• Nie Znaleziono Wyników

S Z Y N A L (Lublin) ON FUNCTIONAL MEASURES OF SKEWNESS Abstract

N/A
N/A
Protected

Academic year: 2021

Share "S Z Y N A L (Lublin) ON FUNCTIONAL MEASURES OF SKEWNESS Abstract"

Copied!
9
0
0

Pełen tekst

(1)

23,4 (1996), pp. 395–403

R. D Z I U B I ´N S K A and D. S Z Y N A L (Lublin)

ON FUNCTIONAL MEASURES OF SKEWNESS

Abstract. We introduce a concept of functional measures of skewness which can be used in a wider context than some classical measures of asym- metry. The Hotelling and Solomons theorem is generalized.

1. Introduction. It was shown in [1] that the Pearson coefficient s of skewness:

(1.1) s = (mean − median)/(standard deviation)

necessarily lies between −1 and 1. A neat proof of that fact and an extension of the statement that the mean is within one standard deviation of any median can be found in [2]. Namely, it was proved that

(1.2) |µ − xq| ≤ σ max(p

(1 − q)/q,p

q/(1 − q)),

where µ denotes the mean and xq the qth quantile of a random variable X.

More details and references on this subject can be found in [3].

The goal of this note is to discuss measures of skewness of the type (1.1) for conditional distributions and to extend (1.1) to a class of random variables with infinite mean values. We are also interested in conditional versions of (1.2).

2. Measures of skewness of conditional distributions. We con- sider here only pairs (X, Y ) of random variables with continuous strictly increasing marginal and conditional distribution functions.

For any given p ∈ (0, 1), yp stands for the pth quantile of FY. The qth quantiles of the distribution functions P [X < x | Y > yp], P [X < x | Y < yp]

1991 Mathematics Subject Classification: 60E05, 62E99.

Key words and phrases: the Pearson coefficient of skewness, mean, median, standard deviation, quantiles, conditional distributions, Pareto distributions, mixture of distribu- tion functions.

[395]

(2)

are denoted by x(1)q|p and x(2)q|p, respectively, i.e. we have

P [X < x(1)q|p | Y > yp] ≤ q ≤ P [X ≤ x(1)q|p| Y > yp], P [X < x(2)q|p | Y < yp] ≤ q ≤ P [X ≤ x(2)q|p| Y < yp].

Moreover, we write

µ(1)X|Y(p) := E[X | Y > yp], µ(2)X|Y(p) := E[X | Y < yp], σX|Y(k) (p) :=

q

Var(k)X|Y(p), k = 1, 2,

Var(1)X|Y(p) := E[X2| Y > yp] − (E[X | Y > yp])2, Var(2)X|Y(p) := E[X2| Y < yp] − (E[X | Y < yp])2. We introduce the following notions.

Definition 1. The quantities

(2.1) s(k)X|Y(p) = (µ(k)X|Y(p) − x(k)1/2|p)/σX|Y(k) (p), p ∈ (0, 1), k = 1, 2, (if they exist) define the functional measures of skewness of conditional distribution functions for a pair (X, Y ) of random variables.

We note that s(1)X|Y(·) defines a functional measure of skewness of the conditional distribution function of X under the condition that values of Y cross the pth quantile yp. Similarly one can interpret s(2)X|Y(·). If X and Y are independent then (2.1) reduces to (1.1). Moreover, it is not difficult to see that the limit values (if they exist) of s(k)X|Y(p) k = 1, 2, as p → 0 and p → 1, respectively, are s(1)X|Y(0) = s and s(2)X|Y(1) = s.

Following the above idea we can introduce a concept of a functional measure of skewness which is a generalization of (1.1).

Put

m(1)X (p) := median(P [X < x | X > xp]), m(2)X (p) := median(P [X < x | X < xp]),

µ(1)X (p) := E[X | X > xp], µ(2)X (p) := E[X | X < xp], σX(k)(p) :=

q

Var(k)X (p), k = 1, 2,

Var(1)X (p) := E[X2| X > xp] − E2[X | X > xp], Var(2)X (p) := E[X2| X < xp] − E2[X | X < xp].

(3)

Definition 2. The quantities

(2.2) s(k)X (p) = (µ(k)X (p) − m(k)X (p))/σX(k)(p), p ∈ (0, 1), k = 1, 2, (if they exist) are called the functional measures of skewness of a random variable X (or of its probability distribution function).

Definition 3. The measures of skewness s(k)X of any probability distri- bution function are defined by

(2.3) s(1)X = lim

p→0s(1)X (p), s(2)X = lim

p→1s(2)X (p), provided that at least one of the above limits exists.

One can see that in the case when EX2< ∞, we have s(k)X = s, k = 1, 2, with s defined by (1.1).

The following examples present applications of the introduced measures of skewness.

Example 1. Let F (x) = 1 − 1/x3, x ≥ 1, and 0 otherwise. Then EX = 3/2, σ2X = 3/4, xp= 1/p3

1 − p, m(1)X (p) = p3

2/(1 − p), m(2)X (p) = p3

2/(2 − p), µ(1)X (p) = 3p3

1/(1 − p)/2, µ(2)X (p) = 3(1 −p3

(1 − p)2)/(2p), (1)X (p))2= 3p3

1/(1 − p)2/4, (2)X (p))2= 3(4p − 3 − (p + 3)p3

1 − p + 6p3

(1 − p)2)/(4p2).

Hence the coefficient of skewness (1.1) is s =

3 − 23 2/

3, while the functional coefficients are

s(1)X (p) =

3 − 23

2/

3, s(2)X (p) =

3(1 −p(1 − p)3 2) − 2pp2/(2 − p)/3 3 q

4p − 3 − (p + 3)3

1 − p + 6p(1 − p)3 2 .

Moreover, limp→0s(1)X (p) = limp→1s(2)X (p) =

3 − 23 2/

3 = s.

Example 2. Let F (x) = 1 − 1/x, x ≥ 1. We see that EX = ∞ and the classical measure of skewness (1.1) is undefined. Moreover,

xp= 1/(1 − p), m(1)X (p) = 2/(1 − p), m(2)X (p) = 2/(2 − p), µ(1)X (p) = ∞, µ(2)X (p) = −p−1ln(1−p), (2)X )2= 1/(1−p)−p−2ln2(1−p).

Hence s(1)X (p) is undefined but

s(2)X (p) = −p−1ln(1 − p) − 2/(2 − p) q

1/(1 − p) − p−2ln2(1 − p) ,

(4)

and

s = lim

p→1s(2)X (p) = 0.

Now we give examples elucidating the quantities (2.1) (the conditional measures of skewness).

Example 3. Let F (x, y) = 1 − e−x− e−y+ e−(x+y+xy), x, y ≥ 0, and 0 otherwise. Then

yp= − ln(1 − p), x(1)q|p = (ln(1 − q))/(ln(1 − p) − 1), µ(1)X|Y(p) = 1/(1 − ln(1 − p)), X|Y(1) (p))2= 1/(1 − ln(1 − p))2, which gives s(1)X|Y(p) = 1 − ln 2, p ∈ (0, 1), proving that the functional measure of skewness of P [X < x | Y > yp] is a constant function.

The quantity s(2)X|Y(p) can be determined only by an approximation.

Example 4. Let F (x, y) = 1 − 1/x − 1/y + 1/(xyy), x, y ≥ 1, and 0 otherwise. Then EX = ∞. Moreover,

yp = 1/(1 − p), x(1)q|p = (1 − q)p−1, µ(1)X|Y(p) = 1/p, X|Y(1) (p))2= ∞, 0 < p ≤ 1/2,

(1 − p)2/(p2(2p − 1)), 1/2 < p < 1.

Hence we get

s(1)X|Y(p) =

0, 0 < p ≤ 1/2,

1 − p21−p 1 − p

2p − 1, 1/2 < p < 1.

The characteristic s(2)X|Y(p) can be given by an approximation.

3. Properties of functional measures of skewness. The following generalization of the estimate derived in [2] (cf. (1.2)) gives bounds for functional measures of skewness.

Theorem. Under the notations of Section 2 we have:

(3.1)

(i) (k)X|Y(p) − x(k)q|p| ≤ σ(k)X|Y(p)M (q), p ∈ (0, 1), k = 1, 2, (ii) (k)X (p) −xe(k)q|p| ≤ σ(k)X (p)M (q), p ∈ (0, 1), k = 1, 2, where M (q) = max{pq/(1 − q), p(1 − q)/q}, and ex(1)q|p and ex(2)q|p denote the qth quantiles of P [X < x | X > xp] and P [X < x | X < xp], respectively.

P r o o f. We need only prove (i) with k = 1 as the remaining cases can be shown similarly.

(5)

Note that the distribution function P [X < x | Y > yp] can be written as a mixture of distribution functions as follows:

(3.2) P [X < x | Y > yp]

= qP1[X < x | Y > yp] + (1 − q)P2[X < x | Y > yp], where

(3.3) P1[X < x | Y > yp] =

1

qP [X < x | Y > yp], x ≤ x(1)q|p, 1, x > x(1)q|p, and

(3.4) P2[X < x | Y > yp]

=

0, x ≤ x(1)q|p,

1

1 − qP [X < x | Y > yp] − q

1 − q, x > x(1)q|p. From (3.2) we have

(3.5) µ(1)X|Y(p) = qµ1(p) + (1 − q)µ2(p), where

µi(p) =R

x dPi[X < x | Y > yp], i = 1, 2.

Moreover, (3.3) and (3.4) imply

(3.6) µ1(p) ≤ x(1)q|p

and

(3.7) µ2(p) ≥ x(1)q|p,

respectively.

Now by (3.5)–(3.7) we conclude that

µ(1)X|Y(p) − x(1)q|p≤ (1 − q)(µ2(p) − µ1(p)) and

x(1)q|p− µ(1)X|Y(p) ≤ q(µ2(p) − µ1(p)).

Hence

(3.8) (1)X|Y(p) − x(1)q|p)2≤ max{q2, (1 − q)2}(µ2(p) − µ1(p))2. Then using (3.2) and (3.5) we see that

X|Y(1) (p))2= q R

(x − qµ1(p) − (1 − q)µ2(p))2dP1[X < x | Y > yp] + (1 − q)R

(x − qµ1(p) − (1 − q)µ2(p))2dP2[X<x | Y >yp]

= q R

(x − µ1(p))2dP1[X < x | Y > yp]

(6)

+ q R

(x − µ2(p))2dP2[X < x | Y > yp]

+ q(1 − q)22(p) − µ1(p))2+ q2(1 − q)(µ2(p) − µ1(p))2

≥ q(1 − q)(µ2(p) − µ1(p))2. Hence after using (3.8) we get

(1)X|Y(p))2 q(1 − q)

max{q2, (1 − q)2}(1)X|Y(p) − x(1)q|p)2.

Corollary. The limits of functional measures of skewness are as fol- lows:

(k)X|Y(p) − x(k)1/2|q| ≤ σX|Y(k) (p), p ∈ (0, 1), k = 1, 2, (i)

(k)X (p) − m(k)X (p)| ≤ σX(k)(p), p ∈ (0, 1), k = 1, 2.

(ii)

4. Examples. We now give examples of functional measures of skewness using conditional distribution functions of order statistics.

Example. Let U and V be independent random variables with a com- mon strictly monotone distribution function. We consider two cases:

(i) X = U , Y = max(U, V ), (ii) X = U , Y = min(U, V ), and put FX = F .

In the case (i) we have yp= xp and

P [X < x | Y > yp] = P [X < x]/(1 +

p), x ≤ xp, (P [X < x] − p)/(1 − p), x > xp, P [X < x | Y < yp] = P [X < x]/

p, x ≤ xp, 1, x > xp, x(1)q|p= xq(1+p), q <

p/(1 + p), xq(1−p)+p, q ≥

p/(1 + p), x(2)q|p = xq

p, x(1)1/2|p = x(1+p)/2, x(2)1/2|p = xp/2, µ(1)X|Y(p) = (1 +

p)−1EXI[X < xp] + (1 − p)−1EXI[X > xp], E[X2| Y > yp] = (1 +

p)−1EX2I[X < xp] + (1 − p)−1EX2I[X > xp], µ(2)X|Y(p) = p−1/2EXI[X < xp],

E[X2| Y < yp] = p−1/2EX2I[X < xp].

From this one gets

(7)

s(1)X|Y(p) = {(1 +

p)−1EXI[X < xp]

+ (1 − p)−1EXI[X < xp] − x(1+p)/2}

× {(1 +

p)−1EX2I[X < xp] + (1 − p)−1EX2I[X < xp]

− ((1 +

p)−1EXI[X < xp] + (1 − p)−1EXI[X > xp])2}−1/2, s(2)X|Y(p) = p−1/2EXI[X < xp] − xp/2

{p−1/2EX2I[X < xp] − p−1E2XI[X < xp]}1/2.

Now we give the values of s(1)X|Y(p) and s(2)X|Y(p) for exponential, uniform, and Pareto distributions.

(a) Let F (x) = 1 − e−x, x ≥ 0, and zero otherwise. Then s(1)X|Y(p) = (1 +

p)(1 − ln 2) + ln(1 − p)1+p(1 − p)p q

(1 +

p)2+

p ln2(1 − p)

,

s(2)X|Y(p) =

p(1 − ln 2) + ln(2 −

p)p(1 − p)1−p q

p − (1 −

p) ln2(1 − p)

,

p→0lims(1)X|Y = 1 − ln 2, lim

p→1s(2)X|Y = 1 − ln 2.

(b) Let F (x) = x, x ∈ [0, 1], and zero otherwise. Then s(1)X|Y(p) = −

3p p p1 − p + 2

p(1 + p) + p2, lim

p→0s(1)X|Y(p) = 0, s(2)X|Y(p) ≡ 0.

(c) Let F (x) = 1 − 1/x, x ≥ 1, and zero otherwise. Then s(1)X|Y(p) is undefined and

s(2)X|Y(p) = −p1 − p [2

p + (2 −

p) ln(1 − p)]

(2 − p)

q

p − (1 −

p) ln2(1 − p)

, lim

p→1s(2)X|Y(p) = 0.

In the case (ii) we have yp= x1−1−p and

P [X < x | Y > yp] =

0, x ≤ x1−1−p,

P [X < x] − (1 − 1 − p)

1 − p , x > x1−1−p,

P [X < x | Y < yp] =

P [X < x]/p, x ≤ x1−1−p, 1 −

1 − p

p (P [X < x] +

1 − p), x > x1−1−p,

(8)

x(1)q|p= x1−(1−q)1−p, x(1)1/2|p= x1−1−p/2, x(2)q|p= xqp, q < 1/(1 +

1 − p), xq−(1−q)1−p, q ≥ 1/(1 +

1 − p), x(2)1/2|p = xp/2, µ(1)X|Y(p) = (1 − p)−1/2EXI[X > x1−1−p],

E[X2| Y > yp] = (1 − p)−1/2EX2I[X > x1−1−p], µ(2)X|Y(p) = p−1EXI[X < x1−1−p] + (1 −p

1 − p)p−1EXI[X > x1−1−p], E[X2| Y < yp]

= p−1EX2I[X < x1−1−p] + (1 −p

1 − p)p−1EX2I[X > x1−1−p].

From this one gets s(1)X|Y(p)

= (1 − p)−1/2EXI[X > x1−1−p] − x1−1−p/2 q

(1 − p)−1/2EX2I[X > x1−1−p] − (1 − p)−1EX2I[X ≥ x1−1−p] ,

s(2)X|Y(p)

= {p−1EXI[X < x1−1−p] + (1 −p

1 − p)p−1EXI[X > x1−1−p] − xp/2}

× {p−1EX2I[X < x1−1−p] + (1 −p

1 − p)p−1EX2I[X > x1−1−p] − (p−1EXI[X < x1−1−p] + (1 −p

1 − p)p−1EXI[X > x1−1−p])2}−1/2. Now we see that in the case (a),

s(1)X|Y(p) = 1 − ln 2,

s(2)X|Y(p) = p(1 − ln 2) + ln(2 − p)p(1 − p)(1−p)/2 q

p2− (1 − p) ln2 1 − p

, lim

p→1s(2)X|Y(p) = 1− ln 2;

in the case (b) we have s(1)X|Y(p) ≡ 0, s(2)X|Y(p) =

3(1 − p)3/2 p1 + 2

1 − p(2 − p) − p(1 − p), lim

p→1s(2)X|Y(p) = 0, while in the case (c) both quantities s(1)X|Y(p) and s(2)X|Y(p) are undefined.

(9)

Acknowledgments. The authors are grateful to the referee for sugges- tions leading to an extension of Section 4.

References

[1] H. H o t e l l i n g and L. M. S o l o m o n s, The limits of a measure of skewness, Ann.

Math. Statist. 3 (1932), 141–142.

[2] C. A. O ’ C i n n e i d e, The mean is within one standard deviation of any median, Amer. Statist. 44 (1990), 292–293.

[3] I. O l k i n, A matrix formulation on how deviant an observation can be, ibid. 46 (1992), 205–209.

Renata Dziubi´nska and Dominik Szynal Institute of Mathematics

University of Maria Curie-Sk lodowska Pl. M. Curie-Sk lodowskiej 1

20-031 Lublin, Poland

Received on 22.12.1994;

revised version on 20.4.1995

Cytaty

Powiązane dokumenty

Goldie [11] has noticed that in the contractive case (i.e. when E log A &lt; 0) the proof of the asymptotic behavior of the invariant measure for the random difference equation, can

In Section 3 we include a brief account of random walks on solvable groups: existence of an invariant measure and its properties in the case when the group A is one dimensional..

joint work with Piotr Borodulin-Nadzieja Hejnice 2008..

I. Recently there have appeared a number of publi ­ cations concerned with the notion of so-called measure of noncompactness.. Proper choice of axioms is of course the problem

of a Function of the Average of Independent Random Variables O funkcjonałowym centralnym twierdzeniu granicznym dla funkcji średnich arytmetycznych niezależnych zmiennych losowych..

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXI (1979) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO. Séria I: PRACE MATEMATYCZNE XXI

The use in the presented analyses of a tool for continuous measurement of travel time using GPS devices installed in vehicles and mobile phones allowed for analysis of the

The concept of “onomastics as a whole” integrates elements (categories, functional elements) that determine the “contents” of onomastics as a “whole”. In the model of