• Nie Znaleziono Wyników

A sequence-based method for dynamic reliability assessment of MPD systems

N/A
N/A
Protected

Academic year: 2021

Share "A sequence-based method for dynamic reliability assessment of MPD systems"

Copied!
18
0
0

Pełen tekst

(1)

Document Version

Final published version

Published in

Process Safety and Environmental Protection

Citation (APA)

Zhu, J., Chen, G., Khan, F., Yang, M., Li, X., Meng, X., & He, R. (2021). A sequence-based method for

dynamic reliability assessment of MPD systems. Process Safety and Environmental Protection, 146,

927-942. https://doi.org/10.1016/j.psep.2020.12.015

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

(3)

Rui

He

a

aCentreforOffshoreEngineeringandSafetyTechnology,ChinaUniversityofPetroleum,Qingdao,Shandong266580,China bCentreforRisk,IntegrityandSafetyEngineering(C-RISE),MemorialUniversity,StJohn’s,NL,A1B3X5,Canada

cSafetyandSecurityScienceGroup,FacultyofTechnology,Policy,andManagement,DelftUniversityofTechnology,theNetherlands dSchoolofResourcesEngineering,Xi’anUniversityofArchitectureandTechnology,No.13YantaRoad,Xi’an,710055,China eNavigationCollege,DalianMaritimeUniversity,No.1,LinghaiRoad,Dalian,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16July2020

Receivedinrevisedform2November2020 Accepted10December2020

Availableonline15December2020 Keywords:

Reliabilityassessment MPDsystem GO-FLOWmethod Dynamicbayesiannetwork Deepwaterdrilling

a

b

s

t

r

a

c

t

ManagedPressureDrilling(MPD)systemiswidelyusedinthedeepwaterdrillingoperation.Reliability assessmentplaysacriticalroleintheMPDsysteminthemanagementofdrillingoperationriskand thepreventionofblowouts.However,thereliabilityassessmentoftheMPDsystemischallengeddueto itssequentialoperationsandmultipleprocesses.Consequently,thepresentworkproposesa sequence-baseddynamicreliabilityassessmentmethod,whichfocusesonthedynamicmodelingofsequential operationsfortheMPDsystembyintegratingGO-FLOWanddynamicBayesianNetwork(DBN).GO-FLOW modelsarefirstlyusedtodefinethetimeinteractionbetweenmultiplephasesforcomplexsystems.A sequence-basedmappingmethodisalsoproposedfortheDBNtoconstructthereliabilitymodelofthe MPDsystemthroughouttheentiredrillingcycle.Intheend,thecasestudyanalyzedbytheproposed frameworkindicatesthatthereliabilityoftheMPDsystemdecreaseswithincreasingdrillingdepth,and thereliabilityof“trippingin”ishighestamongfourdifferentphases,whilethe“drillingprocess”isthe lowest.Themethodprovidesanimportanttechniquethatcanbeimplementedwithonlinecondition monitoringtoolstoassessandmonitorthereliabilityoftheMPDoperationinreal-time.

©2020PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.

1. Introduction

Deepwaterdrillingoperationfacesnotonlytheharsh environ-ment buttheoperationalchallengesofcomplexoperationsand equipment (Abimbola et al.,2014; Pui et al., 2017; Sule et al., 2018).Unintendedinfluxes,kicks,andblowoutsmayoccurwhen complexgeologicalenvironmentsareencounteredduringdrilling operationswithanarrowdrillingwindow(Wuetal.,2019).The MPDsystemhasbeenwidelydevelopedtoovercomethechallenge ofwellcontrolduetoitsprecisecontroloverwellborepressures (Hannegan,2006).Meanwhile,additionalequipmentalsoincreases thecomplexityandhighriskoftheMPDoperationscomparedwith theconventionaldrillingoperation.Thereliabilityassessmentof theMPDsystemshouldbefurtherinvestigatedtopreventkicksor blowoutindeepwaterdrilling.

∗ Correspondingauthor.

E-mailaddress:offshore@126.com(G.Chen).

Inthepastdecades,various methodshavebeenexploredto assesssystemreliability,includingfaulttreeanalysis(FTA),failure modeandeffectsanalysis(FMEA),Markovapproach,MonteCarlo (MC),GOmethodologyandGO-FLOWmethod,etc.FTAandFMEA aretwooftheearliestwidelyusedreliabilityanalysismethods(Jia andLin,2015).However,bothofthemarenotcapableofthe reli-abilityanalysisofcomplexsystemswithdependentrelationships (Xuetal.,2002).TheMarkovapproachisappliedtoreliability eval-uationforredundantandnon-redundantsystemswithsubstantial flexibility(Kimetal.,2005).Nevertheless,thismethodmaysuffer state-explosionconsequenceswhenappliedtoalarge-scalesystem (VeeramanyandPandey,2011).TheGOmethodologyisa success-orientedanalysismethodofsystemreliability,whichwasinitially developedbyKamanSciencesCorporationtoassessthecomplex system(Shenetal.,2003;Liuetal.,2018).TheGO-FLOWmethod wasdevelopedbasedonGOmethodologytoactualizereliability analysisforcomplexsystemswithaphasedmissionproblem.By consideringcommoncausefailureanalysisand logic loop solu-tion,theGO-FLOWmethodwasimprovedandfurtherappliedto elevatorsystems,railwaysystems,andnuclearpowerplant

sys-https://doi.org/10.1016/j.psep.2020.12.015

(4)

tems(MatsuokaandKobayashi,1988,1989,1997;Hashimetal., 2013,2014;Yangetal.,2014;Liuetal.,2016).Basedonthe GO-FLOWtechnique,Hashimetal.conductedareliabilityevaluationfor AP1000ADSsystemtodeterminetheinfluencingfactors(Hashim et al.,2014).Toassessreliabilityinreal-time, ariskmonitoring systemwasdevelopedbasedontheGO-FLOWmethodwithonline receivedinformation(Yangetal.,2014).In addition,Yang etal. presentedanewframeworkofanimprovedriskmonitorsystem basedontheGO-FLOWtechnique,whichintegratedmultiple appli-cations oftheinvestigationofrisk factors,risk monitoring,and management(Yangetal.,2020).Themethodhasalsobeenapplied toanauxiliaryfeedwatersystem,aircraftelectro-hydrostatic actu-ator,chemicalandvolumecontrolsystem,etc.(Liuetal.,2016;Lan etal.,2017;Luetal.,2019).AlthoughtheGO-FLOWmethodhas beenappliedtothereliabilityassessmentofmanysystems,some limitationsstillexist.TherearemanyGO-FLOWoperators,which inducesthecalculationprocessintricate.Besides,GO-FLOWcannot constructintermittentoperationcharts,especiallyfortheentire drillingcycleofasophisticatedMPDsystem(Yangetal.,2014).

BayesianNetworks(BNs)aredirectedacyclicgraphscomprised ofnodesandarcsthatrepresentasetofvariablesandtheir con-ditional dependencies(Pearl,1988).Theapplicationofdynamic BayesianNetwork(DBN)forconductingreliabilityevaluationand quantitativeriskanalysisisrelativelynewandhasbecomevery popularrecently(Khakzadetal.,2013a;Bhandarietal.,2015;Amin etal.,2018).Consideringthedynamicvariationsofthecomplex system,classicalBNhasbeenextendedtomodelsystemsinthe dynamicdomain,sotheDBNwasdeveloped(Murphy,2002).This methodpossessesthefeaturesofupdatingnewevidenceand pos-teriorreasoningandcanalsoovercomethelimitationofuncertain knowledge(Heetal.,2018).Asaneffectivemethodforthe relia-bilityorriskanalysis,itwaswidelyappliedtotheoffshoreoiland gasindustryandotherfieldsspecificincludingdeepwaterdrilling operations(Bhandarietal.,2015;Khakzadetal.,2013b;Changetal., 2019),leakagefailureofsubmarinepipelines(Lietal.,2016,2019), firealarmsystems(Aminetal.,2018),catastrophicshipping acci-dents(ZhangandThai,2016),andcollisionhazardsfortheHigh SpeedCraft(Truccoetal.,2008).FortheMPDsystemin deepwa-terdrilling,theriskofdeepwaterdrillingoperationswasevaluated byBNmethod(Abimbolaetal.,2015).Furthermore,the reliabil-ityassessmentsofkickscontroloperationoftheMPDsystemwere performedbyusingtheFTA andBNmethods(Suleetal.,2018). However,mostofthepreviousstudiesrarelytookaccountof dif-ferentdrillingphasesandthesequencebetweendifferentdrilling phasesintheMPDdrillingprocess.

ThedrillingoperationoftheMPDsystemisacomplicatedtask, whichfacesoperationalsequences,phasedmissionproblems,and multiple processes. For instance,the MPD systemincludes the phasedmissionsof drillingand makingconnection, anddrilling containsmultipleprocessesofrigpumpactionanddrillingstring open, which are all subjected toa specifictime sequence. The appointedtimesequenceiscriticalforthereliabilityassessmentof suchanintermittentsystem.TheGO-FLOWmethodisapplicable tosystemswithcomplexsequencesofsystemoperationor sys-temstatechangesovertime(MatsuokaandKobayashi,1988,1989). Ontheotherhand,DBNisapowerfulandflexibletooltomodel dynamicsystembehaviorandupdatereliabilitywithlifecycledata (ZhuandCollette,2015;Wuetal.,2019).Thedrillingoperationof theMPDsystemisatypicalphased-missionprocess,facingtime sequenceproblems(Zhangetal.,2018).Oneuniqueadvantageof DBNisthat itcanbeusedtodevelop timesequence modelsof phased-missionsystems sinceit containsa seriesoftime slices andtemporallinks.InanydrillingphasesoftheMPDsystem,its GO-FLOWmodelscanbedirectlyconvertedbasedonthefunction chartssystemstructure.Itrelaxestheexistinglimitationsofthe modelbuildingoftheDBNmethod.Inaddition,theDBNmodelsof

theentiredrillingcyclefortheMPDsystemscanalsobedeveloped duetotheabilitytocapturethedependencyrelationshipsamong differentphases.Therefore,GO-FLOWandDBNcanbeusedforthe reliabilityassessmentoftimesequencesofMPDsystems.Aiming torealizethedynamicsequencereliabilityoftheMPDsystem,a novelmethodfordynamicreliabilityassessmentofMPD opera-tionisdevelopedbyintegratingGO-FLOWwithDBN.Thepotential contributionscanbespecifiedas(1)Theprimarynoveltyof pro-posedmethodsistheideaofdynamicsequentialmodelingforthe reliabilityassessmentofMPDsystems.(2)GO-FLOWmodelsare firstlyusedtodefinetheinteractionbetweenmultipleprocesses. (3)Sincethereisnospecificsemantictoguidethemodel devel-opmentofDBN,asequence-basedmappingmethodisproposedto enrichthewaysofdevelopingDBN.

Therestofthispaperisorganizedasfollows.Abriefdiscussion ontheGO-FLOWmethodandDBNmethodisprovidedinSection

2.ThemethodforthereliabilityassessmentoftheMPDsystemis proposedinSection3.Applicationsofthemethodarepresentedby acasestudyinSection4.Section5providesthereliabilityanalysis andresultsoftheMPDsystemindeepwaterdrilling.The conclu-sionsofthispaperaredemonstratedinSection6.

2. Basicmethods

2.1. GO-FLOWmethod

GO-FLOW can evaluate an extensive system with complex operationalsequences(Hashimetal.,2013,2014).TheGO-FLOW methodologyisasuccess-orientedmethodologyforsystem relia-bilityanalysis.Itincludestwonecessarysteps:first,constructthe GO-FLOWchartfor thephysicalsystem,and thencalculatethe systemreliability. (Matsuokaand Kobayashi,1988,1989,1997). Thesystemfunctiondiagramcanbedirectlyconvertedintoa GO-FLOWmodelingbygraphicaldeduction.Andthen,theprobability ofoccurrenceofdifferentstatesinthesystemiscalculatedbyone computerrun.

TheclassicGO-FLOWmethodutilizes14basicoperatorsand signallinestomodelthesystemfunction(Hashimet al.,2013;

Fanetal.,2016).Themeaningsandsymbolsof14operatorsare showninFig.1.Accordingtotheirfunction,theseoperatorscan bedividedintofunctionoperators,logical operators,andsignal operators.Generally,thefunctionoperatorsareusedtomodelthe physicalcomponentandindicatethenormalorfailurecondition ofthecomponent;thelogicaloperatorssimulatetheconsistent relationshipbetweensystemcomponents,and thesignal opera-torsrepresenttheexternalinputsignalofthesystem(Yangetal., 2014,2020).

Thesignallinesareusedtoconnecttheinputsandoutputsto theoperators.Asignalrepresentssomephysicalquantityor infor-mation,suchasfluidflow,electriccurrents,requiredsignals,etc. Avariablecalled‘intensity’isassociatedwithasignalline. Usu-ally,theintensitycandescribethedigitalfeaturesandrepresent theprobabilityofsignalexistence.Ifasignalisusedasasub-input signaltothetype35,37,or38operators,theintensityrepresentsa timeintervalbetweenthesuccessivetimepoints(Liuetal.,2016). WhentheGO-FLOWchartisconstructed,alimitednumberof discrete-timepoints need tobedefined toindicate thesystem operationsequence.Thetimepointsdonotnecessarilyrepresent real-timebutreflectanorderingofthesystemoperation.The num-beroftimepointsisdefinedbytheanalysts,whichdependson theobjectiveoftheanalysisandthesequenceofthesystem run-ning.Finally,thesedataareinputtotheGO-FLOWmodel,andthe intensityofthefinalsignalatall-timepointsisobtained.

(5)

physi-Fig.1. OperatorsdefinedintheGO-FLOWmethod.

callayoutofthesystem;(2)RevisionsandupdatestotheGO-FLOW chartsarereadilycompleted;(3)TheGO-FLOWchartcontainsall possiblesystemoperationalstates.However,likeotherreliability assessmentmethods,GO-FLOWalsohasitsdefects.Theproblemof thecombinatorialexplosionbecomesverysignificantasthe num-berofcomponentsincreases.Besides,GO-FLOWcannotconstruct hierarchicalcharts.Furthermore,GO-FLOWisunabletobuild inter-mittentoperationchartsforsophisticatedsystems.

2.2. Dynamicbayesiannetworkmethod

BayesianNetwork(BN)isagraphicaltechnique,whichhasbeen appliedtoqualitativeandquantitativeriskanalysisduetoits for-wardanalysisandbackwardanalysis(Heetal.,2018).ABNconsists ofnodesandarcs,inwhichthenodesrepresentstatesofvariables, andarcsdepictcausalrelationshipsbetweenthelinkednodes.The qualitativeanalysiscanbeperformedbyanetworkstructure,while thequantitativecalculationisexpressedbyassigningconditional probabilitydistributionstothenodes.Consideringtheconditional dependenciesbetweenthevariables,thejointprobability distri-butionP(U)ofvariablesU={X1,X2...Xn}inthenetworkcanbe

writtenas(Bhandarietal.,2015):

P(U)=

n



i=1

P(Xi



Pa (Xi)),i=(1,2,...n) (1)

WherePa(Xi)istheparentsetofanynodeXi.

BNtakesadvantageofBayestheoremtoupdatetheprior occur-rence(orfailure)probabilitywithnewobservationsofevidence E.TheupdatingposteriorsofP(U)couldbeobtainedfromEq.(2)

(Khakzadetal.,2013b).

P(U



E)=P(U,P(E)E)=



P(U,E)

U

P(U,E)

(2)

AdynamicBayesianNetwork(DBN)consistsofasequenceof time slicesand temporallinksdevelopedfromtheconventional staticBN(Heetal.,2018).Inotherwords,thetimeattributeisadded tothestaticBN,andthetrendofthevariablesandtheircausal rela-tionshipcanbepresentedinvarioustimeslicesatdifferenttime points.Fig.2showsasimpleDBNmodelwiththreenodes.(X1,X2)

aretheparentnodeofZininitialtimet1underphase1.

Accord-ingtothetimeseries,theDBNstructureexpandedtotn-1andtn

Fig.2.AsimpleDBNmodel.

underdifferentstages.Meanwhile,thedynamiccharacteristicsand reliabilityofthetargetsystemcanbecaptured(Aminetal.,2018). ComparedtostaticBN,thejointprobabilitydistribution func-tionofaDBNfortimet=1toNcanbeexpressedas(Lietal., 2016): P(Z1:N)= N



t=1 n



i=1

P(Zi,t



Pa(Zi,t)) (3)

WhereZi,tistheithnodeattimet;Pa(Zi,t)istheparentsetofany

nodeZi,t;nisthenumberofnodes;Nisthenumberoftimepoints

inthenetwork.

Modeldevelopmentandparameterestimationaretwocritical partsforreliabilityassessmentbyusingtheDBNmethod.However, aweakpointofDBNisthatthereisnospecificsemantictoguide modeldevelopment.Toovercomethisproblem,manystudiestry totranslateclassicaldependabilitymodelssuchasFT,eventtree, andMarkovmodelintoBNmodels(Liuetal.,2018).Butthisway hasnoapplicationtosequentialoperationsystems,especiallyfor thecomplexoperationsoftheMPDsystem.

3. ProposedmethodforMPDsystem

3.1. DescriptionoftheMPDsystem

(6)

Fig.3. DynamicannularpressurecontroloftheMPDprocessflowdiagram.

Device (RCD) bearing assembly and the Choke Manifold with-out activatingsecondary safety barriers(Gabaldonet al., 2014;

Abimbolaetal.,2015).InternationalAssociationofDrilling Con-tractors (IADC)definedthatMPDisanadaptivedrillingprocess employedtocontroltheannularpressureprofilethroughoutthe wellbore(Hannegan,2006).Thepressuremarginsareusually nar-rowindeepwaterdrillingduetoitscomplexconditionsandexact requirements(Wangetal.,2011).MPDtechnologyisarelatively advancedmethodforpressurecontrolduringthedrillingoperation. Thistechnologyaimstoascertainthedownholepressure environ-ment limitsand manage theannular hydraulicpressure profile accordingly. TheequipmentlayoutoftheMPDsystemisshown inFig.3(Chustzetal.,2008).

3.2. ThecombinationofDBNandGO-FLOW

AccordingtotheGO-FLOWmodelofthetargetsystem,aDBN modelisestablishedbasedonmappingrules.First,theoperator shouldbeconvertedintoanodeoftheBayesiannetwork,andthe conditionalprobabilitytable(CPT)ofthemappingnodeneedsto be givenbased onthemapping algorithm ofeach operator. As showninFig.4,thefrequently-usedoperatorsandtheequivalent DBNnodesintheMPDsystemincludetype25ofthesignal oper-ator,type 22,23,30oflogical operators,and type21,26,35 of functionoperators.Besides,thedifferentcharactersinDBNnodes representdifferentmeanings.Hereinto,Srepresentstheinput sig-nal,Rrepresentstheoutputsignal,trepresentstimepoint,and t isthetime pointbeforetimet. TheType21operator usually describessometwo-statephysicalequipment.Theoutputsignal willbepresentedwhentheinputsignalisgivenandtheoperator isgood.Therefore,thereisacharacterCfortype21operatorinthe equivalentDBNmodelcomparedwiththeGO-FLOWmethod,andC representstheoperatoritself.Similarly,thecharacterCfortype26 operatoralsorepresentsthecomponentitself,butitisunnecessary forotheroperators.Duetospacelimitations,themappingrulesof type25,22,35operatorsareintroduceddetailedinthispaper,and theremainingoperatorscanbecomputedbasedonthefollowing methods.

(i)Signaloperator-type25

IntheGO-FLOWmethod,thetype25operatorisdedicatedto simulatingasingle-signalgeneratorwithoutinputsignalsbutwith oneoutputsignal.Thisoperatorcangenerateoneorsomesignals atonespecificorsomeconsecutivetimepoints.Thesignalgivenby thisoperatoriscommonlyusedtostartthecomponent.Theoutput signalofthetype25operatorhastwostates:successandfailure. Thesuccessstatemeansthesignalcanbesentoutsuccessfully. Takingtheconditionalstatementoftimepointt1 asanexample,

theintensityR(t1)representstheprobabilityofthesignalbeing

emittedattimepointt1.Instead,thefailurestatemeansthereare

nosignaloutputs,andthefailureprobabilityalsocanbecalculated by1-R(t1).Therefore,theBNmodeloftype25operatorisshownin

Fig.4(d),anditsCPTscanbedefinedinTable1,wheretirepresents

conditionalstatementatdifferenttimepoints. (ii)Logicaloperator-type22

There are three logical operators in the GO-FLOW method, includingtypes22,23,and30operators,whichcorrespondtothe “OR”gate,“NOT”gate,and“AND”gate.Forsimplicity,thissection takesthe“OR”gateasanexampletodescribethemappingrules oflogicaloperators.Thetype22operatorhasmorethanoneinput signal(Sj)butonlyoneoutputsignalR(t).Accordingtothe defini-tionofthe“OR”gate,theoutputsignalRisinthefailurestatewhen alltheinputsignalsbreakdown.Assumingthat therearethree inputsignals,theoutputintensitycanbeobtainedbyEq.(4).The equivalentDBNmodelofthe“OR”gateoperatorwiththreeinput components(S1,S2,S3)isshowninFig.4(b).Basedonthelogical

relationshipsofthreeinputsignals,theCPTsoftype22operatorcan bedefinedinTable2.Justasthegeneralinputsignal,eachinput signaloftype22operatoralsohastwostates:successandfailure. TakingtheinputsignalS1asanexample,thesuccessstatemeans

thattheinputsignalS1exists,whileitistheoppositeofthe

fail-urestate.ThecorrespondingCPTsareshowninTable3.Herein, P(ti)representsthefailureprobabilityofinputsignalS1atthetime

pointti.

R(t)=1−[(1−S1(t))·(1−S2(t))·(1−S3(t))] (4)

(iii)Functionoperator-type35

Type35operatoris usedtoemulatea component(e.g.,arig pump)withincreasingfailureprobabilitiesastheincreasing work-ingtimeintheMPDsystem.IthastheprimaryinputsignalS(t), severalsub-inputsignalsP(t),andoneoutputsignalR(t).The pri-maryinputsignalS(t)canbeobtainedfromthepreviousoperator. Theintensityofthesub-inputsignaldenotes atime interval in whichthefailureprobabilityofthecomponentgraduallyincreases duetothefailurerate.Generally,assumingthatisaconstantand thefailureprobabilityofthiscomponentfollowsanexponential distribution,whichcanbecalculatedfromEq.(5).ForMPD sys-tems,therigpumporsomephysicalequipmenthastwostates: successandfailure.Therefore,theP(t)canbeusedtoindicatesthe probabilityofthefailurestateofacomponent.Theinputsignalalso hastwostates:successandfailure(existenceandnon-existence). TheoutputsignalRisinthesuccessstatewhentheinputsignalS andsub-inputsignalParebothinsuccess.TheDBNmodeloftype 35operatorisshowninFig.4(g),andtheCPTsofthisoperatorcan bedefinedinTable4.SimilartoinputsignalS1,theCPTsofPandS

canalsobedeterminedinTable5.

P(t)=



t 0

e−tdt (5)

3.3. Integratedframework

(7)

Fig.4.OperatorsinGO-FLOWmodelandthecorrespondingDBNmodel. Table1

CPTsoftype25operator.

Time t1 ti ... tn

State success failure success failure success failure

Value R(t1) 1-R(t1) R(ti) 1-R(ti) R(tn) 1-R(tn)

Table2

CPTsoftype22operator.

S1 success failure

S2 success failure success failure

S3 success failure success failure success failure success failure

R success 1 1 1 1 1 1 1 0

failure 0 0 0 0 0 0 0 1

Table3

CPTsofinputsignalS1.

Time t1 ti ... tn

State success failure success failure success failure

Value 1-P(t1) P(t1) 1-P(ti) P(ti) 1-P(tn) P(tn)

Table4

CPTsoftype35operator.

P success failure

S success failure success failure

R success 1 0 0 0

failure 0 1 1 1

Step1:Definethesystemandcollectthenecessary

informa-tion.ThescopeoftheMPDsystemisdefinedfirstlyandstudied

adequately. Meanwhile, therequiredinformation, includingthe

systemfunction,structuralcomposition,operationprinciple,

fail-uredataofequipment,wellstructure,operationschedule,etc.need

tobecollectedinthewholedrillingoperation.Thesemayhelpto

understandthelayoutoftheMPDsystem,processtechniques,and

equipmentfunctions.

Step2:ConstructGO-FLOWmodelsfordifferentdrillingphases.

TheMPDdrillingoperationisdividedintofourphasesbasedon

Section2.2.Successcriteriaaredeterminedconsideringtheir

func-tionsandobjectivesfordifferentdrillingphases,andflowchartsare

Table5 CPTsofPandS.

Time t1 ti ... tn

State success failure success failure success failure

P 1-P(t1) P(t1) 1-P(ti) P(ti) 1-P(tn) P(tn)

(8)

Fig.5. TheframeworkofreliabilityassessmentfortheMPDsystem.

developedcorrespondingly.Hereinto,thesuccesscriteriareferto

thepurposesofdifferentphases.Forthedrillingprocess,itmeans

that thestep of ¨separate mud¨isachievedwithouta kickevent.

Different flowchartscanbeconvertedintoGO-FLOWmodelsby

usingsignallinesandoperators.TheGO-FLOWmodelsrepresent

differentfunctionsofthesystemduringthedrillingoperation.

Step3:EstablishtheDBNmodelfortheMPDoperation.Four

differentDBNmoselscanbetransformedfromGO-FLOW

mod-elsbasedonthemappingrulesinSection3.3.2.TheDBNmodel

isestablishedbasedontheselectedwellstructureandoperation

schedule.The failureprobabilities ofequipmentand operations

areobtainedfromOREDAdatabase(OREDA,2002),published

lit-erature, expert knowledge, or historical statistic under specific industries(Khakzadetal.,2013a).Moreover,thedrillingoperation oftheMPDsystemiscontinuous.TheDBNmodelsoftheentire drillingcycleshouldbeconstructedaccordingtothewelldepths.

Step4:AssessthereliabilityoftheMPDsystem.Inthisstep, systemreliabilitycanbecalculatedbyDBNmodelingduringthe drillingcycle.Reliabilityanalysisincludestwoparts,i.e.,sensitive analysisandinformationupdating.Sensitivityanalysisiscarried outtoidentifythecriticalcomponentsandranktheimportance ofsystemcomponents.Informationupdatingaimstoupdatethe real-timereliabilityoncesomenewevidenceiscollected.

Step5:Safetymeasures.Identifyingcritical componentsand unitsfortheoperatingsystemscanbeperformedwith sensitiv-ityanalysisandinformationupdating.Toimprovethereliability oftheMPDsystem,safetymeasuresandanefficientmaintenance plancanbeproposedbasedontheassessmentresults.

4. Casestudy

4.1. DifferentMPDdrillingphasesandcorrespondingflowcharts MPDtechnologyincludesfourdifferentphases:drillingprocess, makingaconnection,tripping out,andtrippingin,asshown in

Fig.6.Itisnecessarytostarttherigpumpforthedrillingprocess whencarryingoutoneparticularholesectionoperation.Andthen, thewellheadpressureshouldbeincreasedtomakeaconnection afterstoppingtherigpump.Drillingtoacertaindepth,afterthe drillingprocessandmakingaconnectioncyclingalternately,the drilltoolsneedtobereplacedbythetrippingoutoperation.The drillingtoolsshouldbecombinedandtrippedinforthenextsection ofdrilling.Thecorrespondingoperatingprocedureswillbeinitiated tocontroltheBHPduringthedrillingoperation.

Inthissection,acasestudyoftheMPDsystemintheSouthChina Seaisconductedtoverifytheeffectivenessoftheproposedmethod. Generally,thedrillingprocessoftheMPDsystemincludesfourwell sections,whichare26”,17−1/2¨,12−1/4¨and8−1/2 ¨wellsections.As mentionedinSection2.2,therearefourdifferentdrillingphases ineach wellsection,and thephases ofthedrillingprocess and makingaconnectionarealternatedduringeachwellsection.The drilltoolsneedtobereplacedinthe‘trippingout’phaseattheend ofthepriorwellsection.Andthen,thedrillingtoolswillbe com-binedagainandtrippedinthenextwellsection.Thephasesofthe drillingprocessandmakingaconnectionarealternateduntilthe wellcompletion,asshowninFig.6.ThedrillingphasesoftheMPD systemareintroduceddetailedlyandcorrespondingflowchartsare constructedthoroughly,asshowninFig.7.

(i)Drillingprocess.Muddensityshouldbedeterminedbasedon formationparametersbeforethedrillingfluidispumpedinto thebottomholeviadrillingstrings.TraversingRCD,drilling fluidwillreturnfromthewellboretochokemanifolds,andthe wellheadbackpressurecanbecontrolledbyadjustingchoke valves.There arethree flow linesfor choke manifolds.The flowlines1installedthechokevalveAC-2,whichismainline forreturneddrillingfluid.Ifflowline1fails,theflowline2 installedthechokevalveAC-3beginstotakeeffect.The back-flowline3andthepressurereliefvalvewillworktoconvey thefluidsandchokemanifoldsagainstoverpressurehazards

(9)

Fig.7.FlowchartsoftheMPDsystemduringtheentiredrillingcycle.

whenbothflowline1andflowline2fail.Flowmeasurement iscarriedoutwheneffusivefluidpassesthroughtheCoriolis flowmeter.Finally,theBHPcanbemonitoredallthetime dur-ingthedrillingprocess.IfthereisnoabnormalityinBHP,the fluidwillflowintothemudpoolviatheshaleshaker.Returned fluidscanbeseparatedintogas,oil,andcontamination-free drillingfluidbyaseparatorifthisprocesssucceeds.Theflow chartofthedrillingprocessisconstructed,asillustratedin

Fig.7(a).

(10)

Fig.8.GO-FLOWmodelofdrillingprocessfortheMPDsystem.

(iii)Trippingout.The drillingstrings areliftedtotheprojected depthbyinjectingtheheavymudcap,andthetrippingspeed needstobecontrolledstrictlyinthisphase.Thereisan exces-sivepressuredropinthebottomholeduetotheswabbing effectsandstoppingdownholecirculation.Hence,thespeedof thebackpressurepumpandthechokevalveopeningof man-ifoldsshouldberegulatedintime.Therestofthedrillstrings areliftedtothederrickfloorintheusualway.Similarly,the correspondingflowchartoftrippingoutisshowninFig.7(c). (iv)Trippingin.Beforetheoperationoftrippingin,bottomhole

assemblymaybeloweredtothecasingshoeanddrilling circu-latingalsobestartedbyrigpumps.ChokemanifoldsandDAPC systemscanbeusedtoavoidlostcirculation.Meanwhile,the trippingspeedshouldbekeptinreasonablebounds,andthen theheavymudcapwillbedisplaced.Thedrillingbitsarerun intothebottomtoprepareforthenextholesection.Andthe flowchartoftrippinginisconstructedinFig.7(d).

4.2. ConvertflowchartsintoGO-FLOWmodel

Asshownin Fig.8,theGO-FLOWmodel oftheMPDdrilling processisconvertedfromitsflowchartbasedonthefunctionand structureofthesystem.Basedontheoperationsequenceandthe

flowchart,thedrillingprocesscanbedividedintofivetimepoints. Timepoint1isaninitialtime.Attimepoint2,therigpumpbegins tooperate.Attimepoint3,whichisnexttotimepoint2,drilling stringsNRVandRCDarestarted.Attimepoint4,chokevalve2 and3begintooperate.Timepoint5is0.1haftertimepoint3and thedrillingoperationofonethribbleiscompleted.Similarly,other GO-FLOWmodelsoftheMPDdrillingphasesalsocanbeestablished accordingtotheirflowcharts,asshowninAppendixA.

AsacriticalelementoftheGO-FOLWmodel,different opera-torsshouldbeselectedappropriatelytorepresenttheiroperations andcomponents.Intotal,27operatorsareusedinthisGO-FLOW model,fromtheinitialdrillingsignalofoperator101tothe com-pletesignaloffinaloperator127.Herein,type25operatorsareused togenerateinputsignalsatfivetimepoints.Therigpump,drilling stringsNRV,andRCDaredenotedbytype26operators.Thereare twocriticalparametersinwhichPprepresentsthefailure

proba-bilityofstart-up,andPgrepresentsthefailureprobabilityofthe

usualstart.Giventherigpumpmayfailastheincreasingservice time,therigpumpcanbepresentedbytype35operatorsandthe failurerate␭isaconstantorvariable.Flowlines,valves, flowme-ter,andseparatoronlyhavetwostatuses,whichcanbedenotedby type21operators.Thelogicalrelationshipcanbepresentedbytype 22,23,and30operators.Theoperatorparametersofthedrilling processfortheMPDsystemaregiveninTable6,whichare inves-tigatedfrompublishedliterature,expertknowledge,orhistorical datastatistics(Abimbolaetal.,2014;Suleetal.,2018;Abimbola etal.,2015;Rathnayakaetal.,2013).

4.3. DBNgraphicalstructureofdifferentMPDdrillingoperation Toovercomethelimitationsofconventionalreliability assess-mentmethods(e.g.FTAorFMEAetc.),theequivalentDBNmodel (Fig.9)isdevelopedfromtheconstructedGO-FLOWmodelofthe drillingprocessfortheMPDsystem.TheCPTscanbedetermined accordingtothecollectedoperatorparameters.Adistinct advan-tageofDBNisthatthecomputationalprocessismoreconvenient anduser-friendlythanGO-FLOW.AnotheradvantageofDBNisthat thedynamicsystemreliabilitycanbeobtainedthrough observa-tionalevidenceupdating.InAppendixA,otherDBNmodelsofthe MPDdrillingphasesalsocanbeestablishedaccordingtotheirflow chartsinthesameway.

Toevaluatethesystemreliabilitythroughouttheentiredrilling cycle,reliabilityassessmentshouldbeimplemented,which com-binesthedrillingprocess,makingaconnection,trippingout,and trippinginphases.Thespecificparametersofwellprofileandwork schedulearepresentedinAppendixB,whichwereobtainedfrom acertainwellinSouth ChinaSea.Given thatthe36”conductor isjettedintoshallowsubsea soil,fourremainingsectionsneed

Table6

TheoperatorparametersofthedrillingprocessfortheMPDsystem.

Operator

Meaning Parameter Operator Meaning Parameter

No Type No Type

101 25 Initialtime R(1)=0,R(t)=1(t=/ 1) 115 23 Notgate /

102 21 Startsignalofdrilling P=1.0×10−4 116 21 Chokeflowline2 P=3.6×10−4

103 25 Startsignalofrigpump R(2)=1,R(t)=0(t=/ 2) 117 25 Startsignalofchokevalve3 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 104 26 Rigpump Pp=4.3×10−5Pg=4.3×10−4 118 26 Chokevalve3 Pp=2.5×10−4Pg=2.5×10−3

105 25 Timeinterval t=3.75h 119 23 Notgate /

106 35 Failurerateofrigpump ␭=2.52×10−6h−1 120 21 PRV P=2.2×10−5 107 25 StartsignalofDS-NRV R(3)=1,R(t)=0(t=/ 3) 121 21 Backupflowline3 P=3.6×10−4 108 26 DS-NRV Pp=1.3×10−6Pg=1.3×10−5 122 22 ORgate /

109 25 StartsignalofRCD R(3)=1,R(t)=0(t=/ 3) 123 25 Startsignalofmeasurement R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 110 26 RCD PP=6.7×10−6Pg=6.7×10−5 124 21 PWDtools P=1.1×10−5

111 21 Adjustwellheadbackpressure P=1.0×10−4 125 30 ANDgate /

(11)

Fig.9.DBNmodelofthedrillingprocessfortheMPDsystem.

Fig.10.DBNmodeloftheentiredrillingcyclefortheMPDsystem.

tobedrilledusingtheMPDsystem,whichincludes26”section,

17−1/2¨section,12−1/4¨section,and 8−1/2¨section. Theresults of

endnodesfordifferentphasesrepresentthereliabilityoftheMPD

operationindifferentdrillingdepthsortime.TheDBNmodelofthe

entiredrillingcycleisestablishedinFig.10.

5. Resultsanddiscussion

5.1. Dynamicreliabilityassessment

The outputintensitiesof componentsinthe drillingprocess fortheMPDsystemareexpressedinFig.11.Sixcomponentsare selectedtopresentavarietyofintensitiesatdifferenttimepoints. Alloutputintensitiesofcomponentsequal0attimepoint1because thesystemhasnotbeenstartedintheinitialtime.Astheenabled operator,theintensityofS101equalto1aftertimepoint2.The sequentialoperationofoperatorS106issimilartooperatorS101. However,outputintensitiesbegintodecreasewithtraversinga seriesofcomponents.AlthoughtheoperatorS111andS112start attimepoint 3simultaneously,theoutputintensityofoperator

(12)

Fig.12.ReliabilityofthedrillingprocessfortheMPDsystem.

S112islowerthanoperatorS112duetothedependencyamong the causation factors. Outputintensities of operator S125and S127aresimilar.AstheendpointofthedrillingprocessfortheMPD system,theoutputintensityofoperatorS127canalsorepresent thereliabilityofthedrillingprocess.Usingthismethod,the reliabil-ityoffourdifferentphases(drillingprocess,makingaconnection, trippingout,andtrippingin)arepresentedinFig.12.The reliabil-ityof“trippingin”and“makingaconnectionoperation”ishigher comparedtothatofthedrillingprocessandtrippingout,whilethe “drillingprocess”isthelowest.Theresultsindicatethatthe crit-icalcausesshouldbeemphasizedinthedrillingprocessandthe trippingoutphases.Forinstance,thestandbyNRVcanbeinstalled orthespeedoftrippingoutshouldbecontrolledtoimprovethe reliabilityoftheMPDsystem.

ThechangeofdynamicreliabilitywithdepthisanalyzedbyDBN, asshowninFig.13.ItisclearthatthereliabilityoftheMPD sys-temdecreaseswithincreasingdrillingdepth.Thatisbecausethe MPDsystemcomponentswillsuffersomewearandtearwiththe drillingoperation.Thereliabilityofthedescendingslopeisstablein

fourrespectivedrillingsections.Thereliabilitiesgointoadramatic declineindifferentjunctionsbetweendifferentsections.Itisdueto ajobconversion,whichdecreasessystemreliability.Thereliability oftheMPDsystemdecreasesto0.9348whenthe8−1/2sectionis completed.Asexpected,whentheMPDsystemworksalongcycle inthedeepwaterdrilling,thesystemreliabilitydecreased signifi-cantly.Therefore,itisnecessarytoimplementsomemaintenance toimprovethesystemreliabilitybythedecision-maker.

5.2. Sensitivityanalysisandupdating

Itisevidentthatsomecomponentsinasystemaremore impor-tantthananyother.Thesensitivityanalysisisaneffectivemethod toidentifythemostcriticalcomponentbychangingtheparameters ofdifferentcomponents.Inthisstudy,thesensitivityofselected componentswascarriedoutatacertainphaseinsteadoftheentire drillingcycle.Forexample,thefailureprobabilityofthenormal start(Pg)forrigpump(RP)ischangedtocalculatethesystem

reli-abilityofthedrillingprocess.Similarly,fivedifferentcomponents areselectedindifferentphasesforthesensitivityanalysis,andthe resultsareshowninFig.14.

Thesteepnessofthesloperepresentsthesensitivityof com-ponents. The higher the steepness is, the more sensitive the componentis.Thesensitivityalsoillustratestheimportanceand criticality of different components in the system. Asshown in

Fig.14(a),thesensitivityoftherigpump(RP)ishigherthanany othercomponent,whichindicatesthattherigpumpisthemost crucialfactorinthedrillingphase.Thedrillingprocesswouldbe forcedtoshutdownoncetherigpumpfails.FromFig.14,some con-clusionscanbededucedthatrigpump(RP),checkvalve1,RCD,and RParethemostsensitivecomponentsamongselectedcomponents fordifferentphases.Andthesensitivityofthesamecomponentin differentphasesisunequal.Forinstance,RCDisthemost sensi-tivecomponentintrippingout,whileinotherphases,itistheleast responsiveelement.Explanationsforitisthatthesame compo-nentplaysdifferentrolesindifferentphasesduetotheprinciples ofoperationandstructuralpositions.

AnotheradvantageofreliabilityassessmentusingDBNisthe capacitytoupdate reliabilityin real-time.For instance,when a

(13)

Fig.14.ComponentsimportantanalysisoftheMPDsystemfordifferentphases.

(14)

Fig.16.TraditionalmodelsofMPDsystemfailure.

newevidenceEisgiven,theupdatedreliabilityofsystemZcan becalculatedthroughR(Z|E).Thecommonlyusedevidencein probabilityupdatingistheinformationaboutthespecific conse-quence orevent.In thispaper,theMPDsystemtypicallyworks untildrillingto12−1/4”section,buttheRCDneedstobereplaced duetoweariness.Otherwise,itmayshutdownasaresultofsealing failure.Therefore,thenewevidenceisthatanewRCDischanged whendrillingto1780m. AsshowninFig.15,thedynamic reli-ability oftheMPDsystemcanbeupdatedand predictedinthe remainingdrillingoperationbasedonthisevent.Thereliability oftheMPDsystemreturnsto1afterreplacingtheRCD. Further-more,theupdatedreliabilitydecreasesto0.9589whenthedrilling operationiscompleted.Itcanalsocapturesomenewobservations simultaneously,andthedynamicreliabilityoftheMPDsystemwill beupdatedatdifferenttimepoints.

5.3. Validationofthemodel

Validation is anecessary and essential aspectofa proposed methodasitwillprovideareasonableamountofconfidencetothe resultsofthemodelandproducetherequiredresultsinasound anddefensiblemanner(Jonesetal.,2010).Thevalidationofthe developedmodelrequiresthemonitoringrecordsofitsparameters. However,fortheMPDsystemthatweanalyzedinthispaper,these monitoringrecordsarenotavailable.Therefore,thevalidationin thisparticularstudyisconductedbyathree-axioms-based sensi-tivityanalysismethod(Caietal.,2013).Thefollowingthreeaxioms mustbesatisfied:Axiom1.Aslightincrease/decreaseintheprior subjectiveprobabilitiesofeachparentnodeshouldcertainlyresult intheeffectofarelativeincrease/decreaseoftheposterior proba-bilitiesofthechildnode;Axiom2.Giventhevariationofsubjective probabilitydistributionsofeachparentnode,itsinfluence magni-tudetothechildnodevaluesshouldkeepconsistency;Axiom3.

Thetotalinfluencemagnitudesofthecombinationofthe proba-bilityvariationsfromxattributes(evidence)onthevaluesshould alwaysbegreaterthantheonefromthesetofx-y(y∈x)attributes (sub-evidence).

Thevalidationofthedevelopedmodelaimstodemonstratethe constructedmodelwithrationalanalysis.Themodelshouldatleast satisfythethreeaxiomsdescribedinSection3.3.Takingthe par-entnodesof“S127”forexample,thesuccessfulprobabilityofa drillingprocessdecreasesfrom99.87%to79.89%whenthefailure probabilityof“S126”(Flowmeasurement)issetto80%.However, thesuccessfulprobabilitydecreasesfrom79.89%to49.93%when thefailureprobabilityof“S126”issetto50%.Whenthe“C127” (MudSeparator)offailureprobabilityissetto50%,itresultsin arevisedsuccessprobabilityof49.94%from99.87%.Theresult

indicatesthattheestablishedmodelaccordswithAxiom1and2. Furthermore,whenbothchangesandthefailureprobabilitiesof thetwonodesaresetto50%,thesuccessfulprobabilitydecreases to24.97%from99.87%.Theexerciseofincreasingfailure probabil-ityofeachinfluencingnodesatisfiesthethreeaxioms,thusgivinga partialvalidationoftheDBNmodelatitshighesthierarchicallevel. 5.4. Methodcomparison

Anearlystudywascarriedouttoevaluatethesafetyandrisk analysisofmanagedpressuredrillingoperations.Inthisstudy,a bow-tiemodelwasdevelopedtoidentifytherootcausesofkicksin anoffshoredrillingoperation.Inthebow-tiemodel,thekickevent isthecentralevent,culminatinginablowoutandotherescalated consequences.Asacriticalbarriertopreventingthekickevent,the faulttree(FT)modeloftheMPDsystemfailurewasdeveloped,as showninFig.16(a)(Abimbolaetal.,2015).Theobtainedfailure probabilityoftheMPDsystembasedontheFTmodelis1.0×10−4. However,theanalyticalresultscannotbeeasilyupdatedbytheFT techniquewhennewevidenceorobservationsaregiven.TheFT modelfortheMPDsystemismappedintotheBNmodel,asshown inFig.16(b).TheposteriorprobabilityoftheMPDsystemisupdated to1.23×10-3byassumingakickoccurrence.

ComparedwithstaticBN,theproposedmethodisanintegrated framework. The dynamic reliability of theMPD systemcan be obtained,consideringthechangeoftheenvironmentaland opera-tionalconditionsofthesystem.ThereliabilityoftheMPDsystem wouldbedecreasedfrom99.98%to93.48%,whichmeansthatthe failureprobabilityoftheMPDsystemis2.0×10−4.Itisofthesame orderofmagnitudeasthatofAbimbolaetal.,1.0×10−4,which canalsovalidatetheproposedmethod(Abimbolaetal.,2015).The obtaineddynamic anddecreasingreliability oftheMPDsystem matchestheinherentpropertyofthesystem.Furthermore,the pro-posedmethodproducesamorerationalresultsincethesequence operations,phasedmissionproblems,andmultipleprocessesofthe MPDsystemareallconsidered.

6. Conclusions

(15)

reli-therearenouniformstandardsforthereliabilityleveloftheMPD system atpresent. The determination ofthe evaluation criteria mayprovideadirectivefunctionforthedecision-makerstomake therequireddecisions,sothiswillbepartofourfuturework.On theotherhand,thedetailedmaintenancestrategiesor decision-making should beconstructed based onthe reliability analysis results,whichcanimprovethereliabilityoftheMPDsystem.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgment

The authors gratefully acknowledge the financial sup-port provided by National Key R&D Program of China (No: 2017YFC0804501),NationalNaturalScienceFoundationofChina (No.52004142)andPostgraduateInnovationEngineeringProject ofChinaUniversityofPetroleum(EastChina)(No:YCX2020057). AuthorFaisalKhanthankfullyacknowledgesthefinancialsupport providedbyNaturalScienceandEngineeringResearchCouncilof Canada (NSERC)and CanadaResearch ChairProgram(Tier I) of OffshoreSafetyandRiskEngineeringtostrengthentheresearch collaboration.

AppendixA

SeeFig.A1TablesA1–A3.

(16)

AppendixB

SeeTableB1.

TableA1

TheoperatorparametersofmakingaconnectionforMPDsystem.

Operator

Meaning Parameter Operator Meaning Parameter

No Type No Type

201 25 Initialtime R(1)=0R(t)=1(t=/ 1) 216 21 Chokeflowline1 P=3.6×10−4

202 21 Stoptopdrive P=3.0×10−4 217 25 Startsignalofchokevalve2 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 203 21 Lifting P=1.0×10−4 218 26 Chokevalve2 Pp=2.5×10−4Pg=2.5×10−3 204 21 Adjustwellheadbackpressure P=1.0×10−4 219 22 ORgate /

205 25 StartsignalofRCD R(2)=1R(t)=0(t=/ 2) 220 23 NOTgate /

206 26 RCD PP=6.7×10−6Pg=6.7×10−5 221 21 Chokeflowline2 P=3.6×10−4

207 25 Startsignalofrigpump R(3)=1R(t)=0(t=/ 2) 222 25 Startsignalofchokevalve3 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 208 26 Rigpump Pp=4.3×10−5Pg=4.3×10−4 223 26 Chokevalve3 Pp=2.5×10−4Pg=2.5×10−3

209 25 Timeinterval t=0.1h 224 23 NOTgate /

210 35 Failurerateofrigpump ␭=2.52×10−6h−1 225 21 Pressurereliefvalve P=2.2×10−5 211 25 Startsignalofbackpressurepump R(3)=1R(t)=0(t =/ 3) 226 21 Backupflowline3 P=3.6×10−4

212 26 Backpressurepump Pp=4.3×10−5Pg=4.3×10−4 227 25 Startsignalofchokevalve1 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 213 25 Timeinterval t=0.1h 228 26 Chokevalve1 Pp=2.5×10−4Pg=2.5×10−3 214 35 Failurerateofbackpressurepump ␭=2.52×10−6h−1 229 30 ANDgate /

215 21 Checkvalve1 P=3.12×10−3 230 21 Connect P=1.5×10−4

TableA2

TheoperatorparametersoftrippingoutforMPDsystem. Operator

Meaning Parameter Operator Meaning Parameter

No Type No Type

301 25 Initialtime R(1)=0R(t)=1(t=/ 1) 318 22 ORgate / 302 21 Startsignaloftrippingoutsystem P=1.0×10−4 319 23 NOTgate /

303 21 Adjustwellheadbackpressure P=1.0×10−4 320 21 Chokeflowline2 P=3.6×10−4

304 25 StartsignalofRCD R(2)=1,R(t)=0(t =/ 2) 321 25 Startsignalofchokevalve3 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 305 26 RCD PP=6.7×10−6Pg=6.7×10−5 322 26 Chokevalve3 Pp=2.5×10−4Pg=2.5×10−3 306 25 Startsignalofrigpump R(3)=1R(t)=0(t=/ 3) 323 23 NOTgate /

307 26 Rigpump Pp=4.3×10−5Pg=4.3×10−4 324 21 Pressurereliefvalve P=2.2×10−5 308 25 Timeinterval t=8h 325 21 Backupflowline3 P=3.6×10−4

309 35 Failurerateofrigpump ␭=2.52×10−6h−1 326 25 Startsignalofchokevalve1 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 310 25 Startsignalofbackpressurepump R(3)=1R(t)=0(t =/ 3) 327 26 Chokevalve1 Pp=2.5×10−4Pg=2.5×10−3 311 26 Backpressurepump Pp=4.3×10−5Pg=4.3×10−4 328 30 ANDgate /

312 25 Timeinterval t=8h 329 21 Pulloutstringstocertaindepth P=3.5×10−4 313 35 Failurerateofbackpressurepump ␭=2.52×10−6h−1 330 21 Pumpintoweightedmud P=1.0×10−4 314 21 Checkvalve1 P=3.12×10−3 331 21 Continuetoliftthedrillingstrings P=3.0×10−4 315 21 Chokeflowline1 P=3.6×10−4 332 21 Closeblindram P=2.6×10−4 316 25 Startsignalofchokevalve2 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 333 21 Drillingtoolschange P=1.0×10−4 317 26 Chokevalve2 Pp=2.5×10−4Pg=2.5×10−3

TableA3

TheoperatorparametersoftrippinginforMPDsystem. Operator

Meaning Parameter Operator Meaning Parameter

No Type No Type

401 25 Initialtime R(1)=0R(t)=1(t=/ 1) 417 21 Checkvalve1 P=3.12×10−3 402 21 Startsignaloftrippinginsystem P=1.0×10−4 418 21 Chokeflowline1 P=3.6×10−4

403 21 Openblindram P=2.6×10−4 419 25 Startsignalofchokevalve2 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 404 21 Runningstringstocertaindepth P=1.2×10−4 420 26 Chokevalve2 Pp=2.5×10−4Pg=2.5×10−3

405 21 Replaceweightedmud P=1.0×10−4 421 22 ORgate /

406 21 Adjustwellheadbackpressure P=1.0×10−4 422 23 NOTgate /

407 25 StartsignalofRCD R(2)=1,R(t)=0(t =/ 2) 423 21 Chokeflowline2 P=3.6×10−4

408 26 RCD PP=6.7×10−6Pg=6.7×10−5 424 25 Startsignalofchokevalve3 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 409 25 Startsignalofrigpump R(3)=1,R(t)=0(t =/ 3) 425 26 Chokevalve3 Pp=2.5×10−4Pg=2.5×10−3 410 26 Rigpump Pp=4.3×10−5Pg=4.3×10−4 426 23 NOTgate /

411 25 Timeinterval t=8h 427 21 Pressurereliefvalve P=2.2×10−5 412 35 Failurerateofrigpump ␭=2.52×10−6h−1 428 21 Backupflowline3 P=3.6×10−4

413 25 Startsignalofbackpressurepump R(3)=1,R(t)=0(t =/ 3) 429 25 Startsignalofchokevalve1 R(t)=0,t=/(4,5)R(t)=1,t=(4,5) 414 26 Backpressurepump Pp=4.3×10−5Pg=4.3×10−4 430 26 Chokevalve1 Pp=2.5×10−4Pg=2.5×10−3

415 25 Timeinterval t=8h 431 30 ANDgate /

(17)

References

Abimbola,M.,Khan,F.,Khakzad,N.,2014.Dynamicsafetyriskanalysisofoffshore drilling.J.LossPrev.ProcessInd.30,74–85.

Abimbola, M.,Khan,F.,Khakzad,N.,Butt,S.,2015. Safetyandriskanalysisof managed pressure drillingoperation usingBayesian network. Saf.Sci. 76, 133–144.

Amin,M.T.,Khan,F.,Imtiaz,S.,2018.Dynamicavailabilityassessmentofsafety criticalsystemsusingadynamicBayesiannetwork.Reliab.Eng.Syst.Saf.178, 108–117.

Arild,O.,Ford,E.P.,Loberg,T.,Baringbing,J.W.T.,2009.KickRisk-AWellSpecific ApproachtoTheQuantificationofWellControlRisks.SPE,Jakarta,Indonesia, 124024.

Bhandari,J.,Abbassi, R.,Garaniya,V.,Khan,F.,2015.Riskanalysisof deepwa-terdrillingoperationsusingBayesiannetwork.J.LossPrev.ProcessInd.38, 11–23.

Cai,B.,Liu,Y.,Liu,Z.,Tian,X.,Zhang,Y.,Ji,R.,2013.ApplicationofBayesiannetworks inquantitativeriskassessmentofsubseablowoutpreventeroperations.Risk Anal.33,293–311.

Chang,Y.,Wu,X.,Zhang,C.,Chen,G.,Liu,X.,Li,J.,Cai,B.,Xu,L.,2019.Dynamic Bayesiannetworksbasedapproachforriskanalysisofsubseawellheadfatigue failureduringservicelife.Reliab.Eng.Syst.Saf.188,454–462.

Chustz,M.J.,Smith,L.D.,Dell,D.M.,2008.ManagedPressureDrillingSuccess Con-tinuesonAugerTLP.SPE,Florida,USA,112662.

Fan,D.,Wang,Z.,Liu,L.,Ren,Y.,2016.AmodifiedGO-FLOWmethodologywith commoncausefailurebasedondiscretetimeBayesiannetwork.Nucl.Eng.Des. 305,476–488.

Gabaldon,O.,Culen,M.,Brand,P.,2014.EnhancingWellControlThroughManaged PressureDrilling.OTC,Texas,USA,25256.

Hannegan,D.M.,2006.CaseStudies-OffshoreManagedPressureDrilling.SPE,Texas, USA,101855.

Hashim,M.,Yoshikawa,H.,Matsuoka,T.,Yang,M.,2013.Commoncausefailure analysisofPWRcontainmentspraysystembyGO-FLOWmethodology.Nucl. Eng.Des.262,350–357.

Hashim,M.,Hidekazu,Y.,Takeshi,M.,Ming,Y.,2014.Applicationcasestudyof AP1000automaticdepressurizationsystem(ADS)forreliabilityevaluationby GO-FLOWmethodology.Nucl.Eng.Des.278,209–221.

He,R.,Li,X.,Chen,G.,Wang,Y.,Jiang,S.,Zhi,C.,2018.Aquantitativerisk analy-sismodelconsideringuncertaininformation.Process.Saf.Environ.Prot.118, 361–370.

Jia,L.,Lin,S.,2015.Currentstatusandprospectforthemethodsofsystemreliability. Syst.Eng.Electron.37(12),2887–2893.

Jones,B.,Jenkinson,I.,Yang,Z.,Wangn,J.,2010.TheuseofBayesiannetwork mod-ellingformaintenanceplanninginamanufacturingindustry.Reliab.Eng.Syst. Saf.95(3),267–277.

Khakzad,N.,Khan,F.,Amyotte,P.,2013a.Dynamicsafetyanalysisofprocesssystems bymappingbow-tieintoBayesiannetwork.Process.Saf.Environ.Prot.91(1–2), 46–53.

Khakzad,N.,Khan,F.,Amyotte,P.,2013b.Quantitativeriskanalysisofoffshore drillingoperations:aBayesianapproach.Saf.Sci.57,108–117.

Kim,H.,Lee,H.,Lee,K.,2005.ThedesignandanalysisofAVTMR(allvotingtriple modularredundancy)anddual-duplexsystem.Reliab.Eng.Syst.Saf.88(3), 291–300.

Lan,X.,Duan,F.,Sang,Y.,2017.ApplicationofGO-FLOWmethodologyinreliability analysisofaircraftEHA.J.BeijingUniv.Aeronaut.Astronaut.43(6),1264–1270, 25.

Li,X.,Chen,G.,Zhu,H.,2016.Quantitativeriskanalysisonleakagefailureof sub-marineoilandgaspipelinesusingBayesiannetwork.Process.Saf.Environ.Prot. 103,163–173.

Li,X.,Chen,G.,Khan,F.,Xu,C.,2019.Dynamicriskassessmentofsubseapipelines leakusingprecursordata.Ocean.Eng.178,156–169.

Liu,Z.,Liu,Y.,Wu,X.,Yang,D.,Cai,B.,Zheng,C.,2016.Reliabilityevaluationof aux-iliaryfeedwatersystembymappingGO-FLOWmodelsintoBayesiannetworks. ISATrans.64,174–183.

Liu,Z.,Liu,Y.,Wu,X.,Cai,B.,2018.Riskanalysisofsubseablowoutpreventer bymappingGOmodelsintoBayesiannetworks.J.LossPrev.ProcessInd.52, 54–65.

Lu,H.,Yang,M.,Dai,X.,Li,W.,Yang,J.,2019.Reliabilitymodelingbyextended GO-FLOWmethodologyforautomaticcontrolcomponentandsystematNPP.Nucl. Eng.Des.342,264–275.

Matsuoka,T.,Kobayashi,M.,1988.GO-FLOW:anewreliabilityanalysis methodol-ogy.Nucl.Sci.Eng.98(1),64–78.

Matsuoka,T.,Kobayashi,M.,1989.GO-FLOWmethodology:areliabilityanalysisof theemergencycorecoolingsystemofamarinereactorunderaccident condi-tions.NuclTechnolo84,285–295.

Matsuoka,T.,Kobayashi,M.,1997.TheGO-FLOWreliabilityanalysis methodology-analysisofcommoncausefailureswithuncertainty.Nucl.Eng.Des.175(3), 205–214.

Murphy,K.P.,Ph.D.Thesis2002.DynamicBayesianNetworks:Representation, Infer-enceandLearning.,pp.1–281.

OREDA,2002.OffshoreReliabilityDataHandbook,4thed,DistributedbyDetNorske Veritas,P.O.Box300,N-1322Høvik,Norway.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Net-works of Plausible Inference. Morgan Kaufmann, San Francisco, California.

Pui,G.,Bhandari,J.,Arzaghi,E.,Abbassi,R.,Garaniya,V.,2017.Risk-based mainte-nanceofoffshoremanagedpressuredrilling(MPD)operation.J.Pet.Sci.Eng. 159,513–521.

Quoc,B.,Yong,T.,Singh,H.K.D.,Nguyen,V.P.,2016.AWellControlApproachWith ManagedPressureDrillingMPDonHPHTWellsinVietnam-caseHistory.SPE, Singapore,180628.

Rathnayaka,S.,Khan,F.,Amayotte,P.,2013.Accidentmodelingandrisk assess-mentframeworkforsafetycriticaldecision-making:applicationtodeepwater drilling operation. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 227 (1), 86–105.

Shen, Z., Wang, Y., Huang, X., 2003. A quantification algorithm for a repairablesystem in the GO methodology. Reliab. Eng. Syst. Saf. 80 (3), 293–298.

Sule,I.,Khan,F.,Butt,S.,Yang,M.,2018.Kickcontrolreliabilityanalysisofmanaged pressuredrillingoperation.J.LossPrev.ProcessInd.52,7–20.

Trucco,P.,Cagno,E.,Ruggeri,F.,Grande,O.,2008.ABayesian beliefnetwork modellingoforganizationalfactorsinriskanalysis:acasestudyinmaritime transport.Reliab.Eng.Syst.Saf.93,823–834.

Veeramany,A.,Pandey,M.D.,2011.Reliabilityanalysisofnuclearcomponent cool-ingwatersystemusingsemi-Markovprocessmodel.Nucl.Eng.Des.241(5), 1799–1806.

Wang,G.,Fan,H.,Liu,G.,2011.DesignandcalculationofaMPDmodelwithconstant bottomholepressure.Pet.Explor.Dev.38(1),103–108.

Wu,S.,Zhang,L.,Fan,J.,Zhou,Y.,2019.Dynamicriskanalysisofhydrogensulfide leakageforoffshorenaturalgaswellsinMPDphases.Process.Saf.Environ.Prot. 122,339–351.

Xu, K., Tang, L.C., Xie, M., Ho, S.L., Zhu, M.L., 2002. Fuzzy assess-ment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 75 (1), 17–29.

(18)

Yang,J.,Wang,M.,Guo,D.,Zhang,B.,Yang,M.,2020.Useofasuccess-oriented GO-FLOWmethodforsystemconfigurationriskmanagementatNPPs.Ann.Nucl. Energy143,107452.

Zhang,G.,Thai,V.V.,2016.ExpertelicitationandBayesiannetworkmodelingfor shippingaccidents:aliteraturereview.Saf.Sci.87,53–62.

Zhang,L.,Wu,S.,Zheng,W.,Fan,J.,2018.Adynamicandquantitativeriskassessment methodwithuncertaintiesforoffshoremanagedpressuredrillingphases.Saf. Sci.104,39–54.

Cytaty

Powiązane dokumenty

Paradoksalnie zatem instytucje finansujące badania naukowe zdają się wciąż wspierać reprezentację autyzmu jako choroby, która daje się wyekstrahować od osoby –

W testamencie króla Korybuta znalazło się polecenie ukończenia budowy kościoła bielańskiego oraz złożenia w nim jego serca i matki Gryzeldy.. 10

Należy jeszcze raz podkreślić, że działanie powyższego prawa podziału i two- rze-nia JO dotyczy zarówno budowy nowych jednostek produkcyjnych (obszarem.. projektowania objęty

a send buffer must be allocated that can contain the entire iteration space of the FORALL. Fortunately, we can in many cases use a significantly better estimate: if it

Kiing, mówiąc o relacji Boga i świata, ogłasza odejście od koncepcji Boga, któiy jest poza światem, ale także odej­ ście od idei Boga, który łączy się ze światem

In Images of community in Old English poetry, Hugh Magenniss points out that “imagery of the good landscape is … extended to Heaven” and that “Heaven is presented in Old

Pragmatyczny punkt widzenia, cechujący całą epokę, jak to wy­ nika z jej nazwy a wyrażający się właśnie w chęci oświecenia oczywiście nie tyle siebie, co

[r]