• Nie Znaleziono Wyników

Indium in polymetallic mineralisation at the Gierczyn mine, Karkonosze-Izera Massif, Poland: results of EPMA and LA-ICP-MS investigations

N/A
N/A
Protected

Academic year: 2022

Share "Indium in polymetallic mineralisation at the Gierczyn mine, Karkonosze-Izera Massif, Poland: results of EPMA and LA-ICP-MS investigations"

Copied!
12
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2020, 64 (1): 74–85 DOI: http://dx.doi.org/10.7306/gq. doi: 10.7306/gq.1516

In dium in polymetallic min er al isa tion at the Gierczyn mine, Karkonosze-Izera Mas sif, Po land: re sults of EPMA and LA-ICP-MS in ves ti ga tions

Krzysztof FOLTYN1, *, Viktor BERTRANDSSON ERLANDSSON2, Gabriela A. KOZUB-BUDZYŃ1, Frank MELCHER2 and Adam PIESTRZYŃSKI1

1 AGH Uni ver sity of Sci ence and Tech nol ogy, al. A. Mickiewicza 30, 30-059 Kraków, Po land

2 Montanuniversität Leoben, Pe ter-Tunner-Straße 5, 8700 Leoben, Aus tria

Foltyn, K., Bertrandsson Erlandsson, V., Kozub-Budzyń, G.A., Melcher, F., Piestrzyński, A., 2020. In dium in polymetallic min er ali sa tion at the Gierczyn mine, Karkonosze-Izera Mas sif, Po land: re sults of EPMA and LA-ICP-MS in ves ti ga tions.

Geo log i cal Quar terly, 64 (1): 74–85, doi: 10.7306/gq.1516 As so ci ate Ed i tor: Jacek Szczepański

Cas sit er ite and base-metal min er al isa tion from the Gierczyn mine on the Karkonosze-Izera Mas sif, Po land has been stud ied us ing elec tron microprobe and LA-ICP-MS (La ser Ab la tion In duc tively Cou pled Plasma Mass Spec trom e try) tech niques in or der to de ter mine the con tent of in dium in the ore min er als. The main car ri ers of this el e ment are sphalerite (up to 433 µg/g of In), chal co py rite (up to 117 µg/g of In) and cas sit er ite (up to 0.02 wt.% In). Trace el e ment con tents of sulphides, es pe cially Ga in chal co py rite intergrown with sphalerite in com par i son with chal co py rite with out sphalerite, may in di cate meta mor phic re-equlibration and sug gests that the ore min er als might recrystallized and un der went meta mor phism in con di tions of greenschist/am phi bo lite fa cies. Al though the de pos its in the Stara Kamienica Schist Belt are not of eco nomic value, they can con trib ute to better un der stand ing of the re la tions be tween trace el e ment par ti tion ing and the for ma tion of ore min er als.

Key words: Gierczyn, in dium, trace el e ments, meta mor phism.

INTRODUCTION

In dium (In) is a cru cial com mod ity for the mod ern econ omy due to its ap pli ca tion in the form of in dium tin ox ide (ITO) in al - most ev ery flat-panel dis play screen and in touchscreen de - vices in com puter mon i tors, TVs, laptops, note books and mo - bile phones. The de mand for and price of this el e ment in - creased rap idly in the first de cade of the 21st cen tury and both are con sid ered to be highly vul ner a ble for sev eral rea sons (Werner et al., 2015). Firstly, the mar ket for this metal is rather small with world re fin ery pro duc tion of 750 tonnes in 2018 (An - der son, 2019) and its sup ply chain is dom i nated by few coun - tries: China (40% of world pro duc tion), South Ko rea, Ja pan, Can ada, France and Bel gium ac count for 95% of the world sup - ply (An der son, 2019). Any new, wide spread use could dra mat i - cally change the cur rent de mand. Ad di tion ally, in dium is not con cen trated enough to con sti tute a ma jor com mod ity in ore de pos its so it is pro duced al most solely as a by-prod uct of zinc smelt ing. As a re sult, the sup ply of in dium is de ter mined by the sup ply of zinc, re gard less of the mar ket de mand for in dium. For

these rea sons in dium has been iden ti fied as one of the “Crit i cal Raw Ma te ri als” by the Eu ro pean Com mis sion in 2011 and in sub se quent stud ies re view ing the list in 2014 and 2017 (EC, 2014; Blengini et al., 2017).

In dium min er als are rare and the most im por tant one, roquesite (CuInS2), usu ally oc curs as in clu sions in ma jor ore- form ing min er als such as bornite, chal co py rite and sphalerite (Schwarz-Schampera and Herzig, 2002). More of ten, In3+ sub - sti tutes for el e ments with sim i lar ionic ra dii in base-metal sulphi - des and rel a tively high in dium con cen tra tions can oc cur in sphalerite, chal co py rite, stannite, tin-sulphosalts, ten nan tite and cas sit er ite (Schwarz-Schampera, 2013); how ever, most oc cur rences of these min er als are subeconomic for in dium.

The most im por tant In-bear ing de pos its are sed i ment- hos - ted mas sive sulphides (SHMS) and volcanogenic mas sive sulphides (VMS), which ac count for >60% of in dium re serves due to the pres ence of In-en riched sphalerite (Ye et al., 2011;

Frenzel et al., 2016; Werner et al., 2017). The con cen tra tion of in dium in these ores is in the range of 20–200 g/t and typ i cal ex - am ples in clude VMS de pos its such as Kidd Creek (Can ada), Neves-Corvo (Por tu gal), Laochang (China), as well as the Bainiuchang and Dabaoshan SEDEX de pos its (China) (Ye et al., 2011; Schwarz-Schampera, 2013). The re main ing re sour - ces re side in skarns, epi ther mal de pos its, polymetallic base - -metal vein de pos its, gran ite-re lated tin-base-metal de pos its and Sn-W-Mo por phyry de pos its (e.g., Mount Pleas ant Can - ada; Schwarz-Schampera, 2013; Werner et al., 2017).

* Corresponding author, e-mail: kfoltyn@agh.edu.pl

Received: August 9, 2019; accepted: December 12, 2019; first published online: February 27, 2020

(2)

Sev eral ore de pos its in the Variscan orogenic belt in Eu rope have been iden ti fied to con tain sig nif i cant in dium re sources (Werner et al., 2017), in clud ing VMS de pos its in Por tu gal such as Neves Corvo (In grades vary ing within the range 20 to 1,100 g/t; Pinto et al., 2014), skarn-type ores in the Pöhla dis trict, Erzgebirge, Ger many (Bauer et al., 2019), and polymetallic Sn-base-metal vein- and greisen-type de pos its in the Freiberg, Marienberg, Annaberg, and Ehrenfriedersdorf old min ing dis - tricts, Erzgebirge, Ger many (Seifert and Sandmann, 2006;

Seifert, 2015). Andersen et al. (2016) in ves ti gated in dium min - er ali sa tion in SW Eng land in de tail. They found that Early Perm - ian, gran ite-re lated skarn and lode parageneses in this re gion are en riched in in dium, while older sed i men tary ex ha la tive and vein parageneses, pre dat ing gran ite em place ment, are largely de void of it. These au thors re ported a strong af fin ity for in dium of sul phide-bear ing mag matic-hy dro ther mal as sem blages with the high est con cen tra tions found in min eral lodes as so ci ated with the Carnmenellis and St Agnes gran ites. These dis tricts had the high est his tor i cal pro duc tion of tin (with the fa mous South Crofty Sn-Cu mine) and the in dium con tent lo cally ex -

ceeds 430 g/t. Ac cord ing to Gion et al. (2019), among gran ites, S- and A-type highly frac tion ated plutons have the high est prob - a bil ity of be ing as so ci ated with in dium-bear ing de pos its.

Ac cord ing to re cent pa pers, mag matic-hy dro ther mal min er - ali sa tion as so ci ated with post-collisional mag matic pulses (es - pe cially evolved, peraluminous gran ites) which have de vel oped skarn, greisen, lode and vein-type min er ali sa tion, rep re sents prom is ing ex plo ra tion tar gets for in dium (Cook et al., 2011; Pav - lo va et al., 2015; Seifert, 2015; Andersen et al., 2016; Lerouge et al., 2017). Gran ites with the high est prob a bil ity of be ing as so - ci ated with in dium-rich ores are A- or S-type, highly frac tion ated in tru sions (Gion et al., 2019).

Low-grade tin de pos its have been mined for sev eral cen tu - ries in the Stara Kamienica Schist Belt (SK) in south west ern Po - land, with the last op er at ing mine, “Gierczyn”, closed in 1958 (Mochnacka et al., 2015; Fig. 1). Cas sit er ite min er ali sa tion was ac com pa nied by a polymetallic sul phide/sulphosalt as so ci a tion and ad di tion ally, lo cal en rich ment in Co min er als re sulted in tem po rary ex ploi ta tion of co balt ore nearby Przecznica (Mo - chna cka et al., 2015). Sev eral in ves ti ga tions (e.g., Piestrzyñski

Fig. 1. Geo log i cal sketch map of the Karkonosze-Izera Mas sif

IKU – Izera-Kowary Unit; SKU – South Karkonosze Unit; LU – Leszczyniec Unit; JU – Ješted Unit;

SK – Stara Kamienica Belt, SP – Szklarska Porêba Belt (af ter Koz³owski et al., 2016)

(3)

and Mochnacka, 2003) re ported in dium in sphale rite and stannite while slight en rich ment in this el e ment has also been noted in whole-rock sam ples (Mikulski et al., 2018; Ma³ek et al., 2019; Mikulski and Ma³ek, 2019). Prog ress in la ser ab la tion-in - duc tively-cou pled mass spec trom e try (LA-ICP-MS), pro vides an op por tu nity to mea sure trace el e ments (in clud ing in dium) in sulphides at much lower de tec tion lim its (e.g., Cook et al., 2009;

Ye et al., 2011; George et al., 2016) but so far no LA-ICP-MS data has been pub lished for base-metal min er ali sa tion in the Sudetes Mts. in SW Po land. The aim of this study is to pro vide new data on mi nor and trace el e ments in sulphides from the Gierczyn mine in or der to iden tify the main in dium car ri ers in the de posit.

GEOLOGICAL SETTING

The Karkonosze–Izera Mas sif (KIM) is ex posed in the west Sudetes on the NE mar gin of the Bo he mian Mas sif (Fig. 1). It is one of the east ern most ex po sures of the Variscan crys tal line base ment in Eu rope and con sists of the Karkonosze Gran ite and its meta mor phic en ve lope. Gran ites of the mas sif crys tal - lized ~312 Ma (Kryza et al., 2014) and are con sid ered to be mostly peraluminous (S³aby and Mar tin, 2008), tran si tional be - tween I- and S-type (S³aby and Mar tin, 2005), while trace el e - ments in di cate that the pa ren tal magma, en riched in W, Sn, Mo and Bi, was highly-evolved and frac tion ated (Mikulski, 2007).

These fea tures cor re spond to gran ites be long ing to the fam ily of Variscan in tru sions rec og nized as a prom is ing ex plo ra tion tar - get for in dium (e.g., Seifert, 2015; Andersen et al., 2016;

Lerouge et al., 2017).

The meta mor phic en ve lope of the in tru sion in cludes four dif - fer ent struc tural units of Neoproterozic–Pa leo zoic age (Mazur and Aleksandrowski, 2001): the Izera–Kowary Unit (IKU), the Ješted Unit, the South ern Karkonosze Unit and the Leszczy - niec Unit (Fig. 1). The Izera–Kowary Unit is di vided by the Late Car bon if er ous Karkonosze pluton into north ern and south east - ern parts and con sists of orthogneisses and mica schists (Figs.

1 and 2). The north ern part is re ferred to in the lit er a ture as the Izera Com plex built of tex tur ally di verse Izera Gneiss es, which en close lenses of undeformed, coarsely crys tal line, por phy ritic Izera and Rumburk gran ites, in ter preted as rel ics of an S-type gra nitic protolith (Borkowska et al., 1980; Oberc-Dziedzic et al., 2005) and dated at 515–480 Ma (Kröner et al., 2001;

¯elaŸniewicz et al., 2009). The Izera Com plex also con tains three schist belts: the north ern Z³otniki Lubañskie, the cen tral Stara Kamienica and the south ern Szklarska Porêba. They are com posed of mica schists with mi nor interbeds of am phi bo lite, calc-sil i cate rocks, quartz ite and quartz–feld spar schist, and were meta mor phosed un der con di tions of up per greenschist and lower am phi bo lite fa cies (¯elaŸniewicz et al., 2003).

An ex ten sive re view of the ore min er ali sa tion in the KIM was pub lished by Mochnacka et al. (2015). Tin min er ali sa tion had been ex ploited in the Stara Kamienica Schist Belt since the 16th 76 K. Foltyn, V. Bertrandsson Erlandsson, G.A. Kozub-Budzyñ, F. Melcher and A. Piestrzyñski

Fig. 2. Sche matic cross sec tion of the Stara Kamienica Schist Belt (af ter Michniewicz et al., 2006, mod i fied)

(4)

cen tury (Madziarz and Sztuk, 2006), but af ter World War II only ex plo ra tion works have been con ducted. This unit ex tends from Przecznica in the east, through Gierczyn and Krobica to Czernia wa in the west and fur ther west ward, to Nové Město upon Smrek in the Czech Re pub lic. Dis sem i nated in the chlorite - mica-quartz schist rich in almandine gar net, low-grade cas sit er ite min er ali sa tion forms a stratabound body and is ac - com pa nied by a polymetallic sul phide/sulphosalt as so ci a tion (e.g., Jaskólski and Mochnacka, 1959; Speczik and Wisznie - wska, 1984; Cook and Dudek, 1994; Mayer et al., 1997;

Piestrzyń ski and Mochnacka, 2003; Michniewicz et al., 2006;

Mochnacka et al., 2015 and ref er ences therein). Ex ten sive de - scrip tions of ore min er als from this lo cal ity have been made e.g.

by Speczik and Wiszniewska (1984), Piestrzyński and Moch - nacka (2003) and Michniewicz et al. (2006). The ore as sem - blage in gen eral con sists of cas sit er ite and var i ous sulphides, ar sen ides and sulphosalts with the most abun dant ones be ing pyrrhotite and chal co py rite. The min eral suc ces sion and dif fer - ent stages of min er ali sa tion have been dis tin guished in the lit er - a ture on the ba sis of cal cu lated tem per a tures of for ma tion, and an im por tant ob ser va tion is the pres ence of two gen er a tions of cas sit er ite (e.g., Mochnacka et al., 1999), con sid ered to be pre- and post-sul phide. Stannite is pres ent as in clu sions in pyrrho - tite, sphalerite and chal co py rite. Mikulski et al. (2018) as well as Mikulski and Małek (2019), re ported in clu sions (~10 µm in size) of in dium-bear ing sakuraiite – (Cu,Zn,Fe)3(In,Sn)S4, which can con tain up to 19 wt.% of In.

The or i gin of this tin de posit is still a mat ter of dis cus sion and sev eral ge netic mod els have been pro posed (for de tailed ref er ence list see Michniewicz et al., 2006 and Mochnacka et al., 2015), but the most widely ac cepted ones in volve hy dro - ther mal ac tiv ity. Some au thors at trib uted it to the Or do vi cian gra nitic protolith of the Izera Gneiss es (e.g., Jaskólski, 1948;

Cook and Dudek, 1994; Michniewicz et al., 2006) while oth ers to the Variscan Karkonosze Gran ite (e.g., Jaskólski and Mochna cka, 1959; Speczik and Wiszniewska, 1984; Mochna - cka et al., 2001, 2015). Three schist belts in the IKU are usu ally con sid ered to be the coun try rocks for the in tru sion of the granitoid protolith of the Izera gneiss es (Żelaźniewicz et al., 2003) and in this case, pre-Variscan mag matic flu ids may be re - spon si ble for the tin min er ali sa tion. Michniewicz et al. (2006) con cluded their petrographic and struc tural ob ser va tions with a state ment that the min er ali sa tion is af fected by all tectono - -meta mor phic pro cesses, thus both tin and slightly later sulphi - des min er ali sa tion seems un likely to be re lated to the youn ger Variscan Karko nosze Gran ite in tru sion. On the other hand, e.g.

Speczik and Wiszniewska (1984) ar gued in fa vour of the role of hy dro ther mal flu ids as so ci ated with in tru sion of the Variscan Karkonosze mas sif in the gen e sis of ore min er ali sa tion found in the SK. Oberc-Dziedzic et al. (2010), based on zir con dat ing, pro posed that mica schists in the south east ern part of the Izera–Kowary Unit are con tem po ra ne ous with the Izera gran - ites and their close prox im ity is the re sult of tec tonic jux ta po si - tion. As sum ing that the Izera Gran ites are con tem po ra ne ous with the mica schist protoliths, the hy dro ther mal sys tem re spon - si ble for the tin ac cu mu la tion is more likely re lated to the Variscan Karko nosze Gran ite (Mochnacka et al., 2015).

SAMPLES AND METHODS

Five ar chi val sam ples con tain ing sphalerite and chal co py - rite vis i ble mac ro scop i cally, col lected by Prof. Ksenia Mochna - cka in the now in ac tive Gierczyn mine, were se lected for the study and one-inch pol ished mounts were pre pared from each

of them. The suite of sam ples is lim ited and was based to wards coarse-grained sphalerite and chal co py rite. Op ti cal light mi - cros copy was used to char ac ter ize the ore min er als, pay ing par tic u lar at ten tion to min eral in clu sions, zon ing, cracks or other tex tural as pects, all of which may im pact trace el e ment dis tri bu - tion. Each sam ple was also stud ied by elec tron microprobe to as sess the Zn and S con tents, which would be used as the in - ter nal stan dards dur ing LA-ICP-MS mea sure ments. Micro - probe anal y ses (EPMA) of chal co py rite, sphalerite, stannite and cas sit er ite were car ried out us ing a JEOL JXA-8230 SuperProbe elec tron microprobe at the Crit i cal El e ments Lab o - ra tory AGH-KGHM in Kraków. Dur ing anal y ses of the sulphides the elec tron microprobe was op er ated in the wave length-dis - per sion mode at an ac cel er at ing volt age of 20kV and a probe cur rent of 20 nA. Count ing times of 20 s on peak, and of 10 s on both (-) and (+) back grounds were used for all el e ments ex cept 40 s on peak and 20 s on back ground used for In and Sn. For cas sit er ite, an a lyt i cal con di tions were 15 kV ac cel er at ing volt - age and 100 nA probe cur rent. Count ing times for cas sit er ite were 20 s on peak, and 10 s on both (-) and (+) back grounds for Sn, Ca, Si, Fe, Mn, 40 s on peak and 20 s on back ground used for Nb Ta, W and 60 s on peak and 30 s on back ground used for In. The fol low ing stan dards and spec tral lines were used for sulphides: FeS2 (FeKa, SKa), chal co py rite (CuKa), ZnS (ZnKa), Ag (AgLa), In2Se3 (InLa), SnS (SnLa), Co (CoKa) and CdS (CdLa), whereas for cas sit er ite the fol low ing were used:

cas sit er ite (SnLa), al bite (SiKa), rhodo nite (MnKa), schee lite (WMa), di op side (CaKa), he ma tite (FeKa), manganotantalite (TaLa), In2Se3 (InLa) and LiNbO3 (NbLa). De tec tion lim its for cas sit er ite mea sure ments are: Si – 0.017 wt.%, Sn – 0.018 wt.%, Mn – 0.02 wt.%, W – 0.08 wt.%, Ca – 0.009 wt.%, Fe – 0.02 wt.%, Nb – 0.02 wt.%, Ta – 0.074 wt.%, In – 0.01 wt.%, Ti – 0.01 wt.%. De tec tion lim its for sulphides are: S – 0.01 wt.%, Cu – 0.02 wt.%, Fe – 0.03 wt.%, Zn – 0.03 wt.%, In – 0.01 wt.%, Ag – 0.02 wt.%, Sn – 0.02 wt.%, Co – 0.02 wt.%, Cd – 0.02 wt.%. Data were cor rected by the ZAF pro ce dure us ing JEOL soft ware for elec tron microprobe.

Elec tron probe microanalyzer mea sure ment of In con tent in cas sit er ite and stannite are com pli cated by the fact that Sn X-ray emis sion lines in ter fere with those of In (Benzaazoua et al., 2003; Lerouge et al., 2017). In or der to elim i nate this in ter - fer ence, cor rec tion fac tors were cal cu lated on the ba sis of EPMA mea sure ments of Sn-bear ing stan dards (cas sit er ite and SnS) and ap plied for all EPMA mea sure ment of Sn min er als (they are +0.00091 and +0.00348 for cas sit er ite and stannite, re spec tively).

Trace el e ment con tents were mea sured at the De part ment of Ap plied Geosciences and Geo phys ics, Montanuniversität Leoben, Aus tria, us ing an ESI NWR213 Nd:YAG la ser ab la tion sys tem cou pled to an Agilent 8800® tri ple quadrupole ICP-MS.

He lium was used as car rier gas with a flow rate of 0.75 L/min.

Flu ency was set be tween 2–3 J/cm2. For sphalerite and chal co - py rite anal y ses, the ma trix-matched sintered pressed pow der pel let ref er ence ma te rial MUL-ZnS 1 (Onuk et al., 2017) was used for quan ti fi ca tion of the el e ment con tent and the USGS pow der pressed polysulphide ref er ence ma te rial MASS-1 (Wil - son et al., 2002) was used for qual ity con trol of the anal y ses.

Data re duc tion was done us ing the Iolite V3.1 soft ware. The fol - low ing iso topes were ana lysed: 51V, 52Cr, 55Mn, 57Fe, 59Co, 60Ni,

63Cu, 71Ga, 74Ge, 75As, 82Se, 95Mo, 107Ag, 111Cd, 115In, 118Sn,

121Sb, 201Hg, 205Tl, 208Pb, 209Bi. The sphalerite (MUL-ZnS1) and chal co py rite (MASS-1) ref er ence ma te ri als were pe ri od i cally ana lysed (ev ery 14 spots) for qual ity con trol. Ab la tion spots were care fully se lected in an ef fort to ana lyse sphalerite and chal co py rite free of ob vi ous in clu sions or cracks; the sam ples ana lysed do nev er the less lo cally dis play inhomogeneity on the

(5)

scale of the ab la tion spot. A con sis tent 50 mm di am e ter spot size was used for all mea sure ments. The dataset in cludes 22 spot anal y ses in mas sive sphalerite and 24 spot in mas sive chal co py rite.

We ac knowl edge polyatomic in ter fer ences that may re quire cor rec tions to de rive pre cise data us ing LA-ICP-MS in cases where con cen tra tions of the in ter fer ing el e ment are suf fi ciently high. Tak ing into ac count the scope of this pa per, mass in ter fer - ence from 115Sn (tin iso tope with 0.34% abun dance) needs to be ad dressed while mea sur ing the con tent of In (Jen ner and O’Neill, 2012). We have not made cor rec tions to the dataset as, al though such in ter fer ences can im pact data qual ity when the el e ments con cerned are pres ent at wt.% con cen tra tion (e.g., in cas sit er ite or stannite), we con sider them neg li gi ble and within in stru men tal er ror for the low µg/g val ues re ported here.

RESULTS

ORE PETROGRAPHY

Cas sit er ite typ i cally oc curs as oval grains, usu ally 50–150 µm in size, but also as multigrain ag gre gates, found in chlorite and/or mica laminae and con cor dant with schist fo li a - tion (Fig. 3A). In some cases, cas sit er ite grains seem to be lo - cally pul ver ized, brecciated and cataclazed dur ing tec tonic de - for ma tion (Fig. 3B). Zinc and cop per min er ali sa tion also oc - curs as thin veinlets and lenses (0.5–3 mm thick), usu ally par - al lel with the quartz-chlorite-mica schist fo li a tion (Fig. 3A) but in some cases form ing larger mas sive ac cu mu la tions up to a few cm in size. Pyrrhotite, chal co py rite and sphalerite are the most abun dant sulphides (Fig. 3C–E) but traces of ga lena, cobaltite, na tive bis muth and bis muthi nite have also been found. In some sam ples pyrrhotite and quartz tex tures can be de scribed as granoblastic (po lyg o nal and amoeboid) with

~120° grain bound ary con tacts (tri ple junc tions; Fig. 3E, F).

This tex ture is of ten con sid ered as in dic a tive of meta mor - phism and is formed to min i mize grain sur face ar eas and in ter - fa cial ten sion (e.g., Craig and Vaughan, 1994). Stannite is pres ent as small (up to 30 µm) in clu sions in chal co py rite and pyrrhotite. Sphalerite com monly con tains fine chal co py rite in - clu sions, so-called “chal co py rite dis ease” (Fig. 3D) while small sphalerite in clu sions in chal co py rite and pyrrhotite are rare.

The sulphides lo cally ac com pany cas sit er ite (Fig. 3A), but Sn and base-metal min er ali sa tion are com monly spa tially sep a - rated. SEM-EDS anal y sis helped to iden tify nu mer ous small (sin gle to tens of µm in size) grains of na tive bis muth, bis - muthi nite (Bi2S3), laitakarite (Bi4Se3), ullmannite (NiSbS), mo - lyb de nite (MoS2), a Ag2(S,Se) phase and a Bi-Pb-Ag-Se-S sulphosalt sim i lar in com po si tion to wittite or weibullite (Fig.

3G, H). The main gangue min er als are quartz (usu ally po lyg o - nal; Fig. 3F), idiomorphic almandine gar net (up to sev eral mm in size), chlorites and micas (mus co vite and bi o tite).

EPMA

Mas sive sphalerite from the Gierczyn mine is com posed of 58.1 ±0.61 wt.% Zn, 33.76 ±0.26 wt.% S and 8.1 ±0.62 wt.% Fe on av er age (Ta ble 1). Cad mium was con sis tently de tected with mean con cen tra tions of 0.43 wt.% (Ta ble 1). Co balt con tents up to 0.05 wt.% (0.03 wt.% on av er age) and In con cen tra tions

up to 0.06 wt.% (0.04 wt.% on av er age) have been de tected (Ta ble 1). By com par i son, sphalerite pres ent as min ute (tens of µm in size) in clu sions in sulphides dif fers slightly from mas sive sphalerite: it has a lower Zn con tent but higher av er age con - tents of Cd (1.70 wt.%) and In (0.1 wt.%; Ta ble 1).

Chal co py rite grains, both mas sive and pres ent as in clu - sions in sphalerite, have a sim i lar chem i cal com po si tion and con tain 34.00 ±0.19 wt.% Cu, 29.86 ±0.17 wt.% Fe and 35.10

±0.18 wt.% S on av er age (Ta ble 1). Zinc, Sn and Ag were con - sis tently de tected with mean con cen tra tions ~0.09, 0.04 and 0.03 wt.% re spec tively, ex cept for small chal co py rite in clu sions in sphalerite where Zn con tent reached up to 0.67 wt.%, though these mea sure ments can be af fected by sur round ing sphalerite (Ta ble 1). In dium con tent has been mea sured up to 0.03 wt.%

(0.01 wt.% on av er age, close to de tec tion lim its; Ta ble 1). Most stan nites are pres ent as min ute in clu sions in pyrrhotite and do not carry in dium; only those intergrown with a tiny Pb-Bi- Ag- Se-S sulphosalt con tain de tect able amounts of In (up to 0.04 wt.%, Ta ble 1). Av er age com po si tion of stannite is 29.86 ±0.25 wt.% S, 28.49 ±0.85 wt.% Cu, 26.96 ±0.60 wt.% Sn and 13.87

±1.18 wt.% of Fe (Ta ble 1).

Cas sit er ite as so ci ated with sulphides con tains Fe, Ti, W, In as trace el e ments but be sides Fe, they are usu ally be low or very close to de tec tion lim its. Most mea sur ing spots show In be - low or very close to de tec tion lim its of 0.01 wt.% (Ta ble 2). For fur ther in ves ti ga tions on ma jor sub sti tu tions of trace el e ments in cas sit er ite, crystallochemical for mu lae were cal cu lated on the ba sis of six ox y gen at oms ac cord ing to Lerouge et al. (2017).

While most of the el e ments are be low or close to de tec tion lim - its, a strong 1:1 cor re la tion be tween Sn4+ and Fe2+ is ob served (R2 = 0.99) and con firms ma jor sub sti tu tion Sn4+-2Fe2+.

LA-ICP-MS SPHALERITE

The ab la tion pro files for some el e ments (In, Mn, Cd, Fe, Co, Hg) are smooth and flat (Fig. 4) in di cat ing ho mo ge ne ity on the scale of the ab la tion crater and, im plic itly, oc cur rence of the el e - ment in solid so lu tion. Time-re solved depth pro files for Cu are rarely flat and usu ally show char ac ter is tic spikes (Fig. 4B), in ter - preted as a re sult of small chal co py rite in clu sions in the ab lated spot. Other el e ments, no ta bly Sn, Ga, Ag and Se com monly ex - hibit ir reg u lar pro files (Fig. 4), sug gest ing the pres ence of mi - cro- or nanoscale in clu sions of min er als car ry ing these el e - ments. Sn and Ag pro files com monly dis play a slight in crease pos i tively cor re lated with Cu spikes (Fig. 4B) which in di cates that “chal co py rite dis ease” is en riched in these el e ments in com par i son with the host sphalerite. LA-ICP-MS mea sure - ments are sum ma rized in Ta ble 3 and re sults in gen eral match those de ter mined by EPMA (Ta ble 1). Signifcant Fe and Cd con tents (8.53–11.80 wt.% and 3945–5405 µg/g re spec tively) as well as In en rich ment in the range of 347–433 µg/g have been mea sured (Ta ble 3). Cop per ex hib its a wide range of con - cen tra tions (301–6894 µg; Ta ble 3), a re sult of small chal co py - rite in clu sions. Sphalerites also con tain no ta ble Co (182–225 µg/g; Ta ble 3) which shows strong pos i tive cor re la - tion with Zn and Cd (R2 = 0.67 and R2 = 0.8 re spec tively). Up to 4.6 µg/g of Ga has been mea sured; Ag, As, Pb, Sn, Sb and Bi are typ i cally <2 µg/g while Ge, Mo, Ni, V and Te do not ex ceed the back ground level (Ta ble 3).

78 K. Foltyn, V. Bertrandsson Erlandsson, G.A. Kozub-Budzyń, F. Melcher and A. Piestrzyński

(6)

Fig. 3. Ore min er als from the Gierczyn mine, re flected light im ages

A – oval cas sit er ite grains in chlorite laminas in quartz ac com pa nied by chal co py rite and pyrrhotite, B – cataclastic cas sit er ite, C – chal co py rite with LA-spots in quartz, D – exsolution of chal co py rite and pyrrhotite in sphalerite with LA-spots, E – mas sive pyrrhotite with po lyg o nal mor phol - ogy, note the ~120° grain bound ary con tacts, F – quartz with po lyg o nal tex ture; BSE im ages: G – inter growth of laitakarite, ullmannite, chal co - py rite and Ag2(S,Se) phase in quartz; H – inter growths of na tive bis muth and bis muthi nite; Cas – cas sit er ite, Chl – chlorite, Qz – quartz, Ccp – chal co py rite, Po – pyrrhotite, Sph – sphalerite, Ltk – laitakarite, Ulm – ullmannite, Bi – na tive bis muth, Bis – bis muthi nite

(7)

Sphalerite in cor po rates many met als into its struc ture: Cu2+, Ni2+, Co2+, Fe2+, Mn2+ and Cd2+ which sub sti tute for Zn via the sim ple sub sti tu tion equa tion M2+-Zn2+. For el e ments gen er ally oc cur ring in odd va lences such as Cu, In and other trace com - pounds (e.g., Sb, Ag, Ga, As), mul ti ple cou pled sub sti tu tions with Zn are thought to be in volved to ex plain the en rich ment of the el e ments in sphalerite (Johan, 1988; Cook et al., 2012, Belissont et al., 2014). The ac cepted mech a nism of In in cor po - ra tion into sphalerite is 2Zn2+-Cu++In3+ (Cook et al., 2009, 2012) and given very low con cen tra tions of Ag in the sam ples mea - sured, mainly Cu is in volved in the cou pled sub sti tu tion.

CHALCOPYRITE

Ab la tion pro files for some el e ments (In, Mn, Sn, Ag, Co) are smooth and show flat pat terns in di cat ing ho mo ge ne ity on the scale of the ab la tion crater (Fig. 5) and oc cur rence of the el e - ment in solid so lu tion. Other el e ments (Cd, Zn, Ga, Se, Sb, Pb, Bi) com monly ex hibit less reg u lar pro files, which are likely a com bi na tion of lat tice-bound el e ment and sub-mi cro scopic in - clu sions of min er als that con tain them (most ev i dent in the case of Pb and Bi; Fig. 5A).

Mea sure ments con firmed that chal co py rite from Gierczyn is in deed en riched in In (38–125 µg/g; Ta ble 3). It con tains typ i -

cally over 400 µg/g of Zn, 100 µg/g of Ag and 225 µg/g of Sn (Ta ble 3). Se le nium is pres ent at the level of tens of µg/g; Co, Ga, Cd, Sb, Pb, Bi are pres ent in al most all ana lysed spots at the sin gle µg/g level while Ge, As, Ni, Mo, Te, Hg and Tl are pres ent at or be low de tec tion lim its (Ta ble 3).

Chal co py rite is isostructural with roquesite (CuInS2) and as a re sult, sig nif i cant con cen tra tions of In can be hosted in chal - co py rite (Wittmann, 1974). In cor po ra tion of trace el e ments into the chal co py rite struc ture is more com plex than in the case of sphalerite or ga lena due to the pres ence of co va lent bond ing (see dis cus sion in George et al., 2016, 2018). Cou pled sub sti tu - tions are dif fi cult to ver ify be cause Fe and Cu is much more con cen trated than In and is likely in volved in many cou pled sub - sti tu tion mech a nisms that are im pos si ble to dis tin guish in sim - ple scat ter plots.

DISCUSSION

In dium con tent in cas sit er ite is sig nif i cantly lower than in sam ples from Cornwall where av er age val ues for dif fer ent lo cal - i ties are 121–970 µg/g of In in cas sit er ite (Andersen et al., 2016). In dium con cen tra tions in sphalerites and chalcopyrites from Gierczyn are higher than those re ported from stratiform 80 K. Foltyn, V. Bertrandsson Erlandsson, G.A. Kozub-Budzyń, F. Melcher and A. Piestrzyński

T a b l e 1 Rep re sen ta tive EPMA mea sure ments of sul phides and sulphosalts from the Gierczyn mine (in wt.%)

S Fe Cu Zn Co Cd In Ag Sn To tal

Mas sive sphalerite

33.77 7.80 <0.03 58.27 0.04 0.39 0.04 n.a. n.a. 100.33

33.59 7.69 <0.03 58.24 0.04 0.45 0.03 n.a. n.a. 100.06

33.98 8.57 <0.03 57.68 0.03 0.43 0.04 n.a. n.a. 100.74

33.50 6.65 <0.03 59.25 <0.02 0.46 <0.01 n.a. n.a. 99.87

33.71 8.11 <0.03 58.21 0.04 0.41 0.04 n.a. n.a. 100.53

Sphalerite in clu sions

33.15 7.45 <0.03 57.46 <0.02 1.68 0.07 n.a. n.a. 99.83

33.26 6.99 0.05 57.76 0.03 1.70 0.15 n.a. n.a. 99.95

Mas sive chal co py rite

35.11 29.91 34.06 0.05 n.a. n.a. <0.01 0.06 0.07 99.28

35.28 29.98 34.05 0.07 n.a. n.a. <0.01 0.03 0.05 99.46

35.09 29.96 34.11 0.07 n.a. n.a. <0.01 0.03 0.06 99.33

34.86 29.92 34.30 0.05 n.a. n.a. <0.01 0.02 <0.02 99.15

35.11 29.99 33.85 0.04 n.a. n.a. <0.01 <0.02 0.04 99.05

Chal co py rite in clu sions

34.91 29.68 33.79 0.42 n.a. n.a. <0.01 0.02 0.04 98.88

35.14 29.93 33.52 0.67 n.a. n.a. <0.01 0.02 <0.02 99.29

Stannite

30.26 16.28 26.93 1.21 n.a. n.a. <0.01 0.06 25.46 100.20

29.71 13.53 27.61 1.14 n.a. n.a. <0.01 0.06 27.35 99.39

29.82 13.76 28.20 1.26 n.a. n.a. 0.04 0.05 27.18 100.33

S Fe Zn Ag Bi Cu Sb Pb Se To tal

Laitakarite 0.33 0.62 <0.03 0.02 78.25 0.97 0.07 0.05 19.30 99.61

Bi-Pb-Ag-Se-S sulphosalt

15.67 5.67 <0.03 1.82 40.59 5.53 0.23 24.93 6.53 100.97

12.86 2.36 <0.03 5.54 44.84 <0.03 0.52 26.63 6.88 99.63

14.64 2.51 <0.03 1.82 46.23 3.15 0.07 29.50 4.45 102.37

n.a. – not ana lysed; de tec tion lim its for In – 0.01 wt.%

(8)

pre-gran ite sulphides from Cornwall (mostly be low the lower limit of de tec tion, out li ers up to 242 µg/g of In in sphalerite and 42 µg/g In in chal co py rite), but not as high as those from gran - ite-re lated skarns from that lo cal ity (e.g., sphalerite from the Haytor Vale Mine con tains up to 1300 and 540 µg/g In on av er - age; Andersen et al., 2016). In dium con tents up to 250 µg/g in chal co py rite (80 µg/g on av er age) are sig nif i cantly lower than data re ported from thir teen Sn ± W gran ite-re lated ore de pos its in the west ern Variscan Belt (Mas sif Cen tral and Armori can Mas sif, France; Galicia, Spain; and SW Eng land) by Lero uge et al. (2017) where con tents reach 2870 µg/g. Sphalerite from the Freiberg dis trict also con tains much higher In con cen tra tions, be tween 0.03 and 0.38 wt.% In (mean value 0.16 wt.%; Seifert and Sandmann, 2006). Con sid er ing avail able LA-ICP- MS data for trace el e ments in chal co py rite for dif fer ent ore de posit types, the val ues show sim i lar i ties to prox i mal orepipe sam ples from the Baita Bihor Cu-Au-Pb-Zn-Mo skarn de posit in Ro ma nia (George et al., 2016, 2018) with In con cen tra tions around 100 µg/g, Sn and Co con cen tra tions at tens and hun dreds of µg/g and very low con tents of As. The Baita Bihor skarn is a re sult of con tact meta mor phism (Ciobanu et al., 2002), con tains Cu-Zn- Pb-W-Bi ores, and the es ti mated tem per a ture of for ma tion for prox i mal zone pipes is 500°C (George et al., 2018). Sphalerite

with low con cen tra tions of As and Ge, to gether with en rich ment in Co, as in the case of the Gierczyn sam ples, are of ten re - ported in skarn de pos its (e.g., Cook et al., 2009; Frenzel et al., 2016; George et al., 2016) and usu ally in di cate a higher tem per - a ture of for ma tion.

The for ma tion of In-rich sulphides may be fa cil i tated by high-tem per a ture pre cip i ta tion from the hy dro ther mal fluid or recrystallization pro cesses e.g. due to meta mor phic over print - ing (Schwarz-Schampera and Herzig, 2002). Co-pre cip i ta tion of In with Cu, Zn and Fe ac counts for the el e vated con cen tra - tions in chal co py rite ores and is char ac ter ized by for ma tion tem per a tures in the range of ~290–380°C with a gen eral rise in In con cen tra tions in ore min er als with depth and in creas ing for ma tion tem per a tures (Schwarz-Schampera and Herzig, 2002). Cook and Dudek (1994) used sphalerite from the Stara Kamie nica Schist Belt as a geothermometer and their data sug gest tem per a tures 500–550°C and pres sure 6–7.5 kbars.

Fren zel et al. (2016) in their meta-anal y ses of trace el e ments in sphalerite showed sta tis ti cally sig nif i cant dif fer ences in the mean con cen tra tions of Fe, Ga, Ge, In and Mn in sphalerite be tween dif fer ent de posit types. Sta tis ti cal cal cu la tion al lowed them to dem on strate that con cen tra tion of these el e ments strongly cor re lates with the ho mogeni sa tion tem per a ture of T a b l e 2 EPMA mea sure ments of cas sit er ite from the Gierczyn mine (data in wt.%)

WO3 0.33 bdl bdl bdl 0.09 bdl 0.13 0.15 0.08 0.08 0.12 0.08

Nb2O5 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl

Ta2O5 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl

SnO2 99.67 98.46 98.59 98.87 99.84 100.10 99.28 99.37 100.39 100.03 100.19 99.86

SiO2 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl

MnO bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.02

FeO 0.32 0.38 0.62 0.67 0.86 0.46 0.32 1.49 0.50 0.27 0.34 0.51

CaO bdl bdl bdl bdl 0.02 0.01 0.03 0.01 0.02 0.02 0.02 bdl

In2O3 bdl 0.01 0.02 bdl 0.01 bdl 0.01 0.01 0.01 0.01 0.01 0.02

TiO2 bdl bdl bdl 0.03 bdl bdl bdl bdl bdl bdl bdl bdl

To tal 100.32 98.86 99.24 99.64 100.84 100.62 99.78 101.03 101.00 100.46 100.70 100.51 Apfu on the ba sis of 3 Sn

WO3 0.006 0.000 0.000 0.000 0.002 0.000 0.002 0.003 0.002 0.001 0.002 0.002

Nb2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ta2O5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

SnO2 2.974 2.975 2.960 2.956 2.943 2.970 2.976 2.904 2.967 2.979 2.976 2.965

SiO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

FeO 0.020 0.024 0.039 0.042 0.054 0.028 0.021 0.092 0.031 0.018 0.021 0.031

In2O3 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

TiO2 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

To tal 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

bdl – be low de tec tion limit; struc tural for mu lae were cal cu lated on the ba sis of six ox y gen at oms (as in Lerouge et al., 2017)

(9)

fluid in clu sions and was the ba sis for the em pir i cal for mula of a new geother mometer GGIMFis („Ga, Ge, In, Mn and Fe in sphalerite”; Frenzel et al., 2016). Ap pli ca tion of the GGIMFis geother mometer to our re sults gave tem per a tures in the range 331–349°C. Frenzel et al. (2016) also dis cussed thor oughly the im pact of meta mor phism on trace el e ment con tents in sphale rite. A plot of GGIMFis tem per a ture against peak meta - mor phic tem per a ture for the de pos its first in crease in the ra tio 1:1 up to ~310°C but then re mains con stant while peak tem - per a ture fur ther in creases (Frenzel et al., 2016). They in ter - pret this re sult as re flect ing clo sure of the sphalerite sys tem at

~310°C dur ing ret ro grade meta mor phism and con clude that the geothermometer is re set for de pos its af fected by green - schist or higher grade meta mor phism. This means that the re - sults for the Gierczyn sam ples (331–349°C) can be in ter - preted as re flect ing the tem per a ture of sphalerite de po si tion (Variscan, post-meta mor phic min er ali sa tion), but they can as well-rep re sent sphalerite meta mor phosed in con di tions of

green schist/am phi bo lite fa cies (thus pre-meta mor phic min er - ali sa tion).

Meta mor phism is ba si cally the re-equil i bra tion of ex ist ing min eral as sem blages un der dif fer ent tem per a ture and pres sure con di tions and ac cord ing to Frenzel et al. (2016) the most im - por tant ef fect of meta mor phism on sphalerite in terms of trace el e ments will be a di min ish ing of Ga and Ge con cen tra tions rel - a tive to the con cen tra tions of Fe, Mn and, to a lesser de gree, In.

They point out that this does not nec es sar ily mean that Ga and Ge will be ex pelled from the de posit; in stead, these el e ments might par ti tion into other min er als, e.g. the Cu-Fe-sulphides (e.g., Reiser et al., 2011). In re cent pa pers George et al. (2016, 2018) in ves ti gated hy dro ther mal chal co py rite and the par ti tion - ing of el e ments be tween co-crys tal liz ing phases us ing LA-ICP - -MS. Their data show that hy dro ther mal chal co py rite crys tal liz - ing alone is likely to host greater con cen tra tions of Co, Zn, Se, Ag, In, Sn and Bi than chal co py rite co-crys tal liz ing with sphalerite (be ing a pref er en tial host, sphalerite will re duce the 82 K. Foltyn, V. Bertrandsson Erlandsson, G.A. Kozub-Budzyñ, F. Melcher and A. Piestrzyñski

Fig. 4. Rep re sen ta tive sin gle-spot LA-ICP-MS spec tra for se lected el e ments in sphalerite A – free of chal co py rite in clu sions, B – with “chal co py rite dis ease”

T a b l e 3 The re sults of LA-ICP-MS mea sure ments in µg/g for se lected el e ments

Mn Fe Co Ni Cu Zn Ga Ge As Se Ag Cd In Sn Sb Pb Bi

Sphalerite

MEDIAN (22) 87 101 098 195 0.2 677 IS 3.8 0.3 0.6 65 1.7 4 168 359 1.6 0.3 0.6 0.5 MEAN (22) 93 100 985 199 0.4 1517 IS 3.9 0.3 0.5 65 2.4 4 467 374 2.5 2.8 3.7 0.9 MIN 70 85 302 182 <0.1 301 IS 2.9 0.1 <0.1 45.5 0.7 3 945 347 0.4 <0.1 <0.1 <0.1 MAX 139 118 023 225 4.4 6 894 IS 4.6 0.5 1.2 77 7.6 5 405 433 11.7 47.4 59 7.9

Chal co py rite

MEDIAN (24) 13.1 IS 9.4 6.7 IS 624 1.5 0.5 0.2 86 181 12.1 97 623 0.7 2.1 2.1 MEAN (24) 12.6 IS 8.6 35 IS 663 1.6 0.5 0.2 100 188 23 85 679 1.3 2.9 2.6

MIN 10 IS 3.3 1.5 IS 438 0.1 0.1 – 40 127 3.5 38 223 0.1 0.4 0.2

MAX 15.8 IS 15.6 483 IS 1477 3.3 1.1 0.4 159 293 70 125 1288 5 15.7 8.6

IS – in ter nal stan dard

(10)

amounts of trace el e ments avail able for chal co py rite). On the other hand, they ob served that in the de pos its where sulphides recrystallized un der meta mor phic con di tions the op po site is true for Ga and Sn, which are sig nif i cantly higher in chal co py rite co-crys tal liz ing with sphalerite by com par i son with chal co py rite crys tal liz ing alone (George et al., 2018). They pro posed that dur ing recrystallization, Ga and Sn in pre-ex ist ing sphalerite (a pref er en tial host at lower tem per a tures) have been remobilized and par ti tioned into co-ex ist ing chal co py rite.

We ob serve a sim i lar pat tern for Ga in the sulphides in ves ti - gated from the Gierczyn mine but not for Sn (Ta ble 4); how ever, in this case the pres ence or ab sence of cas sit er ite and stannite (ab sent in the de posit in ves ti gated by George et al., 2018) is ex - pected to be the main fac tor in flu enc ing the con tent of Sn in the sulphides. Ad di tion ally, we ob serve that chal co py rite which oc - curs to gether with mas sive sphalerite has sig nif i cantly lower Se, Ag, Cd and slightly higher In than chal co py rite with out sphalerite (Ta ble 4).

Two lead ing hy poth e sis re gard ing or i gin of the tin-sul phide min er ali sa tion in the Stara Kamienica Schist Belt can be sum - ma rized as “pre-meta mor phic” and “post-meta mor phic” re - spec tively, but both in voke in tru sion of a gran ite as a main source of the min er al is ing flu ids i.e. the pre-Variscan gra nitic protolith of the Izera Gneiss es or the Variscan Karkonosze Gran ite, re spec tively, which likely could be a source of In (Mochnacka et al., 2015; Gion et al., 2019).

Al though the sam ple set is lim ited, tex tural ob ser va tion of pyrrhotite and quartz with granoblastic po lyg o nal tex tures (Fig.

3E, F), as well as par ti tion ing of trace el e ments be tween sulphides, are more con sis tent with the idea that at least part of the tin and base-metal min er ali sa tion un der went meta mor - phism. This could have been dur ing re gional meta mor phism di - rectly pre ced ing em place ment of the Karkonosze Gran ite In tru - sion or dur ing ear lier meta mor phic events. Fur ther in ves ti ga tion pro vid ing ab so lute ages of meta mor phism and min er ali sa tion as well as com par i son with sul phide oc cur rences re lated to the Karkonosze Gran ite In tru sion are needed to ver ify this in ter pre - ta tion.

CONCLUSIONS

With de vel op ment in an a lyt i cal tech niques, trace el e ments in sulphides are be com ing in creas ingly use ful in de ci pher ing geo log i cal pro cesses re lated to min eral de pos its. The low grade tin-sul phide min er al isa tion in the Stara Kamienica Schist Belt is en riched in in dium, with sphalerite (up to 433 µg/g of In), chal co - py rite (up to 117 µg/g of In) and cas sit er ite (up to 0.02 wt.% In) as the main hosts of this el e ment. In dium, tin and es pe cially gal - lium pres ent in pre-ex ist ing sphalerite may have been remo - bilized and par ti tioned into chal co py rite dur ing meta mor phism, thus in creas ing the con cen tra tion of these el e ments in the lat -

T a b l e 4 Me dian of trace el e ments con cen tra tion in chal co py rite grains which oc cur to gether with mas sive sphalerite

(n = 22 ab la tion spots) in com par i son with chal co py rite alone (n = 13 ab la tion spots)

Ge Sn Se Ag Cd In

[µg/g]

Chal co py rite oc cur with sphalerite 2.6 (max 3.3 µg/g)

400

(max 658 µg/g) 66 143 4.5 98

Chal co py rite with out sphalerite 1 (max 1.8 µg/g)

817

(max 1288 µg/g) 134 221 43 74

Fig. 5. Rep re sen ta tive sin gle-spot LA-ICP-MS spec tra for se lected el e ments in chal co py rite A – good cor re la tion be tween Pb and Bi could in di cate microinclusions of Pb-Bi min er als;

B – flat pro files for ma jor el e ments: Cu, Fe, Sn, In, Ag

(11)

ter. Chal co py rite from Gierczyn oc cur ring to gether with sphalerite has a higher Ga con tent than chal co py rite oc cur ring with out sphalerite, a fea ture con sis tent with meta mor phic re - crystallization of the ore as sem blage. Fur ther re search on trace el e ments in sul phides can help an swer the ques tion whether they recrystallized in con di tions of greenschist/am phi bo lite fa - cies. In ves ti ga tion of sul phides from the Karkonosze-Izera Mas sif as a whole can give in ter est ing in sights into trace el e - ment par ti tion ing be tween sulphides af fected by con tact and/or re gional meta mor phism.

Ac knowl edge ment. We would like to thank prof. K. Mo - chnacka for pro vid ing sam ples for mea sure ments. We are also grate ful to Dr P. Onuk for his sup port dur ing LA-ICP-MS anal y - ses and data re duc tion and to the re view ers, Prof. A. Pieczka and C. Lerouge, whose com ments helped us to im prove this manu script. This work was sup ported by the re search sub sidy nr. 16.16.140.315 at the Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion of the AGH Uni ver sity of Sci ence and Tech nol ogy in Kraków.

REFERENCES

Andersen, J.C., Stickland, R.J., Rollinson, G.K., Shail, R.K., 2016. In dium min er ali sa tion in SW Eng land: host parageneses and min er al og i cal re la tions. Ore Ge ol ogy Re views, 78:

213–238.

An der son, C.S., 2019. In dium. In: Min eral Com mod ity Sum ma ries 2019: 78–79. United States Geo log i cal Sur vey.

Bauer, M.E., Seifert, T., Burisch, M., Krause, J., Rich ter, N., Gutzmer, J., 2019. In dium-bear ing sul fides from the Hämmerlein skarn de posit, Erzgebirge, Ger many: ev i dence for late-stage dif fu sion of in dium into sphalerite. Mineralium Depo - sita, 54: 175–192.

Belissont, R., Boiron, M.C., Luais, B., Cathelineau, M., 2014.

LA-ICP-MS anal y ses of mi nor and trace el e ments and bulk Ge iso topes in zoned Ge-rich sphalerites from the Noailhac–Saint- Salvy de posit (France): in sights into in cor po ra tion mech a nisms and ore de po si tion pro cesses. Geochimica et Cosmochimica Acta, 126: 518–540.

Benzaazoua, M., Marion, P., Pinto, A., Migeon, H., Wag ner, F. E., 2003. Tin and in dium min er al ogy within se lected sam ples from the Neves Corvo ore de posit (Por tu gal): a multidisciplinary study. Min er als En gi neer ing, 16: 1291–1302.

Blengini, G., Nuss, P., Dewulf, J., Nita, V., Peirà, L.T., Vidal- Legaz, B., Latunussa, C., Mancini, L., Blagoeva, D., Pen - ning ton, D., Pellegrini, M., Van Maercke, A., So lar, S., Grohol, M., Ciupagea, C., 2017. EU meth od ol ogy for crit i cal raw ma te ri als as sess ment: pol icy needs and pro posed so lu tions for in cre men tal im prove ments. Re sources Pol icy, 53: 12–19.

Borkowska, M., Hameurt, J., Vidal, P., 1980. Or i gin and age of Izera gneiss es and Rumburk gran ites in the West ern Sudetes.

Acta Geologica Polonica, 30: 121–146.

Ciobanu, C.L., Cook, N.J., Stein, H., 2002. Re gional set ting and geo chron ol ogy of the Late Cre ta ceous Banatitic mag matic and metallogenetic belt. Mineralium Deposita, 37: 541–567.

Cook, N.J., Ciobanu, C.L., Pring, A., Skin ner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., Melcher, F., 2009. Trace and mi nor el e ments in sphalerite: a LA-ICPMS study. Geo - chimica et Cosmochimica Acta, 73: 4761–4791.

Cook, N.J., Sundblad, K., Valkama, M., Nyg¯rd, R., Ciobanu, C.L., Danyushevsky, L., 2011. In dium min er ali sa tion in A-type gran ites in south east ern Fin land: in sights into min er al ogy and par ti tion ing be tween co ex ist ing min er als. Chem i cal Ge ol ogy, 284: 62–73.

Cook, N.J., Ciobanu, C.L., Brugger, J., Etschmann, B., Howard, D.L., de Jonge, M.D., Ryan, C., Pat er son, D., 2012. De ter mi - na tion of the ox i da tion state of Cu in sub sti tuted Cu-In-Fe-bear - ing sphalerite via m-XANES spec tros copy. Amer i can Min er al o - gist, 97: 476–479.

Cook, N., Dudek, K., 1994. Min eral chem is try and meta mor phism of gar net–chlorite mica schists as so ci ated with cas sit er ite-sul - fide min er al iza tion from the Kamienica Range, Izera Moun tains, SW Po land. Chemie der Erde, 54: 1–32.

Craig, J.R., Vaughan, D.J., 1994. Ore Mi cros copy and Ore Pe trog - ra phy. 2nd Edi tion, John Wiley and Sons Inc., Hoboken.

EC-Eu ro pean Com mis sion, 2014. Re port on crit i cal raw ma te ri als for the EU – re port of the Ad hoc Work ing Group on de fin ing crit i - cal raw ma te ri als. Eu ro pean Com mis sion. Brussels, 2014.

Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gal lium, ger ma nium, in - dium, and other trace and mi nor el e ments in sphalerite as a func tion of de posit type – a meta-anal y sis. Ore Ge ol ogy Re - views, 76: 52–78.

George, L.L., Cook, N.J., Ciobanu, C.L., 2016. Par ti tion ing of trace el e ments in co-crys tal lized sphalerite–ga lena–chal co py rite hy - dro ther mal ores. Ore Ge ol ogy Re views, 77: 97–116.

George, L.L., Cook, N.J., Crowe, B.B., Ciobanu, C.L., 2018. Trace el e ments in hy dro ther mal chal co py rite. Min er al og i cal Mag a zine, 82: 59–88.

Gion, A.M., Piccoli, P.M., Can dela, P.A., 2019. Con straints on the for ma tion of gran ite-re lated in dium de pos its. Eco nomic Ge ol - ogy, 114: 993–1003.

Jaskólski, S., 1948. Tin ore de posit in Gerbichy (Gieren) in Lower Silesia (pre lim i nary re port) (in Pol ish with Eng lish sum mary).

Biuletyn Państwowego Instytutu Geologicznego, 42: 1–22.

Jaskólski, S., Mochnacka, K., 1959. Tin de pos its at Gierczyn in Isera Moun tains, Lower Silesia an at tempt of elu ci da tion their or - i gin. Archiwum Mineralogiczne, 22: 17–106.

Jen ner, F.E., O’Neill, H.S.C., 2012. Ma jor and trace anal y sis of ba - saltic glasses by la ser-ab la tion ICP-MS. Geo chem is try, Geo - phys ics, Geosystems, 13.

Johan, Z., 1988. In dium and ger ma nium in the struc ture of sphalerite: an ex am ple of cou pled sub sti tu tion with cop per. Min - er al ogy and Pe trol ogy, 39: 211–229.

Kozłowski, A., Ilnicki, S., Matyszczak, W., Marcinowska, A., 2016. Mag matic and post-mag matic phe nom ena in the Karko - nosze gran ite and its meta mor phic en ve lope (West Sudetes, SW Po land). Acta Geologica Polonica, 66: 456–476.

Kröner, A., Jaeckel, P., Hegner, E., Opletal, M., 2001. Sin gle zir con ages and whole-rock Nd iso to pic sys tem at ics of early Palaeo zoic granitoid gneiss es from the Czech and Pol ish Sude tes (Jizerské hory, Krkonoše Moun tains and Orlice-Sněžník Com plex). In ter - na tional Jour nal of Earth Sci ences, 90: 304–324.

Kryza, R., Pin, C., Oberc-Dziedzic, T., Crowley, Q.G., Larionov, A., 2014. De ci pher ing the geo chron ol ogy of a large granitoid pluton (Karkonosze Gran ite, SW Po land): an as sess ment of U–Pb zir - con SIMS and Rb–Sr whole-rock dates rel a tive to U–Pb zir con CA-ID-TIMS. In ter na tional Ge ol ogy Re view, 56: 756–782.

Lerouge, C., Gloaguen, E., Wille, G., Bailly, L., 2017. Dis tri bu tion of In and other rare met als in cas sit er ite and as so ci ated min er - als in Sn±W ore de pos its of the west ern Variscan Belt. Eu ro pean Jour nal of Min er al ogy, 29: 739–753.

Madziarz, M., Sztuk, H., 2006. Ex ploi ta tion of the tin ore in the Izerskie Moun tains: his tory or fur ther per spec tive for the re gion?

(in Pol ish with Eng lish sum mary). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. Studia i Materiały, 117:

193–202.

Małek, R., Mikulski, S.Z., Chmielewski, A., 2019. The geo chem i - cal-min er al og i cal char ac ter is tic of cas sit er ite-sul phide min er al - 84 K. Foltyn, V. Bertrandsson Erlandsson, G.A. Kozub-Budzyń, F. Melcher and A. Piestrzyński

(12)

iza tion in the his toric Saint John and Saint Leopold shafts in the Stara Kamienica shist belt (West ern Sudetes) (in Pol ish with Eng lish sum mary). Przegląd Geologiczny, 67: 914–924.

Mayer, W., Mochnacka, K., Janczyszyn, J., 1997. REE and trace el e ments in the schists of the Stara Kamienica Belt, Gierczyn area, SW Po land. Mineralogia Polonica, 28: 69–86.

Mazur, S., Aleksandrowski, P., 2001. The Tepla (?)/Saxo thurin - gian su ture in the Karkonosze–Izera Mas sif, west ern Sudetes, Cen tral Eu ro pean Variscides. In ter na tional Jour nal of Earth Sci - ences, 90: 341–360.

Michniewicz, M., Bobiński, W., Siemiątkowski, J., 2006. The min - er al iza tion in the mid dle part of the Stara Kamienica Schist Belt (West ern Sudetes) (in Pol ish with Eng lish sum mary). Prace Państwowego Instytutu Geologicznego, 185: 5–136.

Mikulski, S.Z., 2007. Metal ore po ten tial of the par ent magma of gran ite – the Karkonosze mas sif ex am ple. Archivum Mineralo - giae Mono graph, 1: 123–145.

Mikulski, S.Z., Małek, R., 2019. In dium and other crit i cal el e ments en rich ment in cas sit er ite-sul phide min er al iza tion from the stratiform tin de pos its in the West Sudetes (SW Po land). Life with Ore De pos its on Earth. 15th SGA Bi en nial Meet ing, 27–30 Au gust 2019, Glas gow, Scot land, 4: 1818–1821

Mikulski, S.Z., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2018. The oc cur rence of as so ci ated and crit i cal el e ments in the se lected doc u mented Zn-Pb, Cu-Ag, Fe-Ti-V, Mo-Cu-W, Sn, Au-As and Ni de pos its in Po land (in Pol ish with Eng lish sum mary). Biuletyn Państwowego Instytutu Geolo - gicznego, 472: 21–52.

Mochnacka, K., Mayer, W., Piestrzynski, A., Kucha, H., 1999. Pe - trol ogy of cas sit er ite ag gre gates from Gierczyn area, SW Po - land. In: Min eral De pos its: Pro cesses to Pro cess ing (eds. Stan - ley et al.): 397–400. Balkema, Rot ter dam.

Mochnacka, K., Pieczka, A., Gołębiowska, B., Kozłowski, A., 2001. Cas sit er ite from Rędziny and its re la tion ship to the tin- bear ing schist of Izera area (SW Po land). In: Min eral De pos its at the Be gin ning of the 21st Cen tury (eds. Piestrzyński et al.):

457–460. Balkema, Rot ter dam.

Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A., 2015.

Ore min er al iza tion re lated to geo log i cal evo lu tion of the Karkonosze–Izera Mas sif (the Sudetes, Po land) – to wards a model. Ore Ge ol ogy Re views, 64: 215–238.

Oberc-Dziedzic, T., Pin, C., Kryza, R., 2005. Early Palaeozoic crustal melt ing in an extensional set ting: pet ro log i cal and Sm-Nd ev i dence from the Izera gran ite-gneiss es, Pol ish Sudetes. In ter na tional Jour nal of Earth Sci ences, 94: 354–368.

Oberc-Dziedzic, T., Kryza, R., Mochnacka, K., Larinov, A., 2010.

Or do vi cian pas sive con ti nen tal mar gin magmatism in the Cen - tral-Eu ro pean Variscides: U-Pb zir con data from the SE part of the Karkonosze-Izera Mas sif, Sudetes, SW Po land. In ter na - tional Jour nal of Earth Sci ences, 99: 27–46.

Onuk, P., Melcher, F., Mertz-Kraus, R., Gäbler, H.E., Goldmann, S., 2017. De vel op ment of a ma trix-matched sphalerite ref er - ence ma te rial (MUL-ZnS-1) for cal i bra tion of in situ trace el e - ment mea sure ments by la ser ab la tion-in duc tively cou pled plasma -mass spec trom e try. Geostandards and Geoanalytical Re search, 41: 263–272.

Pav lo va, G.G., Palessky, S.V., Borisenko, A.S., Vladimirov, A.G., Seifert, T., Phan, L.A., 2015. In dium in cas sit er ite and ores of tin de pos its. Ore Ge ol ogy Re views, 66: 99–113.

Piestrzyński, A., Mochnacka, K., 2003: Dis cus sion on the sul phide min er al iza tion re lated to the tin-bear ing zones of the Kamienica schists belt (West ern Sudety Moun tains, SW Po land) (in Pol ish

with Eng lish sum mary). In: Sudety Zachodnie – od wendu do czwartorzędu (eds. W. Ciężkowski, J. Wojewoda and A.

Żelaźniewicz): 169–182. WIND, Wrocław.

Pinto, A., Relvas, J.M.R.S., Carvalho, J.R.S., Liu, Y., Pacheco, N., Pinto, F., Fonseca, R., 2014. High-tech met als in the zinc-rich mas sive ores of the Neves Corvo De posit. Comuni - caçőes Geológicas, 101 (Es pe cial II): 825–828.

Reiser, F.K., Rosa, D.R., Pinto, Á.M., Carvalho, J.R., Matos, J.X., Guimarăes, F.M., Alves, L.C., de Oliveira, D.P., 2011. Min er al - ogy and geo chem is try of tin-and ger ma nium-bear ing cop per ore, Barrigăo re-mo bi lized vein de posit, Ibe rian Py rite Belt, Por - tu gal. In ter na tional Ge ol ogy Re view, 53: 1212–1238.

Schwarz-Schampera, U., 2013. In dium. In: Crit i cal Met als Hand - book (ed. G. Gunn):204–229. John Wiley and Sons.

Schwarz-Schampera, U., Herzig, P.M., 2002. In dium: Ge ol ogy, Min er al ogy, and Eco nom ics. Springer Sci ence and Busi ness Me dia, Berlin Hei del berg.

Seifert, T., 2015. Paragenesis, geo chem is try and age of late- Variscan Sn, In and Ag min er al iza tion in the Marienberg dis trict and its re la tion ship to mafic and acidic mag matic events, Erzgebirge, Ger many. In: Min eral Re sources to Dis cover (eds.

P. Mercier-Langevin et al.): 843–846. Balkema, Rot ter dam.

Seifert, T., Sandmann, D., 2006. Min er al ogy and geo chem is try of in dium-bear ing polymetallic vein-type de pos its: im pli ca tions for host min er als from the Freiberg dis trict, East ern Erzgebirge, Ger many. Ore Ge ol ogy Re views, 28: 1–31.

Słaby, E., Mar tin, H., 2005. Mech a nisms of dif fer en ti a tion of the Karkonosze gran ite. Pol ish Min er al og i cal So ci ety Spe cial Pa - pers, 26: 264–267.

Słaby, E., Mar tin, H., 2008. Mafic and fel sic magma in ter ac tion in gran ites: the Hercynian Karkonosze Pluton (Sudetes, Bo he mian Mas sif). Jour nal of Pe trol ogy, 49: 353–391.

Speczik, S., Wiszniewska, J., 1984. Some com ments about stratiform tin de pos its in the Stara Kamienica Chain (south west - ern Po land). Mineralium Deposita, 19: 171–175.

Werner, T.T., Mudd, G.M., Jowitt, S.M., 2015. In dium: key is sues in as sess ing min eral re sources and long-term sup ply from re cy - cling. Ap plied Earth Sci ence, 124: 213–226.

Werner, T.T., Mudd, G.M., Jowitt, S.M., 2017. The world’s by-prod - uct and crit i cal metal re sources part III: a global as sess ment of in dium. Ore Ge ol ogy Re views, 86: 939–956.

Wil son, S.A., Ridley, W.I., Koenig, A.E., 2002. De vel op ment of sul - fide cal i bra tion stan dards for the la ser ab la tion in duc tively-cou - pled plasma mass spec trom e try tech nique. Jour nal of An a lyt i cal Atomic Spec trom e try, 17: 406–409.

Wittmann, A., 1974. In dium. A Crys tal Chem is try. In: Hand book of Geo chem is try (ed. K.H. Wedepohl). Springer-Verlag, Berlin.

Ye, L., Cook, N.J., Ciobanu, C.L., Yuping, L., Qian, Z., Tiegeng, L., Danyushevskiy, L., 2011. Trace and mi nor el e ments in sphalerite from base metal de pos its in South China: a LA- ICPMS study. Ore Ge ol ogy Re views, 39: 188–217.

Żelaźniewicz, A., Nowak, I., Achramowicz, S., Czapliński, W., Ciężkowski, A., Wojewoda, J., 2003. The north ern part of the Izera-Karkonosze Block: a pas sive mar gin of the Saxo - thuringian terrane (in Pol ish with Eng lish sum mary). In: Sudety Zachodnie – od wendu do czwartorzędu (eds. W. Ciężkowski, J.

Wojewoda and A. Żelaźniewicz): 17–32. WIND, Wrocław.

Żelaźniewicz, A., Fan ning, C.M., Achramowicz, S., 2009. Re fin - ing the gran ite, gneiss and schist in ter re la tion ships within the Lusatian–Izera Mas sif, West Sudetes, us ing SHRIMP U-Pb zir - con anal y ses and new geo logic data. Geologia Sudetica, 41:

67–84.

Cytaty

Powiązane dokumenty

The measurements were per- formed on: Pt/Co/Pt samples both as deposited film and irradiated one with the fluence creating the out-of-plane magnetization state and a refer- ence

Riassumendo 1'autore asseriva che, se la rotonda non fosse sorta come tempio pagano allora eon ogni probabilita avrebbe potuto essere costruita come chiesa di rito

In cases where In-rich sul phide forms inter growths with chal co py rite, both phases were mea sured (Fig. The re sults in di cate that in dium ac cu mu lates within the

A – ga lena – Ag-en riched tetrahedrite – sphalerite ag gre gate with chal co py rite; B – sin gle idiomorphic low-Ag tetrahedrite-(Zn) crys tal in baryte; C – ga lena –

A – lon gi tu di nal slice of an ore sam ple from Cisma host ing chal co py rite, he ma tite, ga lena, kaolinite and quartz used for XRD (kaolinite) and EPMA (en ar gite) in ves ti

veins, silicified cataclastic zones, and metas~matites (leucogranites, greisens and tourmaline nests). A scheme of the formation of early zones of pegmatites by

Ore mi cro scopic in ves ti ga tions show a sig nif i cant pres ence of na tive gold in as so ci a tion with pyrrhotite, py rite, chal co py rite, ga lena and sphalerite.. Hessite

lowing processes were involved during its formation: 1) magmatic and pegimatitic apparently genetically related to the Karkonosze granite, 2) hydrothermal