,&Jossart,2019).

Morethan27millionmetrictonsofwoodpelletswereconsumed

inEuropein2018,morethan45%ofthemforindustrialpurposes.

However,notallpelletsconsumedinEuropeareproducedby

Euro-peancountries. Approximatelyone-thirdareimportedfromthe

UnitedStatesandCanada(Calderónetal.,2019).

Duetoitsinherentlyhighmoisturecontentanditslowbulk

andenergydensities,biomassisusuallydensifiedtoimprovethese

properties;aprocessthatisadvantageousfortransportationand

handling steps(Tumuluru, Wright,Hess,& Kenney,2011).

Pel-letsarenormallyproducedunderhightemperatureandpressure

∗ Correspondingauthor.

E-mailaddress:h.gilvari@tudelft.nl(H.Gilvari).

conditionsinaso-calledpelletizationprocess,whichinvolvesthe

elasticandplasticdeformationofparticlesandthesofteningof

nat-uralbinderssuchasstarch,protein,lignin,fat,andfiberstohelp

agglomerateparticles(deSouzaetal.,2020;Kaliyan&VanceMorey,

2009;Mani,Tabil,&Sokhansanj,2008;Nanou,Huijgen,Carbo,&

Kiel,2018).

Thefragilenatureofpelletscausestheirattritionandbreakage

throughouttheentirelogisticchain(Oveisietal.,2013).Asaresult,

averagepelletlengthmaydecreaseandtheamountofgenerated

smallparticlescanincrease(Boac,Casada,&Maghirang,2008).This

hasconsequencesforpellettransportation,handling,andstorage,

suchasanelevatedriskofdustexplosion,fire,segregation,

arch-ingandequipmentfouling,healthissuesforpeopleinhalingthe

dust,andlosinganotableportionofthematerial(Aarseth,2004;

Ilic,Williams,Farnish,Webb,&Liu,2018;Ramírez-Gómez,2016).

Moreover,pelletbreakageand thegenerationofsmallparticles

underminethepelletizationeffortbydecreasingthebulkdensity

(Sjöström&Blomqvist,2014).

https://doi.org/10.1016/j.partic.2020.12.006

1674-2001/©2021ChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyofSciences.PublishedbyElsevierB.V.Thisisanopenaccessarticle undertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(3)

Theabilityofbiomasspelletstoremainintactduringloading,

unloading,feeding,andtransportiscalled“mechanicaldurability”

(ISO,2014).Fromthedefinitionitself,themechanical durability

cangiveanindicationoftheextenttowhichthematerialcankeep

itsinitialshape.Inpractice,however,durabilityischaracterized

bymeasuringtheamountofpre-definedsmall-sizeparticles

cre-atedinlaboratorytests.Thissmallsizemaybedifferentinsomeof

theliterature,butasizeofbetween3and5mmisusually

consid-ered(Grahametal.,2016;ISO,2015).Accordingtotheliterature,

mechanical durabilitydependsonthecharacteristicsoftheraw

material;specifically,factorssuchasparticlesizeand moisture

content,pelletizationprocessparameters,andstorageconditions

(Gilvari,deJong,&Schott,2019;Shuietal.,2020;Stelteetal.,2012;

Whittaker&Shield,2017).

Undoubtedly,theextentofpelletbreakageandattrition very

muchdependsonthetypeofpellet;thehigherthepellet’sstrength,

theloweritsbreakageandattritionratesare.However,pelletsmay

undergomechanicaldegradationduetohighimpactsand

compres-sionforcescausedby,forinstance,longdrops,increasednumber

of handlingsteps,andpoorequipmentdesign (Ilic etal., 2018;

Ramírez-Gómez,2016).

Different breakage mechanisms have been proposed for

biomasspelletsduringtransportationandhandling,namely

break-age into two or more pellets while practically keeping the

cylindricalshapes,attritionofpelletsurfacesandends,and

crush-ingofthewholepellet(Boacetal.,2008;Thomas,1998).

Inindustry,variousequipmentisusedforthetransportation,

handling,andstorageofpellets.Ofthese,grabs,beltconveyors,

pneumatic conveyors, pipe conveyors,hoppers, transferchutes,

silos, and bins are the most common (Dafnomilis, Lodewijks,

Junginger,&Schott,2018;Larsson,Lestander,Crompton,Melin,&

Sokhansanj,2012).Eachofthesetypesofequipmentmaydegrade

thepelletsmechanically,duetoattrition,compression,orimpact.

Recently,researchhasbeenunderwaytocharacterizethebreakage

andattritionofpellets(Boacetal.,2008;Gilvari,deJong,&Schott,

2020; Murtala,Zigan, Michael, &Torbjörn,2020; Ochkin-König,

Heinrich,&Dosta,2018).Forinstance,researchonpneumatic

con-veyorshasshownthatpelletattritionincreaseswiththeincreasein

particlevelocity,whichisinducedbyincreasingtheairinlet

veloc-ityanddecreasingthemassflowofpellets.Moreover,ashorter

bendradiusincreasesthebreakageofpellets(Aarseth,2004;Jägers,

Wirtz,Scherer,&Behr,2020).

Itisknownfrompreviousstudiesthatthemagnitudeofimpact

force, number of handling steps, and amount of bulk material

directlyinfluencethebreakageandattritionofpellets(Boacetal.,

2008;Kotzur,Berry,Bradley,Dias,&Silva,2016;Oveisietal.,2013)

investigatedtheeffectofdropheight,pelletmass,andrepeated

handlingstepsonthedegradationofwoodpelletsduringfreefall

while theyplaced thepelletsin abag madeofsynthetic

mate-rials. Theyalsostudiedtheeffectof pelletmassper bagand of

repeatedhandlingsteps,concludingthatgreaterdropheightsand

anelevatednumberofhandlingstepsincreasetheamountoffines.

Moreover,pelletmassshowsalinearcorrelationwiththe

gener-atedmassoffinesaslongastheinitialmassiskeptlowerthan

1kg.

Looking atcorn-basedanimalfeedpellets,Boacetal.(2008)

studiedtheeffectofthenumberofhandlingstepsonthequantity

ofbrokenpellets(particlespassingasievewitha5.6mmmesh)

anddustparticles(<0.125mm)generated.Thefeedpellets

con-tained13.2%moistureandhadanominaldiameterof6.4mmand

adurabilityof92.9%,accordingtothetumblingboxmethod.Their

testsetupincludedabucketelevatorwithaheightof54.9m,which

cycledthepelletsfromthebottomofstoragebinstotheirtopand

fromafirstbintoasecondone,thenviceversa,withanaverage

flowrateof59.4metrictonsperhour.Theyrepeatedthedischarge

andloadingofthebinseighttimesandobservedanotableincrease

intheproportionofparticles<5.6mm,from17.5%to50.2%.The

averagedustgenerationwas0.069%pertransfer.

Asshownabove,existingliteratureregardingthemechanical

strength,breakagebehavior,andgenerationoffinesanddustof

biomasspelletsislimitedmainlytolaboratoryorpilot-scale

stud-ies.The objective of this paper, therefore, is to quantify small

particlesatdifferentpositionsinalarge-scale“realworld”

trans-portationsystem(∼450ton/h).Thisshouldallowustodetermine

themajortransportstepsinwhichpelletbreakageandattrition

occurand one can useit as a benchmarkfor investigating the

changesinpelletpropertiesinanyotherpellettransportsystem.In

addition,thechangesinotherpelletproperties—suchas

mechani-caldurability,bulkdensity,andmoisturecontent—duetomultiple

transportationstepsarestudied.For thatpurpose,apellet-fired

powerplantintheNetherlandswaschosenasacasestudyto

inves-tigatethebreakageandattritionofwoodpellets.Thetransportation

systeminthispowerplantconsistsofagrabunloadingsystem,belt

conveyors,andstorageinasilo.

Materialsandmethods

Thematerialforthiscasestudyoriginatedwithananonymous

companyintheUSA.Awiderangeofwoodyfeedstockwasused

toproducethepellets,includingboth softand hard woods.No

informationaboutthedensificationprocesswasdisclosed.After

theirproductionand localstorage inthe USA,thepelletswere

transportedinbulktoalocalportandloadedintoanocean-going

vesselwithacapacityof28,000metrictons,thenshippedacross

theAtlanticOceantotheportofAntwerp,Belgium.Heretheywere

transshippedtobargesholding∼2,500metrictonseach.Twelve

bargeswerethusrequiredfor theentiretransatlantic cargo.No

informationwasdisclosedregardingchangestotheparticlesize

distributionofthepelletsuptothisstage.Thetwelvebarges

pro-ceededtotheportofRotterdam,wheretheyberthednexttothe

enduser’splantatarateofonebargeperday.Thecargocomprised

amixtureofsevendifferenttypesofwoodpellets,whichdiffered

bycolor,diameter,andlengthasshowninTable1.

Physicalpropertiesofthepellets,includingtheirmoisture

con-tent, bulk density, diameter,length, and mechanical durability,

weremeasuredasfollows.Moisturecontentwasmeasured

accord-ingtoENstandard14774-2(EN,2009),using300gofpelletsthat

wereplacedinanovenat105◦Cfor24h.Themoisturecontent

wasthencalculatedbasedonthedifferencebetweenthemassof

thepelletsbeforeandafterthetest.Bulkdensitywasmeasured

accordingtoENstandard15103(EN,2010)bymeansofa5Lsteel

cylinderusing thetapmethod.Thebulk densitywascalculated

fromthemassofpelletsdividedbythevolumeofthecylinder.

Pel-letdiametersweremeasuredaccordingtoENstandard16127(EN,

2012)bymeansofadigitalcaliper.Twenty-eightpelletswere

mea-suredinthisway:fourperpellettype,chosenatrandom(Table1).

PelletlengthdistributionsweremeasuredaccordingtoEN

stan-dard16127(EN,2012),usinganin-houseimageprocessingtool;

detailsofthiscanbefoundinourpreviouspublication(Gilvari,De

Jong,&Schott,2020).Mechanicaldurabilitywasmeasured

accord-ingtoISOstandard17831-1(ISO,2015),whichisacommonglobal

methodfordurabilitymeasurementofbiomasspelletsandisused

extensivelybyresearchersinthisfield(Brunerová,Müller, ˇSleger,

Ambarita,&Valáˇsek,2018;Dyjakon&Noszczyk,2019;Gilvari,Cutz

etal.,2020;Larsson&Samuelsson,2017;Stelteetal.,2012;Thrän

etal.,2016).Themechanicaldurabilitywasdeterminedby

plac-ing500±10gofsievedpellets(round-holedsievewithascreen

sizeof3.15mm)ina tumblingcan.Thiswasrotatedata speed

of50rpmfor10min.Afterthetest,thesamplewassievedagain

usingthesamesieve,thenweighed.Itsmechanicaldurabilitywas

(4)

Fig.1.A2-dimensionaloverviewofthetransportationsystem.Thenumbersshowthesamplinglocations.AdetailedoverviewoftheautomaticsamplerisshowninFig.2. Thesizeoftheequipmentmaynotrepresenttherealcase.

Table1

DifferenttypesofwoodpelletsshippedfromtheUSAtotheportofRotterdam.

Row Type1 Type2 Type3 Type4 Type5 Type6 Type7

1

2

3

4

sievebythemassoftheinitialsamplemultipliedby100.The mois-turecontent,bulkdensity,andmechanicaldurabilityexperiments wererepeatedtwice;thereportedvaluesarethusthemeanvalues ofduplicatemeasurements.

To determinethechangeinparticlesizedistributions ofthe samples,threedifferentsieveswithscreensizesof5.6mm(square holes),3.15mm(roundholes),and1mm(squareholes)wereused. Thesievewiththesmallestscreen sizedeterminedtheamount

of dust (< 1mm),the medium one determined the amount of fines(1mm<fines<3.15mm),andthelargestonewaschosento determinetheamountoflumps(3.15mm<lumps<5.6mm).All particleslongerthan5.6mmwereconsideredtobe“whole pel-lets”.Hereafter,allparticlessmallerthan3.15mmarereferredto as“finesanddust”,andallthosesmallerthan5.6mmas“small particles”.

(5)

Tocharacterizetheclassifiedparticles,everysamplewasfirst weighedandthensievedmanuallyusingthethreescreensizes.The massesofdust,fines,andlumpswerethenweighedandrecorded. ThepercentageofeachcategorywascalculatedusingEq.(1):

Pi=

mi

mt ×

100% (1)

wherePiisthepercentageofcategoryiinasample,miisthemass

ofcategoryiinthesample,andmtisthetotalmassofthesample.

Thepercentageof“wholepellets”wascalculatedbysubtractingthe

percentageofsmallparticles(<5.6mm)from100.

Samplinglocationsandmethods

OncethepelletshadarrivedinRotterdam,theywereunloaded

byaclamshellgrabintoahopper(seeFig.1).Thisfedtheincoming

materialontoacoveredbeltconveyor(hereafterreferredtoasthe

firstconveyor).Thegrab’scapacityis10metrictonsandtheheight

ofthehopperis4m.Adustfilterisinstalledjustafterthe

hop-pertocollectairbornedustbeforethematerialisloadedontothe

firstconveyor.Thistransportedthepelletsonanupwardinclineto

thetopofatransfertowerwithaheightof24.0m,ataspeedof

1.7m/s.Thelengthandwidthofthefirstconveyorare150.0and

1.4m,respectively.It,therefore,hasanangleofinclinationof9.2◦.

Atthetopofthetransfertower,thepelletsweredroppedfromthe

firstconveyorontoasecondonebymeansofafreefallwitha

ver-ticaldropof7.8m.Betweenthesetwoconveyorsisachainbucket

sampler,whichcollectedsamplesataconsistentcross-sectionof

thematerial’sstreamduringitsfreefall.Thisisanautomatic

sam-pler,alreadyinstalledinthesystemforon-sitesamplingpurposes.

Thesamplesittookweretransferredtoasmalldosingconveyor

(length3.0m,width0.2m),whichinturnfedarotarytubedivider

asshowninFig.2.Theroleoftherotarytubedividerwastodivide

asmallportionofthesamplesbyrotatingthematerialsinsucha

waythat,eventually,2kgofsampleswerecollectedevery11min.

Thesecondconveyorhasalengthof500mandtransferredthe

pelletsataspeedof2.6m/stothetopofthesilo,intowhichthey

weredroppedviaafreefall.Wheneverrequired,pelletsare

dis-chargedfromthebottomof thesilo forfurtherprocessing.The

samplesforthisstudyweretakenonthreeconsecutivenon-rainy

daysinthewinterof2019.Everyday,abargecarrying2500metric

tonsofpelletswasunloadedintothesystem.Sixdifferentlocations

throughouttheentiretransportationsystem,fromthebargetothe

silo,wereidentifiedforthesamplingusedinthisstudy.Samples

weretakenatdifferentincrementsfromdifferentsampling

loca-tions,andallwereanalyzedintermsofparticlesizedistribution,

mechanicaldurability,bulkdensity,andmoisturecontent.A

sum-maryofthesamplinglocations,daysofsampling,andnumberof

samplestakenateachlocationisgiveninTable2.Intotal,77

sam-pleswerecollectedforthisstudy.Allwereplacedinsealedplastic

Fig.2.Detailedoverviewoftheautomaticmechanicalsamplersysteminthe trans-fertower.

bagstopreventmoistureuptakeandanyfurtherchangestopellet

propertiesduetovaryingenvironmentalconditions.Thesamples

werethentransportedcarefullytoalaboratoryattheDelft

Univer-sityofTechnologyforfurtheranalysis.Thesamplinglocationsare

explainedindetailbelowandtheyareshowninFig.1.

Samplinglocation 1wassituated insidethebarge.Samples

werecollectedfromtheuppersurfaceofthepelletcargoat

dif-ferenttimeintervals.Atthislocation,thephysicalpropertiesofthe

woodpelletscanbecharacterizedjustbeforetheyentertheend

user’stransportationsystem.Asmentionedbefore,thepelletswere

unloadedfromthebargeusingaclamshellgrabwithacapacityof

10metrictons.Eachgrabcycletookapproximatelyoneminute,so

emptyingtheentirebarge(∼2500metrictons)tookmorethan4h.

Toensurethatthesamplesrepresentthepelletpropertiesat

dif-ferentlayersinsidethebarge,samplesweretakenevery30min.

Ninewerecollectedonthefirstdayandeightonthesecond,using

aplasticscooptogatherapproximately6kgofmaterialpersample.

Sampling location 2 was situated in an extraempty barge

(hereafter referred to as the second barge)positioned next to

thepellet-loadedbarge.Notethatnosuchsecondbargeisused

innormalplantoperations.However,thissamplinglocationwas

introducedinordertoinvestigatetheeffectonthepelletproperties

ofthemechanicalforcesexertedduringgrabbing.Atthislocation,

onegrabofthematerialwasdischargedeveryhourtocollectfive

individualgrabsintotal.Toobtainarepresentativesamplefrom

everydischargedgrab,thegrabcontentsweredumpedontoaflat

surfaceinthesecondbarge,creatingapileofwoodpellets.

Sam-plingwasthenperformedaccordingtoEN/TSstandard 14778-1

(EN/TS,2005)bytakingninesamplesofapproximately0.5kgeach

fromdifferentlocationswithinthepile(Fig.3),usingaplasticscoop.

Fig.3. Schematicrepresentationofthepileofpelletsinthesecondbargeandofthesamplestakenit(cyanmarkers).Notethattherealpiledeviatedfromaperfectcone shape.

(6)

Table2

Summaryofsamplinglocations,daysofsampling,andnumberofincrementsperlocation.

Samplinglocation Locationnumber Dayofsampling Numberofincrements

Barge 1 12 89 Secondbarge 2 1 5 Firstconveyor 3 1 8 2 9 Rotarydivider 4 3 17 Secondconveyor 5 12 89 Silo 6 3 4 Total – – 77

Fig.4.Isolationofthesamplesontheconveyorusingthestopped-beltmethod.

Theseninesampleswerecollectedfromthetop(onesample), mid-dle(threesamples),andbottomofthepile(fivesamples),andwere combinedtocreateonesinglesample.Samplingatthislocationwas undertakenonlyonthefirstday.

Samplinglocation3wassituatedinsidethetransfertowerat

theendofthefirstconveyor,whichbringsthepelletsfromthe hop-pertothetransfertower.Thissamplinglocationissituatedjust beforethepelletsweredischargedontothesecondconveyor(see

Fig.1).Thislocationwasusedtoestimatetheeffectonthematerial’s

propertiesofgrabbingandofaverticalfreefallof4m(thehopper’s

height).Notethatineachgrabbingcycle,thepelletsweredumped

atthecenterofthehopper,andsotheeffectonthemofhopperwall

impactscanbeconsiderednegligible.Thissamplinglocationis

use-fulasabenchmarktocheckthereliabilityofthepropertiesofthe

samplesdividedbytheautomaticsampleratlocation4.Atthis

loca-tion,samplesweretakenusingthestopped-beltmethodprovided

forinEN/TSstandard14778-1(EN/TS,2005).Inotherwords,the

entiretransportationsystemwashaltedatthesamplingtimesand

thesamplesweretakenfromthebeltconveyorafterbeingisolated

fromtheothermaterialonitbymeansoftwosteelplates(Fig.4).

Consequently,allthematerialonacross-sectionoftheconveyor

beltwascollectedandlabeledascomingfromsamplinglocation

Fig.5. Thesiloandsamplingports.

3attherelevanttime.Eachsamplecontainedapproximately6kg

ofmaterial.Aswithlocation1,samplingatthislocationwas

per-formedondaysoneandtwo.Moreover,allthesamplesherewere

collectedatthesametimeasthosefromlocation1(thebarge).In

all,17sampleswerethuscollectedatthislocation.

Samplinglocation4wasapartoftheautomaticmechanical

samplerwithinthetransfertower.Samplestakenatthislocation

canbeusedtoinvestigatethereliabilityofthematerialproperties

providedbytherotarydividerwithregardtotheotherlocations

inthetransportationsystem,e.g.attheendofthefirstconveyor.

Eachsamplewascollectedautomatically,fillingaplasticbagwith

approximately2kgofmaterialwithin11min.Sampleswereonly

takenatthislocationonthethirdday,in17increments.

Sampling location 5was situated atthe end of thesecond

conveyor,justbeforethematerialwasdischarged intothesilo.

Samplingatthis locationcandemonstrate theeffectofa 7.8m

verticalfreefall(betweenthetwoconveyors)onpellet

(7)

Table3

Pelletpropertiesatdifferentlocationsondifferentdaysofsampling.Numbersin parenthesesshowthestandarddeviations.

Property Location Dayofsampling Averagevalue

Moisturecontent(%) All All 5.9(0.3)

Bulkdensity(kg/m3) All All 640(25)

Mechanicaldurability(%) All All 97.6(1.3)

Diameter(mm) 3,4 2,3 7.11(0.59) Lengthdistributiona (mm) 1, 3, 4 1, 2, 3 50%<13.40 99%<32.70 100%<42.10

aBasedonthepelletlengthdistributionsofsamplesshowninFig.7.

wasassumedtobenegligible.Thestopped-beltmethodwiththe

sametypeofsteel-plateisolatorsasatsamplinglocation3(Fig.4)

wasusedhere,too.Samplesweretakenatthislocationondays

oneandtwoonly,eachweighingapproximately6kg.Onaverage,

thesewerecollectedthreeminutesaftereachofthoseatlocation

3,sincethatwashowlongittookforthepelletstobetransferred

fromtheretolocation5onthesecondconveyor.

Sampling location6wassituatedatthestoragesilo(witha

heightof31mandadiameterof9m)andwasusedonthethirdday.

Foursampleshavebeencollectedfromthefourhatchesinstalled

atthewallbecausesamplinginsidethesilowasimpossibleatthe

timeoftheexperiments.Thesehatcheswerelocatedattwolevels,

andtwosamplesweretakenateachlevel(seeFig.5).

Resultsanddiscussion

Mechanicaldurability,bulkdensity,andmoisturecontent

Fig.6showsthepelletpropertieswithregardtothesampling

locationsanddays.Analysisofvariance(ANOVA)ofall77samples

revealedthattherewasnobiasintheresultsforpelletpropertiesat

differentlocationsorondifferentdays(˛=0.05,i.e.95%confidence

interval).FromFig.6,itcanbeseenthatmechanical durability,

bulkdensity,andmoisturecontentareindependentofthedayof

samplingand ofthesamplinglocation.Moreover,therewasno

correlationbetweenbulkdensityandmoisturecontent.However,

themechanicaldurabilityvariedbetween90.8%and98.7%inall

locations,andthisexceededthe2%repeatabilitylimitsetbythe

standard(ISO,2015).Theaveragevaluesofpelletproperties

mea-suredatdifferentlocationsonthreedifferentdaysofsamplingcan

befoundinTable3.Thistableimpliesthatalthoughalarge

devi-Fig.7. Pelletlengthdistributionsofdifferentbatchesofpelletsusedfor mechani-caldurability(DU)test(legend:digitsfromlefttoright=samplingday-sampling location-numberofincrement-repetitionnumber).

Fig.8.Size-classifiedparticlesaftersieving.

ationindurability,onlya fewsampleswidelydivergefromthe

averagevalueandthattheaveragedurabilitycanbeconsideredas

reliabledatainourstudy.

Nocorrelationwasfoundbetweenthemechanicaldurability

ofthepelletsandthenumberofhandlingstepstheyunderwent.

Nevertheless,therearetwoexplanationsforthevariationwefound

inmechanicaldurability.First,inourpreviousstudy(Gilvari,De

Jongetal.,2020)weshowedthatpelletlengthdistributions(PLDs)

canbeacontributingfactorinthemeasuredmechanicaldurability

(8)

Fig.9.Sievinganalysisatlocations1(firstbarge),3(endofthefirstconveyor),and5(endofthesecondconveyor).Thesamplenumberscorrespondtothesamplingorder.

value,whichincreaseswithgreaterpelletlengths.Tostudythis

effect,thePLDsoftensamples(fiveoutof77samples,withtwo

replicationseach)weredeterminedbeforedurabilitytests(Fig.7)

usingourself-developedin-houseimageprocessingtool(Gilvari,

DeJongetal.,2020).AscanbeseeninFig.7,asamplecontainingthe

highestquantityofsmallparticles(<5.6mm)showedthelowest

mechanical durabilityvalue.Take,forexample,samples2-3-2-1

and2-3-2-2inFig.7.Thesesamplesweretworandomlyselected

500gfromtheinitial6kgsamplethatwastakenonday2atlocation

3asthethirdincrement.However,theirdurabilityvaluesdifferby

4.7%.Thisrelativelyhighdeviationcanconfirmtheeffectoflength

distributions.Second,astheshareofeachpellettypeineachsample

wasnotcountedhere,itissuspectedthatotherfactorssuchasthe

shareofpellettypemaycauseabiasintheresults.

Particlesizedistributions

Fig.8showsasampleimageoftheclassifiedparticles.Inthis,it

canbeseenthatallparticleslongerthan5.6mmarewholepellets

retainingtheircylindricalshape.

Asexplainedinsection2,samplesatlocations1and3were

col-lectedatthesametimeandeachdiscretesampleatlocation5was

collectedonaveragethreeminutesaftereachcollectionatlocations

1and3.Therefore,itislikelythatallcorrespondingsamples

origi-natedfromthesamelocationinthebarge.Hence,theeffectonthe

particlesizedistributionsattheselocationsofdifferent

transporta-tionunitscanbeinvestigatedwithregardtotheiroriginalparticle

size.

Fig.9showstheresultsofsievinganalysisatlocations1,3,and

(9)

Fig.10.Percentagesofsmallparticles(<5.6mm)atdifferentlocationsonthefirstandseconddaysofsampling.

Table4

Averageshareofcategorizedparticlesatlocations1,3,and5onthefirstandseconddaysofsampling.

Location Samplingday %ofsmallparticles(<5.6mm) %offinesanddust(<3.15mm) %ofdust(<1mm)

1(firstbarge) 1 10.28 6.11 2.50 2 10.40 5.93 2.27 3(endoffirst conveyor) 1 8.61 4.91 1.95 2 8.87 4.73 1.74 5(endofsecond conveyor) 1 14.24 9.05 3.81 2 13.93 8.98 3.77

sampling.Accordingtotheseresults,oneachdaythebargescontain anotableamountofsmallparticlesatdifferentsamplingtimesprior tounloading.Thisalsoshowsthatdifferentlayersofthebarge’s cargo(fromtoptobottom)containdifferentparticlesize distribu-tions.However,noevidencewasfoundregardingtheaccumulation ofsmallparticlesinonespecificlayeroratonespecificlocationin thebarge.Theresults(Table4)showthat,onaverage,theshareof

eachsizecategoryondayoneisconsistentwiththeresultsonday

two.

Thestatisticalanalysisshowsasignificantdifferencebetween

theamountoffinesanddustinthesamplescollectedat

differ-entlocations(˛=0.05,i.e.95%confidenceinterval).Themeasured

p-valueforone-wayANOVAanalysisbetweenthesampling

loca-tionsandtheamountoffinesanddust(<3.15mm)waszero,which

meansthattherewasasignificantdifferenceintheaveragevalues.

Onaverage,theproportionoffinesanddustwas6.02%atlocation

1(firstbarge),4.82%atlocation3(endofthefirstconveyor),and

9.01%atlocation5(endofthesecondconveyor)onthefirstand

seconddays.

Asimilartrendtothatforfinesanddust(<3.15mm)isobserved

forallsmallparticles(<5.6mm)aswell,sincetheANOVA

analy-sisshowssignificantdifferencesbetweenthepercentagesofthese

by samplinglocation.The averageproportion ofsmall particles

(< 5.6mm)ondaysoneand twowas10.33%atlocation1(first

barge),8.73%atlocation3(endofthefirstconveyor),and14.09%at

location5(endofthesecondconveyor).Thisindicatesthata

signif-icantquantityofsmallparticles(<5.6mm)isgeneratedthroughout

theentiretransportationsystem,fromthebargetotheendofthe

secondconveyorjustbeforethematerialentersthesilo.

Oneinterestingresultisthereductioninthenumberofsmall

particles(<5.6mm)afterthepelletsaregrabbedanddischarged

ontothefirstconveyor,i.e.betweenlocations1and3(Fig.10).The

proportionofsmallparticlesdecreasedrelativelybetweenthese

twolocationsbyupto16.24%onthefirstdayand14.71%onthe

secondday.Therearetwoexplanationsforthis.Firstly,anumber

ofsmallparticlesescapedfromthegrabintotheairwhilethegrab

wasloadinginthebargeandshiftingupwardstowardsthe

hop-per.Secondly,thedustfiltersatthebeginningofthefirstconveyor

removedsomedust;however,theaccumulateddustinthosefilters

wasnotmeasuredinthisstudy.Ontheotherhand,bycomparison

withlocation3(endofthefirstconveyor),theaverageproportion

ofsmallparticles(<5.6mm)atlocation5(endofthesecond

con-veyor)increasedfrom8.61%to14.24%onthefirstdayandfrom

8.87%to13.93%onthesecondday,showingarelativeincreaseof

65.74%and57.04%,respectively.Assumingthattheeffectof

con-veyorvibrationsonthegenerationofsmallparticles(<5.6mm)is

negligible,alloftheseextraonesmusthavebeengenerateddue

totheverticalfreefallof7.8matthetransferpointbetweenthe

twoconveyors.Boacetal.(Boacetal.(2008))observedanaverage

increaseof3.83%inthenumberofparticlessmallerthan5.6mmin

onetransportationcycleoffeedpelletsinabucketelevatorandsilo

feedingsystemforpelletswiththedurabilityof92.9%anda

nom-inalpelletdiameterof6.4mm.Inthisstudy,however,anaverage

5.36%increaseinthenumberofparticlessmallerthan5.6mmwas

observedsolelyduetoafreefallof7.8m.Thisisprobablyrelated

tothecompressionandimpactforcesassociatedwiththeamount

ofmaterialbeingtransported,whichwasaround450ton/hinthe

presentstudyand54.9ton/hintheworkofBoacetal.(Boacetal.

(2008)).

Theresultsshowthattheaverageproportionofsmallparticles

atlocation2(secondbarge)was6.56%,witha1.51%standard

devia-tion.Thiswaslowerthanthefigureforlocation1(10.34%).During

grabbingfromthefirstbargetothesecondone,itwasobserved

(10)

Fig.11.Shareofsmallparticlesatlocations2,4,and6.

leakage.Becauseofthis,themeasuredsmallparticlesarenot

rep-resentativeforthewholeparticlesandtheeffectofgrabbingonthe

generationofsmallparticlesremainsunclear.

Fig.11showsthatthepercentageofsmallparticlesatlocation

4 (automaticsampler)onthethirddaywas6.05%,witha

stan-dard deviationof 2.04%.Asdiscussed earlierinthissection,the

resultsfromthefirsttwodaysshowahighrepeatabilityinterms

ofgeneratingsmallparticlesateachsamplinglocation.Therefore,

theshareofsmallparticlesateachlocationondaysoneandtwo

canbepostulatedtobesimilartothatonthethirdday.Basedon

thisassumption,theresultsforthefirstandseconddaysatlocation

(11)

Fig.12.Correlationsbetweenclassifiedsmallparticles.

thirddayatlocation4(automaticsampler).Theaverage

propor-tionofsmallparticlesatlocation3onthefirstandseconddayswas

8.73%,whileatlocation4itwas6.05%.Thus,onaverage,thenumber

ofsmallparticlesdecreasedbetweenthesetwolocationsby2.68%,

showingthattheautomaticsampler(location4)doesnotproduce

similarparticlesizedistributionswhencomparedtolocation3.A

possiblereasonforthisisthesegregationofbiggerparticlesdue

totherotationofparticlesintherotarydivider,whichseparates

largerparticlesfromthesmalleronesinsuchawaythatthelatter

arerejectedasresidue(seeFig.2).

Theaveragepercentageofsmallparticles(<5.6mm)atlocation

6(silo)isshowninFig.11.Onaverage,thesemadeup4.00%of

thesamplestakenfromthesilohatches.Comparingtheproportion

ofsmallparticlesherewiththatatlocation5(endofthesecond

conveyor),itcanbeconcludedthatthewholepelletsaccumulated

atthesilowalls.Thiscanbeexplainedbypercolationsegregation,

wherebythesmallerparticlesarecapturedinthevoidsandbigger

onesmovedowntheslopetowardsthewalls.

Thomas(Thomas(1998))showedthatpelletfragmentationand

attritionarethetwomajormechanismsforphysicaldegradation

ofpellets.Fig.12showstheshareoflumps,fines,anddustinall

thesamplestakenfromdifferentlocationsandincludesasurface

fitthatisthebestfitforallthesamples.Althoughthebreakage

mechanismwasnotstudiedinthiswork,Fig.12showsthatthe

sharesofdust,fines,andlumpsatdifferentlocationsandon

differ-entsamplingdaysarecorrelatedtooneanotherwithanR2value

of0.866.Inotherwords,inallsamples,thequantityofeach

size-classifiedparticlewasincreasedbyincreasingtheamountofother

size-classifiedparticles.

Conclusions

Inthisstudy,wehaveinvestigatedthechangeinthephysical

propertiesofcommercialwoodpelletswithafocusonbreakage

and attrition behaviorduring large-scale(∼450ton/h)transport

andstorageinapellet-firedpowerplantintheNetherlands.Our

mainconclusionisthattransferringthewoodpelletsviaafreefall

fromaheightof7.8m(thetransferpointbetweentwo

convey-ors) increasestheproportionofsmallparticles(<5.6mm)from

8.74%to14.09%,onaverage,andtheamountoffinesanddustfrom

4.82%to9.01%forpelletswithanaveragemechanicaldurabilityof

97.6%(basedonISOstandard17831-1).Thisemphasizesthe

impor-tanceofequipmentdesignandoperationwithrespecttomaterial

degradation.Themechanicaldurabilityofthesamplestakenat

dif-ferentlocationsdifferedbyupto7.9%,whilenocorrelationwas

observedbetweenmoisturecontent,bulkdensity,sampling

loca-tion,ordayofsamplingandmechanicaldurability.Thissuggests

thatotherproperties,mostprobablypelletlengthdistribution,play

asignificantroleinthemeasuredmechanicaldurabilityvalue.

Declarationofinterests

Theauthorsdeclarethattheyhavenoknowncompeting

finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto

influencetheworkreportedinthispaper.

Acknowledgements

The authors would like to thank Jurgen Visser and Ronald

KoomansofUniperBeneluxfortheircarefulplanningand

coor-dination,aswellasforsharingtheirsamplingexpertise.Wethank

EovarvanDijk,KoenJongste,andSjoerdSmidofPeterson

Rotter-damforcoordinatingandexecutingthesamplingonsite.Wealso

thankSjaakvanHurck(ESI/EurosiloBV),FrankvanderStoep(EBS),

LeoLokker(EMO),MarkBouwmeester,andEmielvanDorp(RWE)

forusefuldiscussionsinpreparingthemeasurements.Wethank

TjibbeBronandJorisBerendschot(DelftUniversityofTechnology)

fortheirsupportinanalyzingthesamples.

ThisstudyhasreceivedfundingfromtheTopConsortiumfor

KnowledgeandInnovationfortheBiobasedEconomy(TKI-BBE),

undergrantnumberBBE-1713(Biomassapellets:Degradatie

tij-denstransportenhandling).

References

Aarseth,K.A.(2004).Attritionoffeedpelletsduringpneumaticconveying:The influenceofvelocityandbendradius.BiosystEng,89,197–213.

Boac,J.M.,Casada,M.E.,&Maghirang,R.G.(2008).Feedpelletandcorndurability andbreakageduringrepeatedelevatorhandling.AppliedEngineeringin Agriculture,24,637–644.

Brunerová,A.,Müller,M., ˇSleger,V.,Ambarita,H.,&Valáˇsek,P.(2018).Bio-Pellet FuelfromOilPalmEmptyFruitBunches(EFB):UsingEuropeanStandardsfor QualityTesting.Sustainability,10,4443.

Calderón,C.,Gauthier,G.,&Jossart,J.-M.(2019).Bioenergyeuropestatisticalreport 2019-keyfinding.

Dafnomilis,I.,Lodewijks,G.,Junginger,M.,&Schott,D.L.(2018).Evaluationof woodpellethandlinginimportterminals.Biomass&Bioenergy,117,10–23.

deSouza,H.J.P.L.,Arantes,M.D.C.,Vidaurre,G.B.,Andrade,C.R.,AdeCO,C.,de Souza,D.P.L.,etal.(2020).Pelletizationofeucalyptuswoodandcoffee growingwastes:Strategiesforbiomassvalorizationandsustainablebioenergy production.RenewableEnergy,149,128–140.

Dyjakon,A.,&Noszczyk,T.(2019).Theinfluenceoffreezingtemperaturestorage onthemechanicaldurabilityofcommercialpelletsfrombiomass.Energies,12, 2627.

EN14774-2:2009.SolidBiofuels-DeterminationofMoistureContent-OvenDry Method-Part2:TotalMoisture-SimplifiedMethod,EuropeanCommitteefor Standardizationn.d.

EN15103.Solidbiofuels-Determinationofbulkdensity.2010,European CommitteeforStandardizationn.d.

EN16127.SolidBiofuels-Determinationoflengthanddiameterofpellets.2012, EuropeanCommitteeforStandardization.n.d.

EN/TS14778-1:2005.SolidBiofuels-Sampling-Part1:Methodsforsampling, EuropeanCommitteeforStandardizationn.d.

Gilvari,H.,deJong,W.,&Schott,D.L.(2019).Qualityparametersrelevantfor densificationofbio-materials:Measuringmethodsandaffectingfactors-A review.Biomass&Bioenergy,120,117–134.

Gilvari,H.,Cutz,L.,Tiringer,U.,Mol,A.,deJong,W.,&Schott,D.L.(2020).The effectofenvironmentalconditionsonthedegradationbehaviorofbiomass pellets.Polymers,12,970.

Gilvari,H.,deJong,W.,&Schott,D.L.(2020).Breakagebehaviorofbiomasspellets: Anexperimentalandnumericalstudy.CompPartMech.,https://doi.org/10. 1007/s40571-020-00352-3

Gilvari,H.,DeJong,W.,&Schott,D.L.(2020).Theeffectofbiomasspelletlength, testconditionsandtorrefactiononmechanicaldurabilitycharacteristics accordingtoISOstandard17831-1.Energies,13,3000.

Graham,S.,Ogunfayo,I.,Hall,M.R.,Snape,C.,Quick,W.,Weatherstone,S.,etal. (2016).Changesinmechanicalpropertiesofwoodpelletsduringartificial degradationinalaboratoryenvironment.FuelProcessTechnol.

(12)

Ilic,D.,Williams,K.,Farnish,R.,Webb,E.,&Liu,G.(2018).Onthechallengesfacing thehandlingofsolidbiomassfeedstocks.Biofuels,BioprodBiorefining,12, 187–202.

ISO16559:2014.Solidbiofuels-Terminology,definitionsanddescriptionsn.d. ISO17831-1:2015.Solidbiofuels-Determinationofmechanicaldurabilityof

pelletsandbriquettes-Part1:Pellets.,n.d.

Jägers,J.,Wirtz,S.,Scherer,V.,&Behr,M.(2020).Experimentalanalysisofwood pelletdegradationduringpneumaticconveyingprocesses.PowderTechnology, 359,282–291.

Kaliyan,N.,&VanceMorey,R.(2009).Factorsaffectingstrengthanddurabilityof densifiedbiomassproducts.Biomass&Bioenergy,33,337–359.

Kotzur,B.,Berry,R.,Bradley,M.,Dias,G.C.,&Silva,A.C.(2016).Influenceofpellet lengthonbreakagebyimpact.InProc.12thint.Conf.Bulkmater.storage,Handl. Transp.

Larsson,S.H.,&Samuelsson,R.(2017).PredictionofISO17831-1:2015 mechanicalbiofuelpelletdurabilityfromsinglepelletcharacterization.Fuel ProcessTechnol,163,8–15.

Larsson,S.H.,Lestander,T.A.,Crompton,D.,Melin,S.,&Sokhansanj,S.(2012).

Temperaturepatternsinlargescalewoodpelletsilostorage.AppliedEnergy, 92,322–327.

Mani,S.,Tabil,L.G.,&Sokhansanj,S.(2008).Effectsofcompressiveforce,particle sizeandmoisturecontentonmechanicalpropertiesofbiomasspelletsfrom grasses.Biomass&Bioenergy,30,648–654.

Murtala,M.A.,Zigan,S.,Michael,S.A.B.,&Torbjörn,A.L.(2020).Fuelpellet breakageinpneumatictransportanddurabilitytests.RenewableEnergy,157, 911–919.

Nanou,P.,Huijgen,W.J.J.,Carbo,M.C.,&Kiel,J.H.A.(2018).Theroleofligninin thedensificationoftorrefiedwoodinrelationtothefinalproductproperties. Biomass&Bioenergy,111,248–262.

Ochkin-König,O.,Heinrich,S.,&Dosta,M.(2018).Investigationofbreakageand attritionbehaviorofwoodpellets.In9thint.Conf.Conveyinghandl.Part. Solids-CHoPS.

Oveisi,E.,Lau,A.,Sokhansanj,S.,Lim,C.J.,Bi,X.,Larsson,S.H.,etal.(2013).

Breakagebehaviorofwoodpelletsduetofreefall.PowderTechnology,235, 493–499.

Ramírez-Gómez,Á.(2016).Researchneedsonbiomasscharacterizationtoprevent handlingproblemsandhazardsinindustry.PartSciTechnol,34,432–441.

Shui,T.,Khatri,V.,Chae,M.,Sokhansanj,S.,Choi,P.,&Bressler,D.C.(2020).

Developmentofatorrefiedwoodpelletbinderfromthecross-linkingbetween specifiedriskmaterials-derivedpeptidesandepoxidizedpoly(vinylalcohol). RenewableEnergy,162,71–80.

Sjöström,J.,&Blomqvist,P.(2014).Directmeasurementsofthermalpropertiesof woodpellets:Elevatedtemperatures,finefractionsandmoisturecontent.Fuel, 134,460–466.

Stelte,W.,Sanadi,A.R.,Shang,L.,Holm,J.K.,Ahrenfeldt,J.,&Henriksen,U.B. (2012).Recentdevelopmentsinbiomasspelletization–Areview.BioResources, 7,4451–4490.

Thomas,M.(1998).Physicalqualityofpelletedfeed:Afeedmodelstudy.

Thrän,D.,Witt,J.,Schaubach,K.,Kiel,J.,Carbo,M.,Maier,J.,etal.(2016).Moving torrefactiontowardsmarketintroduction–Technicalimprovementsand economic-environmentalassessmentalongtheoveralltorrefactionsupply chainthroughtheSECTORproject.Biomass&Bioenergy,89,184–200.

Tumuluru,J.S.,Wright,C.T.,Hess,J.R.,&Kenney,K.L.(2011).Areviewofbiomass densificationsystemstodevelopuniformfeedstockcommoditiesfor bioenergyapplication.Biofuels,BioprodBiorefining,5,683–707.

Whittaker,C.,&Shield,I.(2017).Factorsaffectingwood,energygrassandstraw pelletdurability–Areview.RenewableandSustainableEnergyReviews,71, 1–11.

Cytaty

Powiązane dokumenty

Tout comme le tremblement de terre a été chez Laferrière un prétexte pour parler de Haïti, un double séisme — un vrai survenu le 6 avril 2009 dans les Abruzzes et un

C’est Roger Caillois, sociologue de formation, qui, n’étant ni peintre ni écrivain, a toutefois créé et présenté sa propre théorie du genre fantas tique dans sa célèbre

Podobnie jak inne formy aktywności fizycznej popularne dzisiaj bieganie stało się przyjemnością, sposobem na aktywne spędzanie czasu wolnego (kategoria, która po- jawiła się wraz

Middle Easter RSC is then divided into three subcomplexes: Maghreb, which includes the Arab states of North Africa, such as Alge- ria, Libya, Morocco and Tunisia; the Levant,

I tym razem kongres nie jest monotematyczny, ale jego uczestnicy prezentują tradycyjnie przyczynki ze swoich warsztatów naukowych, co pozwala śledzić, czym w

Być może jednak, że oprócz odpowiedzi prostych pewne światło na skromną dotychczas obecność dzieła Piotrowskiego w naszej pamięci i w pisanych dzie­ jach naszej

Jeśli z tego punktu widzenia przyjrzeć się instrukcjom z czasów Grzegorza XV, to okaże się, że zdecydowanie najkrótsze były teksty, które wręczano nuncjuszom wysyłanym

Wydaje się jednak, że John Mandeville — stary, schorowany człowiek, przebywający w Leodium, chciał także stworzyć summę wiedzy geograficznej swoich czasów na