• Nie Znaleziono Wyników

Numerical study on the water impact of 3D bodies by an explicit finite element method

N/A
N/A
Protected

Academic year: 2021

Share "Numerical study on the water impact of 3D bodies by an explicit finite element method"

Copied!
16
0
0

Pełen tekst

(1)

Ocean Engineering 78 (2014) 7 3 - 8 8

.ELSEVIER

Contents lists available at S c i e n c e D i r e c t

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v l e r . c o m / l o c a t e / o c e a n e n g

Numerical study on the water impact of 3D bodies by an explicit finite

element method

Shan Wang, C. Guedes Scares *

Centre for Marine Tedmology and Engineering (CENTEC), Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal

A R T I C L E I N F O A B S T R A C T

T h e h y d r o d y n a m i c p r o b l e m o f t h e w a t e r i m p a c t o f t h r e e - d i m e n s i o n a l b u o y s is i n v e s t i g a t e d b y t h e e x p l i c i t finite e l e m e n t m e t h o d w i t h a n A r b i t r a r y - L a g r a n g i a n E u l e r i a n (ALE) s o l v e r . T h e fluid is s a l v e d b y u s i n g a n E u l e r i a n f o r m u l a t i o n , w h i l e t h e s t r u c t u r e is d i s c r e t i z e d b y a L a g r a n g i a n a p p r o a c h , a n d a p e n a l t y c o u p l i n g a l g o r i t h m e n a b l e s t h e i n t e r a c t i o n b e t w e e n t h e b o d y a n d t h e fluids. T h e r e m a p s t e p i n t h e ALE a l g o r i t h m a p p l i e s a d o n o r c e l l + H I S ( H a l f - I n d e x - S h i f t ) a d v e c t i o n a l g o r i t h m t o u p d a t e f l u i d v e l o c i t y a n d h i s t o r y v a r i a b l e s . T h e i n t e r f a c e b e t w e e n t h e s o l i d s t r u c t u r e a n d t h e fluids is c a p t u r e d b y V o l u m e o f F l u i d m e t h o d . C o n v e r g e n c e s t u d i e s are c a r r i e d o u t f o r t h r e e d i m e n s i o n a l h e m i s p h e r e a n d c o n e s w i t h d i f f e r e n t d e a d r i s e angles. I t is f o u n d t h a t t h e m e s h d e n s i t y o f t h e i m p a c t d o m a i n is v e r y i m p o r t a n t t o t h e q u a l i t y o f t h e s i m u l a t i o n r e s u l t s . T h e c o n t a c t s t i f f n e s s b e t w e e n t h e c o u p l i n g n o d e s a f f e c t s t h e l o c a l p e a k p r e s s u r e v a l u e s . T h e n u m e r i c a l c a l c u l a t i o n s a r e v a l i d a t e d b y c o m p a r i n g w i t h o t h e r a v a i l a b l e r e s u l t s , f o r b o t h t h e d r o p cases a n d t h e o n e s w i t h c o n s t a n t i m p a c t v e l o c i t y . © 2013 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d . Article history: Received 26 April 2013 Accepted 14 December 2013 Available online 31 January 2014 Keywords:

Numerical modeling Water impact

Explicit finite element method Impact coefficient

Slamming Wave converter

1. I n t r o d u c t i o n

Ocean waves are a s i g n i f i c a n t resource o f i n e x h a u s t i b l e , n o n -p o l l u t i n g energy. Waves are caused b y t h e w i n d b l o w i n g over the surface o f t h e ocean. I n m a n y areas o f t h e w o r l d , t h e w i n d b l o w s w i t h e n o u g h consistency a n d f o r c e t o p r o v i d e c o n t i n u o u s waves. A v a r i e t y o f technologies have b e e n p r o p o s e d t o capture t h e energy f r o m waves, and t h e y d i f f e r i n t h e i r o r i e n t a t i o n t o t h e waves w i t h w h i c h t h e y are i n t e r a c t i n g a n d i n t h e m a n n e r i n w h i c h t h e y c o n v e r t t h e energy o f t h e w a v e s i n t o o t h e r energy f o r m s . W a v e e n e r g y converters p r o v i d e a m e a n s o f t r a n s f o r m i n g w a v e energy i n t o usable electrical energy.

Point absorbers are one t y p e o f w a v e e n e r g y converters t h a t have s m a l l d i m e n s i o n s r e l a t i v e t o t h e i n c i d e n t w a v e l e n g t h . T h e y can capture wave energy f r o m a w a v e f r o n t t h a t is larger t h a n the d i m e n s i o n s o f the absorber. Several types o f w a v e absorbers have b e e n p r o p o s e d based o n d i f f e r e n t m e c h a n i s m s o f o b t a i n i n g r e l a t i v e m o t i o n s b e t w e e n t w o bodies. Due t o t h e i r r e l a t i v e l y s m a l l size, t h e a m o u n t o f energy t h a t t h e y c a n capture is r e l a t i v e l y s m a l l as c o m p a r e d w i t h devices based o n o t h e r p r i n c i p l e s i n Guedes Soares et al. (2012) and Silva et a l . (2013). To o v e r c o m e t h i s l i m i t a t i o n a p o s s i b i l i t y is h a v i n g a large p l a t f o r m f i x e d or floating a r o u n d w h i c h several s m a l l floaters have h e a v i n g t y p e o f m o t i o n s , w h i c h can t h e n be c o n v e r t e d i n p o w e r b y t h e p o w e r take o f f

* Corresponding author. Tel.: + 3 5 1 218417957: fax: + 3 5 1 218474015. E-mail address: guedess@mar.ist.utl.pt (C. Guedes Soares).

0029-8018/$-see f r o n t matter o 2013 Elsevier Ltd. A l l rights reserved. http://dx.doi.Org/10.1016/j.oceaneng.2013.12.008

m e c h a n i s m i n V a n t o r r e et al. ( 2 0 0 4 ) , L e n d e n m a n n et a l . ( 2 0 0 7 ) , Estefen e t al. ( 2 0 0 8 ) a n d M a r q u i s et al. (2010). H o w e v e r , i n t h i s process i t m a y h a p p e n t h a t the floaters w h e n at r e s o n a n c e have t o o h i g h v e r d c a l displacements a n d w i l l m o v e o u t o f t h e water, i m p a c r i n g i t a t t h e entrance. This p r o b l e m has b e e n d e t e c t e d by De Backer e t a l . ( 2 0 0 8 ) , w h o gives a b r i e f i n t r o d u c t i o n o n h o w t h e p o w e r a b s o r p t i o n is calculated, h o w t h e s l a m m i n g r e s t r i c t i o n is f o r m u l a t e d a n d f u l f i l l e d , a n d t h e y f o u n d t h a t t h e r e is a s i g n i f i c a n t r e d u c t i o n i n p o w e r a b s o r p t i o n due to t h e s l a m m i n g r e s t r i c t i o n . Since, i n any case, t h e p e n a l t y t o o v e r c o m e s l a m m i n g o f t h e p o i n t absorbers c o m p l e t e l y w i l l be t o o h i g h a n d a c e r t a i n level o f s l a m m i n g w i l l u s u a l l y be a l l o w e d , i t is i m p o r t a n t t o k n o w t h e m a g n i t u d e o f t h e s l a m m i n g load o n t h e floating objects w i t h d i f f e r e n t shapes.

De Backer e t al. ( 2 0 0 9 ) , c o n d u c t e d an e x p e r i m e n t a l s t u d y o f t h e i m p a c t o f 3 D bodies d u r i n g w a t e r e n t r y , i n o r d e r t o assess the s l a m m i n g loads i n these buoys a p p r o p r i a t e to t h e w a v e energy devices u n d e r c o n s i d e r a t i o n . This paper uses t h e s e e x p e r i m e n t a l results as references t o v a l i d a t e 3 D n u m e r i c a l studies, w h i c h f o l l o w eariier w o r k i n 2 D .

Early studies o n t h e local s l a m m i n g p r o b l e m f o c u s e d o n t h e analysis o f t w o - d i m e n s i o n a l structures, since s l a m m i n g o n ships has b e e n a m a j o r c o n c e r n a n d t h e 2 D s t r i p t h e o r y has b e e n w i d e l y used i n s h i p m o t i o n s research. The i m p o r t a n t p i o n e e r i n g s t u d y o n t h i s s u b j e c t can be a t t r i b u t e d to v o n K a r m a n ( 1 9 2 9 ) w h o p r o p o s e d t h e f i r s t t h e o r e t i c a l m e t h o d o n t h e analysis o f seaplane l a n d i n g . T h e n , W a g n e r ( 1 9 3 2 ) d e v e l o p e d an a s y m p t o t i c s o l u t i o n f o r w a t e r e n t r y o f t w o - d i m e n s i o n a l bodies w i t h s m a l l local deadrise angles

(2)

74 , Wang. C. Guedes Soares/Ocean Engineering 78 (20U) 73-88

b y a p p r o x i m a t i n g t h e m w i t h a flat plate, w h i c h c o n s i d e r e d t h e local w a t e r surface e l e v a t i o n . For t h e i d e a l i z e d case o f a w e d g e e n t e r i n g t h e c a l m w a t e r , D o b r o v o l ' s k a y a , 1969 d e r i v e d an a n a l y -t i c a l s o l u -t i o n by -t r a n s f e r r i n g -t h e p o -t e n -t i a l flow p r o b l e m f o r -t h e c o n s t a n t w a t e r e n t r y i n t o a self s i m i l a r flow p r o b l e m i n c o m p l e x plane, w h i c h t o o k advantage o f t h e s i m p l i c i t y o f t h e b o d y g e o m e t r y a n d is v a l i d f o r a n y deadrise angle.

Zhao and Faltinsen ( 1 9 9 3 , 1 9 9 6 ) proposed a n o n l i n e a r b o u n d a r y e l e m e n t m e t h o d to s t u d y the w a t e r e n t r y o f a t w o - d i m e n s i o n a l b o d y o f a r b i t r a r y cross-section a n d generalized the W a g n e r (1932)'s t h e o r y to presented a s i m p l e a s y m p t o t i c s o l u t i o n f o r s m a l l deadrise angles. As a f u r t h e r d e v e l o p m e n t w o r k , a f u l l y n o n l i n e a r n u m e r i c a l s i m u l a t i o n m e t h o d w h i c h includes flow separation f r o m k n u c k l e s o f a b o d y w a s p r e s e n t e d by Zhao et al., 1996. S u n and Faltinsen ( 2 0 0 6 ) d e v e l o p e d a t w o - d i m e n s i o n a l b o u n d a r y e l e m e n t m e t h o d to s i m u l a t e t h e w a t e r flow d u r i n g the w a t e r i m p a c t o f a r i g i d h o r i z o n t a l c i r c u l a r a n d a n elastic c y l i n d r i c a l shell. Exact free surface c o n d i t i o n s w e r e satisfactory.

Ramos e t al. ( 2 0 0 0 ) c o n d u c t e d an e x p e r i m e n t a l p r o g r a m assessing t h e s l a m i n d u c e d loads o n a s e g m e n t e d s h i p m o d e l t h a t w i t h several i n t e r c o n n e c t e d l o n g w e d g e s w h i l e the p r e v i o u s studies d e a l t w i t h i n d i v i d u a l 2 D wedges, w h i c h was a n a l y z e d w i t h the m e t h o d u s e d b y Ramos a n d Guedes Soares (1998).

M o s t investigations o f w a t e r e n t r y problems, i n c l u d i n g the researches m e n t i o n e d above have been focused o n the t w o -d i m e n s i o n a l impact, w h i l e f e w e r stu-dy have been con-ducte-d o n t h e three d i m e n s i o n a l cases w h i c h is m o r e consistent w i t h the real i m p a c t i n engineering. I n this field, early studies have been p u b l i s h e d by some researchers. S h i f t m a n and Spencer (1951) investigated the vertical s l a m m i n g o n spheres a n d cones based o n the analytical s o l u t i o n . T h e y are a m o n g the first to notice t h a t the l i q u i d m a y separate f r o m the sphere, l e a d i n g to cavity f o r m a t i o n , however, the stage o f the i m p a c t u n d e r consideration i n this study is b e f o r e separation w h i c h means the penetration d e p t h is less t h a n h a l f o f radius. S h i f t m a n a n d Spencer (1951) also give an explicit relationship o f i m p a c t c o e f f i c i e n t w i t h j{p)=\.6 f o r a cone w i t h deadrise angle 30". E l M a l k i A l a o u i e t al. (2012) recently f o u n d the e x p e r i m e n t a l l y d e t e r m i n e d equivalent as j(/3)=1.58 and the n o n d i m e n s i o n a l s l a m -m i n g c o e f f i c i e n t ]{/}) depends o n l y o n the deadrise angle p. By -means o f high-speed shock machine, t h e y studied the s l a m m i n g c o e f f i c i e n t o n a x i s y m m e t r i c bodies, and f o u n d t h a t Cs f o r hemisphere, u n l i k e t h e cones, depends o n the d e p t h o f immersions.

Based o n the W a g n e r ' s t h e o r y , Chuang ( 1 9 6 7 ) d e v e l o p e d a n a n a l y t i c a l f o r m u l a t i o n f o r t h e pressure d i s t r i b u t i o n o n a cone w i t h s m a l l deadrise angle, a n d Faltinsen a n d Zhao ( 1 9 9 7 ) p r o p o s e d a t h e o r e t i c a l m e t h o d f o r w a t e r e n t r y o f h e m i s p h e r e s a n d cones w i t h s m a l l deadrise angles. B a t t i s t i n and l a f r a t i ( 2 0 0 3 ) s t u d i e d t h e i m p a c t loads a n d pressure d i s t r i b u t i o n o n a x i s y m m e t r i c b o d i e s b y n u m e r i c a l s o l u t i o n . I n t h e field o f e x p e r i m e n t a l i n v e s t i g a t i o n , C h u a n g a n d M i l n e ( 1 9 7 1 ) p e r f o r m e d d r o p tests o n t h e c o n i c a l bodies, a n d r e c e n t l y Peseux et a l . ( 2 0 0 5 ) carried o u t t h e d r o p tests f o r cones w i t h s m a l l deadrise angles w h i c h i n c l u d e 6", 10" a n d 14".

M o t i v a t e d by t h e w o r k o f Stenius et al. (2006), w h o c o n d u c t e d the m o d e l i n g o f h y d r o elasticity i n w a t e r impacts o f ship bott:om-panels b y using LS-DYNA, Luo et al. (2011) and W a n g et al. (2012) investigated the s y m m e t r i c w a t e r i m p a c t o f t w o - d i m e n s i o n a l r i g i d w e d g e sections a n d ship sections, the predictions f r o m w h i c h had v e r y good a g r e e m e n t w i t h comparable measured values a n d o t h e r n u m e r i c a l results by a p p l y i n g t h e explicit finite e l e m e n t m e t h o d , a n d t h e n the effects o f t h e deadrise angle o n the s l a m m i n g l o a d w e r e presented i n W a n g a n d Guedes Soares (2012) a n d W a n g et al. ( S u b m i t t e d f o r p u b l i c a t i o n ) . They extended the research t o the a s y m m e t r i c w a t e r i m p a c t o f a b o w - f l a r e d section w i t h various r o l l angles i n W a n g a n d Guedes Soares (2013). I n the present w o r k , the explicit finite e l e m e n t m e t h o d is extended to study the h y d r o d y -n a m i c p r o b l e m o f t h r e e - d i m e -n s i o -n a l bodies, i -n c l u d i -n g h e m i s p h e r e

a n d cones w i t h d i f f e r e n t deadrise angles. The predictions are compared w i t h the e x p e r i m e n t a l results f r o m t h e d r o p tests o f De Backer et al. (2009) and theoretical calculations based o n Wagner (1932)'s m e t h o d , i n terms o f i m p a c t velocity, acceleration, penetra-t i o n d e p penetra-t h i n penetra-the w a penetra-t e r and penetra-t h e pressure hispenetra-tories o n penetra-the pressure sensors. The comparisons b e t w e e n t h e m are satisfactory i n t h e initial stage o f the w a t e r entry. Then, the v e r i f i e d m e t h o d is applied to estimate the impact coefficients o n a f a l l i n g hemisphere and a cone w i t h a deadrise angle 30", w h i c h s h o w g o o d consistency w i t h some analytical and theoretical predictions.

2 . M a t h e m a t i c a l f o r m u l a t i o n s

I n t h i s section, t h e e q u a t i o n s t h a t g o v e r n t h e fluid m o t i o n a n d t h e i n t e r a c t i o n b e t w e e n t h e fluid a n d s t r u c t u r e s i n this e x p l i c i t finite e l e m e n t m e t h o d are r e c a l l e d .

2.1. ALE description of Navier-Stokes equations

The g o v e r n i n g equation f o r incompressible a n d unsteady N a v i e r -Stokes fluid is described as:

— + u V u - 2 u ' ' V t ( u ) + Vp = b (2-1) dt

VU = 0 (2.2)

w h e r e u is the flow velocity, p is the pressure o f fluid, b means body force acting o n the fluid and e{u) represents the deviatoric stress tensor. The b o u n d a r y c o n d i t i o n a n d i n i t i a l c o n d i t i o n are ff=-pl + 2v''e{u) (2.3) e(u) = ^ ( V u + (Vu)^) (2.4) I n ALE f o r m u l a t i o n , a r e f e r e n c e c o o r d i n a t e w h i c h is n o t t h e Lagrangian c o o r d i n a t e a n d E u l e r i a n c o o r d i n a t e is i n d u c e d . The d i f f e r e n t i a l q u o t i e n t f o r m a t e r i a l w i t h respect t o the r e f e r e n c e c o o r d i n a t e is described as f o l l o w i n g e q u a t i o n . dt dt (2.5) w h e r e , X, is t h e Lagrangian c o o r d i n a t e , x, is t h e E u l e r i a n c o o r d i -nate, a n d W; is t h e r e l a t i v e v e l o c i t y . T h e r e f o r e , the ALE f o r m u l a t i o n c a n be d e r i v e d f r o m t h e r e l a t i o n b e t w e e n the time d e r i v a t i v e o f m a t e r i a l a n d t h a t o f reference g e o m e t r y c o n f i g u r a t i o n .

A s s u m e t h a t v represents t h e v e l o c i t y o f t h e m a t e r i a l , a n d u means t h e v e l o c i t y o f the mesh. I n o r d e r t o s i m p l i f y t h e above e q u a t i o n , relative v e l o c i t y w is i n d u c e d , w h i c h is g i v e n by w = v - u. T h e r e f o r e , ALE f o r m u l a t i o n can be o b t a i n e d f r o m f o l l o w i n g c o n -s e r v a t i o n equation-s: ( 1 ) T h e mass c o n s e r v a t i o n e q u a t i o n : a t dXi dXi (2.6) ( 2 ) T h e m o m e n t u m c o n s e r v a t i o n e q u a t i o n T h e g o v e r n i n g e q u a t i o n o f fluid is Navier-Stokes e q u a t i o n w h i c h is described b y t h e ALE m e t h o d : P dt d_Vi dX;

T h e stress tensor is expressed b y : ö-,j = -p<5,j+/((Vij + Vj,,)

(2.7)

(3)

S. Wang. C. Guedes Soares / Ocean Engineering 78 (2014) 73-88 75

The i n i t i a l and b o u n d a r y c o n d i t i o n s are:

Vj = U° o n r , d o m a i n (2.9)

(Tjjnj = 0 o n r2 d o m a i n (2.10)

w h i l e

r , u r2 = r r , n r2 = o (2.11) w h e r e , r represents the w h o l e b o u n d a r y o f c o m p u t e d f i e l d ,

w h i l e T l and r2 means t h e parts o f r. n,- represents t h e u n i t v e c t o r o f b o u n d a r y i n o u t w a r d n o r m a l d i r e c t i o n , is K r o -necker ö f u n c t i o n . Assume t h a t the v e l o c i t y f i e l d at t i m e t = 0 i n t h e w h o l e c o m p u t e d d o m a i n is k n o w n as: v,(Xi,0) = 0 ( 3 ) The e n e r g y c o n s e r v a t i o n e q u a t i o n dE , dE (2.12) (2.13)

T h e Euler e q u a t i o n is d e r i v e d based o n the a s s u m p t i o n s t h a t t h e v e l o c i t y o f reference c o n f i g u r a t i o n is zero, a n d t h e r e l a t i v e v e l o c i t y b e t w e e n t h e m a t e r i a l a n d t h e reference c o n f i g u r a t i o n is t h e v e l o c i t y o f t h e m a t e r i a l . The t e r m s o f v e l o c i t y i n the E q u a t i o n ( 2 . 7 ) a n d t h e e q u a t i o n (2.9) are k n o w n as c o n v e c t i v e t e r m s w h i c h are used t o calculate t h e t r a n s p o r t a t i o n v o l u m e t h a t t h e m a t e r i a l f l o w s t h r o u g h the m e s h . The a d d i t i o n a l i t e m s are t h e reason t h a t the n u m e r i c a l s o l u t i o n o f t h e ALE e q u a t i o n is m u c h m o r e d i f f i c u l t t h a n t h a t o f a Lagrange e q u a t i o n i n w h i c h t h e r e l a t i v e v e l o c i t y is zero.

T h e r e are t w o approaches to solve t h e ALE e q u a t i o n , w h i c h are s i m i l a r t o t h e m e t h o d s a p p l i e d t o Euler's v i e w p o i n t i n h y d r o d y -n a m i c s . The f i r s t m e t h o d is s o l v i -n g f u l l y c o u p l e d e q u a t i o -n s u s i -n g c o m p u t a t i o n a l f l u i d mechanics, w h i c h can o n l y g o v e r n s i n g u l a r m a t e r i a l i n s i n g u l a r e l e m e n t . The second o n e was called d e t a c h e d o p e r a t o r m e t h o d , o f w h i c h t h e c a l c u l a t i o n i n each time step is separated i n t o t w o parts. First, t h e Lagrange a p p r o a c h is executed, w h e n t h e m e s h m o v e s w i t h m a t e r i a l . D u r i n g t h i s process, t h e e q u i l i b r i u m e q u a t i o n s are:

p'^=ffijj+pbi (2.14)

P^ = OijVij+pbiVi (2.15) I n t h e Lagrange process, t h e r e is n o m a t e r i a l f l o w i n g t h r o u g h

e l e m e n t b o u n d a r y , so t h e c a l c u l a t i o n satisfies the mass conserva-tion. T h e n t h e t r a n s p o r t a t i o n v o l u m e , i n t e r n a l e n e r g y a n d k i n e t i c e n e r g y o f m a t e r i a l s t h a t f l o w t h r o u g h t h e b o u n d a r i e s o f e l e m e n t are c a l c u l a t e d i n t h e second stage. It can be c o n s i d e r e d as r e m a p p i n g t h e meshes back t o t h e i r i n i t i a l o r a r b i t r a r y p o s i t i o n s .

As t o each node, t h e v e l o c i t y a n d d i s p l a c e m e n t are u p d a t e d a c c o r d i n g t o f o l l o w i n g e q u a t i o n : (2.16)

l+Atu"+l

/2

(2.17) w h e r e , F^, is vector o f i n t e r n a l f o r c e , a n d F"^^, is v e c t o r o f e x t e r n a l f o r c e . T h e y are i n r e l a t i o n w i t h b o d y f o r c e a n d b o u n d a r y c o n d i -tions. M is d i a g o n a l m a t r i x o f mass.

2.2. Fluid-structure coupling algoritlim

I n a n e x p l i c i t time i n t e g r a t i o n p r o b l e m , a f t e r c o m p u t a t i o n o f f l u i d a n d s t r u c t u r e n o d a l forces, t h e c o u p l i n g forces o f t h e nodes o n t h e f l u i d s t r u c t u r e i n t e r f a c e are c o m p u t e d i n the time step. For

each s t r u c t u r e node, a d e p t h p e n e t r a t i o n d is i n c r e m e n t a l l y u p d a t e d at each time step, u s i n g t h e r e l a t i v e v e l o c i t y ( v T - v ^ ) at t h e s t r u c t u r e node, w h i c h is c o n s i d e r e d as a slave node, and t h e master n o d e w i t h i n the E u l e r i a n e l e m e n t . The l o c a t i o n o f the master n o d e is c o m p u t e d u s i n g t h e i s o p a r a m e t r i c coordinates o f

^11 t h e f l u i d e l e m e n t . A t time t = f", t h e d e p t h p e n e t r a t i o n d is u p d a t e d b y :

-(v.. n +

1/2

Vf

)Af

(2.18)

w h e r e A t is the i n c r e m e n t o f time, is t h e v e l o c i t y o f t h e slave node, v} is the f l u i d v e l o c i t y at t h e m a s t e r n o d e l o c a t i o n , i n t e r -p o l a t e d f r o m t h e nodes o f t h e f l u i d e l e m e n t at t h e c u r r e n t time, a n d t h e v e c t o r ~d means t h e p e n e t r a t i o n d e p t h o f t h e s t r u c t u r e inside the f l u i d d u r i n g t h e time step. T h e c o u p l i n g f o r c e acts o n l y i f p e n e t r a t i o n occurs.

Penalty c o u p l i n g behaves like a s p r i n g s y s t e m a n d p e n a l t y forces are calculated p r o p o r t i o n a l l y to t h e p e n e t r a t i o n d e p t h a n d s p r i n g stiffness. The h e a d o f t h e s p r i n g is a t t a c h e d t o t h e s t r u c t u r e o r slave n o d e and t h e t a i l o f t h e s p r i n g is a t t a c h e d t o t h e m a s t e r n o d e w i t h i n a f l u i d e l e m e n t t h a t is i n t e r c e p t e d b y t h e s t r u c t u r e . S i m i l a r l y t o p e n a l t y c o n t a c t a l g o r i t h m , t h e c o u p l i n g force is described by: F = kd (2.19) w h e r e k represents t h e s p r i n g s t i f f n e s s , a n d d means t h e p e n e t r a -tion. The c o u p l i n g f o r c e F is a p p l i e d t o b o t h m a s t e r n o d e a n d slave n o d e i n o p p o s i t e d i r e c t i o n at t h e c o u p l i n g i n t e r f a c e . The m a i n d i f f i c u l t y i n t h e c o u p l i n g p r o b l e m is t h e e v a l u a t i o n o f t h e stiffness k.

I n t h i s paper, t h e stiffness o f t h e s p r i n g is based o n t h e e x p l i c i t p e n a l t y c o n t a c t a l g o r i t h m i n LS-DYNA, a n d t h e n u m e r i c a l s t i f f n e s s b y u n i t area is g i v e n i n t e r m o f t h e b u l k m o d u l u s K o f t h e f l u i d e l e m e n t i n t h e c o u p l i n g c o n t a i n i n g t h e slave s t r u c t u r e node, t h e v o l u m e V o f t h e f l u i d e l e m e n t t h a t c o n t a i n s t h e m a s t e r f l u i d node, a n d t h e average area A o f t h e s t r u c t u r e elements c o n n e c t e d to the s t r u c t u r e node.

k=pf I(A

V (2.20)

H o w e v e r , to a v o i d n u m e r i c a l i n s t a b i l i t i e s , a p e n a l t y f a c t o r pj- is i n t r o d u c e d f o r scaling t h e e s t i m a t e d s t i f f n e s s o f t h e i n t e r a c t i n g ( c o u p l i n g ) system. For i m p a c t p r o b l e m s , i t is a l w a y s necessary to e x a m i n e t h e i n f l u e n c e o f t h i s p a r a m e t e r o n t h e s o l u t i o n ( A q t i e l e t e t al. ( 2 0 0 6 ) ) . For t h e p r o b l e m o f t w o - d i m e n s i o n a l w e d g e , Luo e t al. (2011) c o n d u c t e d a p a r a m e t r i c study, i n c l u d i n g t h e p e n a l t y factor, t i m e step factor, m e s h size a n d t h e n u m b e r o f t h e c o n t a c t p o i n t s , a n d v a l i d a t e d t h i s m e t h o d b y c o m p a r i n g t h e p r e d i c t i o n s w i t h t h e e x p e r i m e n t a l results f r o m Zhao et al., 1996. The results s h o w t h a t m e s h size is o f g r e a t i m p o r t a n c e f o r t h e s i m u l a t i o n s , w h i l e o t h e r aspects a f f e c t l i t t l e .

3 . N u m e r i c a l m o d e l i n g

3.1. Description of the 3D structures

I n t h i s w o r k , d i f f e r e n t k i n d s o f t h r e e - d i m e n s i o n a l s t r u c t u r e s , i n c l u d i n g a h e m i s p h e r e a n d cones w i t h d i f f e r e n t d e a d r i s e angles are s t u d i e d . To v a l i d a t e t h e m e t h o d u s e d i n p r e s e n t w o r k , t h e p r e d i c t i o n s f r o m a h e m i s p h e r e , a c o n e 2 0 ' a n d a cone45" e n t e r i n g c a l m w a t e r w i t h d r o p v e l o c i t y , are c o m p a r e d w i t h t h e m e a s u r e d values f r o m De Backer et al. ( 2 0 0 9 ) . T h e m a i n p a r a m e t e r s o f t h e tested bodies w h i c h are a p p l i e d i n t h e n u m e r i c a l l y m o d e l i n g , are l i s t e d i n Table 1. As seen, t h e d i a m e t e r s o f t h e bodies are 3 0 c m w h i c h is c o n s i d e r e d s u f f i c i e n t t o reduce surface t e n s i o n effects.

(4)

76 S. Wang, C. Guedes Soares / Ocean Engineering 78 (2014) 73-88

Since t l i e s t r u c t u r e s are m a d e f r o m p o l y u r e t h a n e a n d ttie m a t e r i a l thiclmesses are large, t h e d e f o r m a t i o n s o f t h e m d u r i n g the w a t e r i m p a c t are c o n s i d e r e d l i m i t . It m u s t be n o t e d t h a t t h e m e a s u r e d i n i t i a l v e l o c i t i e s l i s t e d i n Table 1 are l o w e r t h a n t h e t h e o r e t i c a l c a l c u l a t i o n s based o n the d r o p h e i g h t s due t o the f r i c t i o n i n t h e g u i d i n g s y s t e m o f t h e test.

The pressure t i m e h i s t o r y , t h e p o s i t i o n a n d d e c e l e r a t i o n o f t h e b o d y w e r e r e c o r d e d i n t h i s test w o r k . Pressure sensors w e r e used t o o b t a i n t h e pressure t i m e h i s t o r y o n t h e b o d y . The sensors w e r e l o c a t e d at a h o r i z o n t a l distance o f 0 . 0 4 - 0 . 0 9 m o n t h e bodies f r o m t h e s y m m e t r i c axis respectively, as p l o t t e d i n Fig. 1, i n w h i c h P l a n d P2 r e p r e s e n t t h e pressure sensors a n d is t h e deadrise angle o f the cones.

Besides, n o n - d i m e n s i o n a l i m p a c t c o e f f i c i e n t s o n h e m i s p h e r e a n d cones w i t h d i f f e r e n t deadrise angles are c o m p u t e d based o n t h e a s s u m p t i o n o f c o n s t a n t i m p a c t velocity. T h e y are c o m p a r e d w i t h available m e a s u r e d a n d n u m e r i c a l values as w e l l .

3.2. Description of tlie modeling

The e x p l i c i t f i n i t e e l e m e n t analysis is based o n a m u l t i - m a t e r i a l E u l e r i a n f o r m u l a t i o n a n d a p e n a l t y c o u p l i n g m e t h o d . The f l u i d is s o l v e d by u s i n g a E u l e r i a n f o r m u l a t i o n , w h i l e t h e w e d g e is d i s c r e d i t e d b y a Lagrangian a p p r o a c h . The f l u i d s ( w a t e r a n d a i r ) are d e f i n e d as t h e m u l t i - m a t e r i a l g r o u p , w h i c h means t h a t t h e effects o f t h e w a t e r a n d t h e a i r are a l l c o n s i d e r e d . The p e n a l t y c o u p l i n g a l g o r i t h m is a p p l i e d to activate t h e i n t e r a c t i o n b e t w e e n t h e f l u i d s a n d the s t r u c t u r e . I t behaves like a s p r i n g system, t h u s g e n e r a t i n g h i g h o s c i l l a t i o n s t o t h e c o u p l i n g f o r c e . The p e n a l t y forces are c a l c u l a t e d p r o p o r t i o n a l l y t o t h e p e n e t r a t i o n d e p t h a n d s p r i n g s t i f f n e s s . T h o u g h s o m e noise w i l l be g e n e r a t e d t o t h e pressure values o n t h e Lagrangean e l e m e n t s , t h e total force o n t h e s t r u c t u r e w i l l n o t be sensitive to t h e c o u p l i n g factor, since i t is a n average value. The c o m m e r c i a l code LS-DYNA is used as a t o o l t o solve t h e d i f f e r e n t i a l e q u a t i o n s t h a t g o v e r n the p h e n o m e n o n w i t h f o l l o w i n g hypotheses:

o The g r a v i t y effects are n e g l e c t e d .

o The surface t e n s i o n effects w i l l n o t be m o d e l e d . o The s t r u c t u r e s have no d e f o r m a t i o n a n d r o t a t e m o t i o n .

Table 1

Characteristics for the measured bodies.

Item Radius (m) Total mass (kg) Material thickness (m) Initial Velocity (m/s) Hemisphere 0.15 11.5 0.05 4.0 Cone 20' 0.15 9.8 0.03 3.85 Cone 45' 0.15 10.2 0.03 4.05 Based o n these a s s u m p t i o n s , t h e n u m e r i c a l l y m o d e l i n g is as f o l l o w s : • T h e c o o r d i n a t e s y s t e m o f t h e p r o b l e m

As illustrated i n Fig. 2, a Caitesian coordinate system (x, y, z) is introduced, and the (x, y)-plane is placed i n the u n d i s t u r b e d w a t e r surface, w h i l e the z-axis is located i n the axis o f the body. The b o d y enters the calm w a t e r w i t h a vertical velocity w h i c h is denoted as dz/dt, and t = 0 means the t i m e instance w h e n the body touches the water. The boundaries o f the w a t e r are denoted as S | , , S r and SB .

Fig. 2. Coordinate system of the problem.

Fig. 3. Mesh style of the fluids i n the x-y plane.

150mm

[

(5)

S. Wang, C. Cuedes Soares / Ocean Engineering 78 (2014) 73-88 77

• T h e m a t e r i a l a n d e l e m e n t types

T h e f l u i d , w a t e r a n d air, are m o d e l e d w i t h Solid164 e l e m e n t w h i c h is an 8-nodes b r i c k e l e m e n t , and t h e y are d e f i n e d as v o i d m a t e r i a l s w h i c h a l l o w s e q u a t i o n s o f state t o be c o n s i d e r e d w i t h o u t c o m p u t i n g d e v i a t o r i c stresses. The G r u n e i s e n e q u a t i o n o f state is used t o t h e w a t e r d o m a i n a n d the l i n e a r p o l y n o m i a l e q u a t i o n o f state is a p p l i e d f o r the a i r d o m a i n . The w e d g e is m o d e l e d w i t h S h e l l l 6 3 e l e m e n t w h i c h is a 4-nodes e l e m e n t a n d can o n l y be used i n e x p l i c i t d y n a m i c analysis, a n d r i g i d b o d y m a t e r i a l .

• B o u n d a r y c o n d i t i o n s

O n l y a q u a r t e r o f t h e m o d e l is established w i t h s y m m e t r i c b o u n d a r i e s o n ( y - z ) a n d ( x - z ) planes. T h e b o u n d a r i e s o f t h e f l u i d s are d e f i n e d as n o n - r e f l e c t i n g , except t h a t , o t h e r f l u i d s nodes are f r e e . For t h e b o d y , o n l y v e r t i c a l m o v e m e n t d o w n -w a r d s is released.

• N u m e r i c a l m o d e l

As k n o w n , t h e ALE c a l c u l a t i o n is time-consuming, so d i f f e r e n t m e s h types are a p p l i e d o n d i f f e r e n t regions to reduce m e m o r y a n d CPU r e q u i r e m e n t . Luo e t al. (2011) f o u n d t h a t t h e m e s h size i n t h e r e g i o n n e a r t h e c o n t a c t area b e t w e e n t h e s t r u c t u r e a n d t h e f l u i d s are o f g r e a t i m p o r t a n c e t o t h e s i m u l a t i o n . As t o t h e r e g i o n t h a t is f a r f r o m t h e i m p a c t , t h e m a p p e d area m e s h w h i c h contains o n l y q u a d r i l a t e r a l e l e m e n t s is e m p l o y e d , a n d the m e s h size i n t h i s d o m a i n is m o d e r a t e l y e x p a n d i n g t o w a r d s t h e b o u n d a r i e s . Fig. 3 a n d Fig. 4 s h o w the m e s h style o f t h e

Fig. 4. Mesh style of the fluids in the y-z plane.

a

f l u i d s i n x-y a n d y-z planes. F u r t h e r m o r e , t h e s t r u c t u r e is m e s h e d w i t h q u a d r i l a t e r a l e l e m e n t s as p l o t t e d i n Fig. 5. C o n -s i d e r i n g t h e c o m p u t a t i o n a l e f f o r t -s , t h e f l u i d -s d o m a i n i-s l i m i t e d t o 0.5 m X 0.5 m X 0.6 m , w h i c h m e a n s t h e d i m e n s i o n i n x-y p l a n e is L4 x L3 (0.5 m x 0.5 m ) , a n d t h e d i m e n s i o n s o f air d o m a i n and w a t e r d o m a i n i n z - d i r e c t i o n are L7-I-L8 (0.2 m + 0 . 4 m ) . The d i m e n s i o n o f i m p a c t d o m a i n is d e n o t e d as L l X L2 X ( L 5 + L 6 ) w h i c h is 0.18 m x 0.18 m x (0.05 m x 0.08 m ) . It is f o u n d t h a t t h e size o f t h e i m p a c t d o m a i n ' is o f g r e a t i m p o r t a n c e t o t h e n u m e r i c a l results. The selection o f t h e size o f t h e m o d e l i n p r e s e n t w o r k is based o n lots o f calcula-tions and the experience u s i n g t h e code. The d i s c u s s i o n o n t h e m o d e l s w i t h d i f f e r e n t size is n o t p r e s e n t e d here, because t h e convergence s t u d y focuses o n t h e m e s h d e n s i t y a n d t h e c o n t a c t s t i f f n e s s . For m o d e l i n g accurately o f t h e w a t e r i m p a c t p r o b l e m , a c a r e f u l s e l e c t i o n o f m e s h d e n s i t y a n d c o n t a c t s t i f f n e s s is r e q u i r e d . As m e n t i o n e d i n Section 2.2, t h e c o n t a c t s t i f f n e s s is r e l a t e d to t h e p e n a l t y f a c t o r a n d t h e v o l u m e V o f t h e f l u i d e l e m e n t t h a t contains t h e m a s t e r f l u i d node, so i t is a f f e c t e d b y t h e m e s h d e n s i t y o f t h e f l u i d s . I n t h e f o l l o w i n g section, a c o n v e r g e n c e s t u d y is c o n d u c t e d to o b t a i n a p r o p e r n u m e r i c a l m o d e l . 4. C o n v e r g e n c e s t u d y 4 . 7 . Mesh density

Three m e s h sizes,10 m m , 5 m m a n d 2.5 m m are selected f o r t h e f l u i d s o f the i m p a c t d o m a i n (L3 x L4 x {L5+L6)). T h e m e s h sizes are d e n o t e d b y 0.067R, 0.033R a n d 0.0167R, w h e r e R means t h e r a d i u s o f t h e h e m i s p h e r e o r t h e cones. Unless o t h e r w i s e s p e c i f i e d , t h e m e s h size o f t h e s t r u c t u r e is as same as t h a t o f t h e f l u i d s , a n d t h e v a l u e o f Pf is set as 0.1. I n p r e s e n t w o r k , t h e n u m e r i c a l c o n t a c t s t i f f n e s s l< is c o m p u t e d by e q u a t i o n ( 2 . 2 0 ) . For t h e t h r e e models, t h e v a l u e is 22.5 G p a / m , 4 5 G p a / m a n d 90 G p a / m , respectively.

Fig. 6 presents the p r e d i c t e d n o n d i m e n s i o n a l i m p a c t c o e f f i -cients o f a r i g i d h e m i s p h e r e o f radius R e n t e r i n g v e r t i c a l l y i n t o i n i t i a l l y c a l m w a t e r w i t h a c o n s t a n t v e l o c i t y V, t o g e t h e r w i t h t h e available e x p e r i m e n t a l a n d n u m e r i c a l results. The n o n -d i m e n s i o n a l i m p a c t c o e f f i c i e n t is -d e f i n e -d as CS = 2F/PMR^V^, w h e r e F i s t h e t o t a l i m p a c t f o r c e a n d ^ = 1 0 0 k g / m ^ is the d e n s i t y o f t h e f l u i d , and t h e n o n - d i m e n s i o n a l time is d e n o t e d as c/(f)/R, w h e r e d ( t ) is the i n s t a n t a n e o u s p e n e t r a t i o n o f t h e sphere b e l o w t h e c a l m w a t e r . Here, t h e i m p a c t v e l o c i t y is 4 m/s, a n d the radius

b

(6)

78 Ü 4 3.5 3 2.5 2 1.5 1 0.5

S. Wang, C. Cnedes Soares / Ocean Engineering 78 (20U) 73-88

1.4 Miloh(1991)

O Nisewagnerexp.(1961) - - Battistin and lafrati (2003)

LS-DYNA Mestisize=0.067R - LS-DYNA Mesiisize=0.033R — r - L S - D Y N A Mesiisize=0.0167R : O 0.Ó5 0.1 0.15 d(t)/R 0.2 0.25 LS-DYNA Mestisize=0.0167R V=18m/s LS-DYNA Mesiisize=0.0167R V=4m/s 0.1 0.15 0.2 0.25 0.3 0.35 d(t)/R

Fig. 7. Tlie impact coefficient for rigid liemisptiere entering' calm water w i t h Fig. 6. The impact coefficient for a rigid hemisphere impacting w i t h calm water. d i f f e r e n t velocities.

Table 2

Three models w i t h d i f f e r e n t mesh densities.

Parameters Model 1 Model 2 Model 3 4

Mesh size 0.067R 0.033R 0.0167R

Number o f elements(Fluids) 43200 134400 510300 3

Number o f elements (Structures) 175 500 1600

CPU time^ 1 h 22 m i n 9 h 49 m i n 45 h 53 m i n Q.

O Note: It was run o n one PC w i t h 2.50 GHz processor and 3 Gigabytes of memory.

o f t h e s p h e r e is 0.15 m . Table 2 lists the m a i n p a r a m e t e r s f o r the t h r e e m o d e l s w i t h 0.015 s' s o l u t i o n t i m e .

As seen i n Fig. 6, w h e n t h e m e s h size is 0.0167R, t h e p r e d i c t e d i m p a c t c o e f f i c i e n t is i n g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t a l m e a s u r e m e n t s f r o m N i s e w a n g e r ( 1 9 9 6 ) a n d t h e n u m e r i c a l calcu-lations f r o m B a t t i s t i n a n d l a f r a t i ( 2 0 0 3 ) , a f t e r the i n i t i a l stage o f the i m p a c t . A t t h e i n i t i a l stage, t h e i m p a c t c o e f f i c i e n t is h i g h e r t h a n t h e e x p e r i m e n t a l and n u m e r i c a l results. This is because, at t h i s stage, the i n t e r a c t i o n b e t w e e n t h e fluid a n d t h e s t r u c t u r e o n l y involves f e w elements, f r o m the b o t t o m o f the h e m i s p h e r e a n d the surface o f t h e w a t e r . The n u m e r i c a l i m p u l s e s o f pressure o n the e l e m e n t s are i n e v i t a b l e at t h e i n i t i a l i m p a c t , a n d t h e i m p a c t force is o b t a i n e d f r o m t h e i n t e g r a t i o n o f the pressures a l o n g t h e w e t t e d surface o f t h e s t r u c t u r e . For t h e a n a l y t i c a l calculations f r o m M i l o h (1991), t h e s i m p l i f i e d m e t h o d gives l o w e r p r e d i c t i o n s at t h e i n i t i a l stage a n d h i g h e r ones at t h e late stage.

W h e n t h e m e s h size is 0.033K a n d 0.067R, t h e p r e d i c t i o n s are n o t c o n s i s t e n t w i t h the e x p e r i m e n t a l m e a s u r e m e n t s . A t t h e m i d d l e a n d late stage o f t h e i m p a c t , as t h e m e s h size becomes large, t h e i m p a c t c o e f f i c i e n t is higher. It also s h o w s t h a t t h e n u m e r i c a l noises are a p p a r e n t f o r a larger m e s h size.

It is o b v i o u s t h a t t h e m o d e l w i t h 0.0167R m e s h size is m o r e a p p r o p r i a t e t o c a p t u r e the t i m e h i s t o r y o f i m p a c t force o n the h e m i s p h e r e e n t e r i n g c a l m water, a n d t h e c o m p u t a t i o n a l t i m e is acceptable. To v e r i f y the s t a b i l i t y o f t h e n u m e r i c a l results, d i f f e r e n t i m p a c t velocities are a p p l i e d t o t h e h e m i s p h e r e . The i m p a c t c o e f f i c i e n t s o n the h e m i s p h e r e w i t h l / = 4 m/s a n d V = 1 8 m/s are p l o t t e d i n Fig. 7, w h i c h shows v e r y g o o d consistency. T h e d i s -c r e p a n -c y at t h e i n i t i a l stage is s t i l l d u e t o t h e m e s h size.

To c a p t u r e the pressure d i s t r i b u t i o n o n the h e m i s p h e r e surface, v i r t u a l pressure sensors are l o c a t e d at the c e n t e r o f t h e shell e l e m e n t s o n l o c a t i o n y = 0 . The h e m i s p h e r e is m e s h e d w i t h 4799 shell e l e m e n t s , f r o m w h i c h 80 e l e m e n t s o n x - z plane are selected. Fig. 8 s h o w s the pressure d i s t r i b u t i o n s o n t h e w e t t e d h e m i s p h e r e

Fig. 8. The impact coefficient for a rigid hemisphere impacdng w i t h calm water at

d(t)/R=0.134.

surface o n x z plane at d{t)IR=0A34. T h e n o n d i m e n s i o n a l p r e s -sure Cp is d e f i n e d as 2plpV^, w h e r e p is t h e pres-sure v a l u e o b t a i n e d f r o m the pressure sensor. x/R denotes t h e p o s i t i o n o n t h e h e m i s p h e r e surface, w h e r e x is t h e c o o r d i n a t e o f t h e e l e m e n t a n d R is t h e radius. x / R = 0 m e a n s t h e l o w e s t p o i n t , a n d x / R = l is t h e highest p o i n t o n t h e h e m i s p h e r e . For d i f f e r e n t i m p a c t v e l o -cities, t h e pressure d i s t r i b u t i o n s have v e r y g o o d a g r e e m e n t . Some n u m e r i c a l noise is o b s e r v e d at t h e p o s i t i o n near t h e i n t e r s e c t i o n b e t w e e n t h e w a t e r surface a n d t h e s t r u c t u r e f o r b o t h cases. A t t h i s m o m e n t , t h e pressure is a l m o s t u n i f o r m l y d i s t r i b u t e d a l o n g t h e surface.

The p r e d i c t i o n s o f i m p a c t c o e f f i c i e n t and pressure d i s t r i b u t i o n f r o m the m o d e l 0.0167R w i t h d i f f e r e n t i m p a c t v e l o c i t i e s s h o w v e r y g o o d consistency. It is b e l i e v e d t h a t t h i s m o d e l is a p p r o p r i a t e f o r t h e h e m i s p h e r e . Fig. 9 p l o t s t h e p r e d i c t e d n o n - d i m e n s i o n a l i m p a c t c o e f f i c i e n t s o f a c o n e 2 0 ° o f radius R e n t e r i n g v e r t i c a l l y i n t o i n i t i a l l y c a l m w a t e r w i t h a c o n s t a n t v e l o c i t y V. Here, t h e m e s h size o f t h e s t r u c t u r e is 0.0167R f o r t h e t h r e e m o d e l s , so t h e n u m e r i c a l c o n t a c t s t i f f n e s s is respectively, 1.406 G p a / m , 11.25 G p a / m a n d 9 0 G p a / m . S i m i l a r t o t h e p r e d i c t i o n s o f the h e m i s p h e r e , t h e i m p a c t c o e f f i c i e n t is h i g h e r f o r a m o d e l w i t h larger m e s h size. W h e n the m e s h size is 0.0167R a n d 0.033R, t h e n u m e r i c a l calculations are close, especially f o r t h e values at t h e m i d d l e stage. A t t h e late stage, a h i g h i m p u l s e is o b s e r v e d i n t h e cui-ve o f t h e m o d e l w i t h 0.067R m e s h size. This is

(7)

S. Wang, C. Cuedes Soares / Ocean Engineering 78 (2014) 73-88 79 LS-DYNA M e s h s i z e = 0 . 0 6 7 R - LS-DYNA M e s h s i z e = 0 . 0 3 3 R LS-DYNA M e s h s i 2 e = 0 . 0 1 6 7 R / 1 I \ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 d(t)/R

Fig. 9. Tlie impact coefficient for a cone20 impacting w i t h calm water.

Ü

-LS-DYNA Meshsize=0.0167R V=6.15m/s -LS-DYNA Meshsize=0.0167R V=18m/s

0 0.05 0.1 0.16 0.2 0.25 0.3 0.35 d(t)/R

Fig. 11. The impact coefficient for a cone20 impacting w i t h calm water at different velocity. 15 10 • L S - D Y N A M e s h s i z e = 0 . 0 6 7 R L S - D Y N A M e s h s l z e = 0 . 0 3 3 R L S - D Y N A M e s h s i z e = 0 . 0 1 6 7 R i i M I I I I ' 1 I I¬ I 1 I I I I A. \

' ' ' !

11 1 0.2 0.4 0.6 X/R 0.8 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 pfac=0.01 pfac=0.1 pfac=0.5

1'

Fig. 10. Pressure distribution along the surface of cone20 at f„,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 d{t)/R

Fig. 12. The impact coefficient f o r a hemisphere impacting w i t h calm water w i t h

d i f f e r e n t value of pfac.

because t h e m e s h size o f w a t e r surface n e a r b y t h e s t r u c t u r e surface becomes l a r g e r as t h e w a t e r surface evolves d u r i n g t h e i m p a c t . For a cone20" w i t h R = 0 . 1 5 m , a n d v = 6 . 1 5 m / s , t h e t o t a l i m m e r s i o n occurs at t = 0 . 0 0 8 9 s w h i l e f = O s m e a n s t h e cone touches t h e c a l m w a t e r . As seen f o r t h e t h r e e m o d e l s , t h e m a x i m u m i m p a c t f o r c e occurs at a b o u t d ( f ) / R = 0 . 2 9 , a n d t h e c o r r e s p o n d i n g t i m e i n s t a n t t = 0 . 0 0 7 0 7 s w h i c h is i n g o o d agree-m e n t w i t h W a g n e r ' s t h e o r y p r e d i c t i n g f , „ o , ^ = ; r R t a n ^ / 4 l / = 0.007 s. Fig. 10 shows t h e pressure d i s t r i b u t i o n o n t h e w e t t e d surface o f cone20-' o n x - z plane at t^ax ( t h e t i m e i n s t a n t w h e n the peak value h a p p e n s ) . The pressure value is o b t a i n e d e v e n at t h e highest p o i n t . This m e a n s the w a t e r j e t is p r o d u c e d u n d e r t h e structure's surface a n d reaches the h i g h e s t p o s i t i o n . T h e p r e s e n t m e t h o d ' s p r e d i c -t i o n s s h o w -t h a -t -the m a x i m u m i m p a c -t f o r c e o n a cone 20" occurs a-t t h e t o t a l i m m e r s i o n o f t h e m o d e l .

As seen f r o m t h e t h r e e curves, t h e m a x i m u m pressures are located n e a r the r o o t o f t h e w a t e r j e t . This is c o n s i s t e n t w i t h t h e r e s u l t o b t a i n e d f r o m t h e 2 D w e d g e 2 0 " b e f o r e f l o w separation. W h e n t h e m e s h size is 0.067R, t h e pressure d i s t r i b u t i o n o b t a i n e d f r o m the sensors has m u c h noise a n d the pressure values are m u c h l o w e r t h a n the ones f r o m t h e m o d e l s w i t h 0.033R and 0.0167R m e s h size. W h e n t h e m e s h size is 0.033R o r 0.0167R, the pressure d i s t r i b u t i o n s are i n g o o d a g r e e m e n t , h o w e v e r , t h e one f r o m the m o d e l w i t h 0.0167R m e s h size is s m o o t h e r .

T h e i m p a c t c o e f f i c i e n t s o n t h e c o n e 2 0 " w i t h d i f f e r e n t i m p a c t v e l o c i t i e s are p l o t t e d i n Fig. 11. T h e p r e d i c t i o n s have g o o d agree-m e n t , w h i l e the curve f r o agree-m the agree-m o d e l vvith V = 1 8 agree-m/s is s agree-m o o t h e r .

4.2. Contact stiffness As m e n t i o n e d b e f o r e , a p e n a l t y f a c t o r p / ( p f a c ) is i n t r o d u c e d f o r s c a l i n g t h e e s t i m a t e d s t i f f n e s s o f the c o u p l i n g s y s t e m . To o b t a i n a p r o p e r value o f i t , t h e i n f l u e n c e o f this p a r a m e t e r o n t h e s o l u t i o n is e x a m i n e d . T h r o u g h t h e s e n s i t i v i t y s t u d y o f m e s h size, t h e m o d e l w i t h 0.0167R m e s h size is selected f o r w a t e r i m p a c t s o f t h e h e m i s p h e r e a n d cones, a n d f o r t h e m o d e l , t h e d e f a u l t v a l u e o f p f a c is 0.1. Here, t w o d i f f e r e n t values, 0.01 a n d 0.5 are a p p l i e d i n t h e s i m u l a t i o n s .

Fig. 12 p l o t s t h e i m p a c t c o e f f i c i e n t s o n t h e h e m i s p h e r e w i t h d i f f e r e n t p f a c values. Here, t h e m e s h size is 0.0167R, a n d t h e c o n s t a n t i m p a c t v e l o c i t y is 18 m/s. G e n e r a l l y s p e a k i n g , t h e t h r e e curves agree w e l l , t h o u g h some o s c i l l a t i o n s exist. O b v i o u s d i s t i n c -t i o n s are o b s e r v e d a-t -t h e i n i -t i a l m o m e n -t o f -t h e i m p a c -t a n d a-t -t h e m o m e n t t h a t t h e peak v a l u e occurs. As seen i n Fig. 6, t h e i m p a c t c o e f f i c i e n t f r o m t h e m o d e l w i t h 0.0167R m e s h size, t h e c o n t a c t s t i f f n e s s o f w h i c h is 90 G p a / m , agrees w e l l w i t h t h e e x p e r i m e n t a l m e a s u r e m e n t s , c o m p a r e d to the m o d e l s w i t h l o w e r c o n t a c t s t i f f n e s s . I t seems t h a t h i g h e r c o n t a c t s t i f f n e s s is b e t t e r f o r t h e i m p a c t m o d e l o f t h e h e m i s p h e r e . H o w e v e r , f o r t h e m o d e l w i t h 0.5 pfac, t h e c u r v e o f i m p a c t c o e f f i c i e n t does n o t b e c o m e better, a n d e v e n appears m o r e n u m e r i c a l noises.

The 80 pressure sensors, w h i c h are l o c a t e d at t h e c e n t e r o f t h e s h e l l e l e m e n t s o n x - z plane, are n u m b e r e d f r o m 1 t o 80, i n w h i c h sensor 1 m e a n s the l o w e s t o n e a n d sensor 8 0 d e n o t e s t h e h i g h e s t o n e . T h e pressure values c a p t u r e d b y t h r e e sensors are s h o w n i n Fig. 13. T h e results s h o w t h a t the m a x i m u m local p r e s s u r e v a l u e is

(8)

80 S, Wang, C. Cuedes Soares / Ocean Engineering 78 (2014) 73-88

0 10 20 0

"Time (s)

^

^g-^

- - pfac=0,01

--• pfac=0,1

- pfac=0.5

Sensor 20

10

20

Fig. 13. Pressure histories on the b o t t o m surface of the hemisphere.

Ü

- - LS-DYNA Meshsize=0.0167R 90Gpa/m - - LS-DYNA Meshsize=0.0167R 22.5Gpa/m

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 (d(t)/R

Fig. 14. The impact coefficient for a cone20 impacting w i t h calm water w i t h

d i f f e r e n t contact stiffness.

located at t h e l o w e s t p o i n t o f the h e m i s p h e r e . As t h e distance f r o m t h e p o i n t to t h e axis o f t h e h e m i s p h e r e becomes far, the local peak pressure decreases greatly.

It is f o u n d t h a t t h e local peak pressure o n t h e h e m i s p h e r e is sensitive t o t h e v a l u e o f pfac. The h i g h e r t h e c o n t a c t s t i f f n e s s is, the s m a l l e r t h e peak v a l u e is. These d i f f e r e n c e s b e c o m e s m a l l w h e n t h e p o s i t i o n o f t h e sensor is higher. FroiTi t h e pressure histories, i t is also possible t o f i n d t h a t the m a x i m u m pressure v a l u e occurs at t h e m o m e n t w h e n the h e m i s p h e r e t o u c h e s t h e c a l m w a t e r , d u r i n g t h e w a t e r i m p a c t .

The peak values are sensitive to t h e scale factor. This is c o n s i s t e n t w i t h t h e f a c t t h a t the c o u p l i n g force o n the m a s t e r a n d slave n o d e is c o m p u t e d b y m u l t i p l y i n g c o n t a c t s t i f f n e s s a n d p e n e t r a t i o n , w h i l e t h e c o n t a c t stiffness is scaled by t h e v a l u e o f pfac. The t o t a l i m p a c t forces o n the s t r u c t u r e are n o t sensitive t o t h e v a r i a t i o n o f t h e scale factor, since t h e y are average values o n the s t r u c t u r e .

For t h e m o d e l s o f t h e cone20", t h e o n e w i t h 0.0167R m e s h size is s t u d i e d here, f i r s t l y b y a l t e r i n g the m e s h size o f t h e L a g r a n g i a n e l e m e n t s , a n d s e c o n d l y b y a p p l y i n g d i f f e r e n t values o f pfac, t o i n v e s t i g a t e t h e i n f l u e n c e s o f t h e c o n t a c t s t i f f n e s s . Based o n CL O 1 1 9 0 G p a / m d ( t y R = 0 . 1 6 4 ™ — 90Gpa/m d(t)/R=0.303 - ^ - . 2 2 . 5 G p a / m d ( t ) / R = 0 . 1 6 4 22.5Gpa/m d(t)/R=0.303

il

i i i i 0.2 0.4 0.6 x / R

Fig. 15. Pressure d i s t r i b u t i o n along the surface o f cone20' at t w o time instants.

Eq. (2.20), the n u m e r i c a l c o n t a c t s t i f f n e s s is 22.5 G p a / m , w h e n the m e s h size o f t h e cone is 0.00835R. The p r e d i c t e d i m p a c t c o e f f i c i e n t and pressure d i s t r i b u t i o n s o n t h e w e t t e d surface o f cone 2 0 " are c o m p a r e d w i t h t h e calculations f r o m t h e m o d e l w i t h /<:=90 Gpa/m, as s h o w n i n Figs. 14 a n d 15.

T h e i m p a c t c o e f f i c i e n t s have v e r y l i m i t e d d i f f e r e n c e s , w h i l e some noise is o b s e r v e d i n b o t h curves. I n Fig. 15, t h e pressure d i s t r i b u t i o n s at t w o t i m e i n s t a n t s d ( f ) / R = 0 . 1 6 4 a n d d ( f ) / R = 0 . 3 0 3 are presented. A t t h e f o r m e r t i m e i n s t a n t , t h e o n l y h a l f o f t h e s t r u c t u r e i m m e r s e s i n t o t h e w a t e r surface, w h i l e at t h e later t i m e instant, the s t r u c t u r e i m m e r s e i n t o t h e w a t e r c o m p l e t e l y , c o n -s i d e r i n g the w a t e r -surface e l e v a t i o n . It can be f o u n d that, b e f o r e f l o w separation, t h e m a x i m u m pressure is located a t the l o w e s t p o i n t o f the cone. W i t h d i f f e r e n t c o n t a c t stiffness, t h e general trends o f the pressure d i s t r i b u t i o n d o n o t change t o o m u c h . O n l y some differences are o b s e r v e d near t h e spray r o o t o f t h e w a t e r surface or at the l o w e s t l o w e r p a r t o n t h e cone surface. U n l i k e t h e s i m u l a t i o n s o f t h e h e m i s p h e r e , t h e pressure values are l a r g e r w h e n the contact s t i f f n e s s is h i g h e r f o r t h e cone20".

Figs. 16 and 17 s h o w t h e i m p a c t c o e f f i c i e n t s a n d pressure d i s t r i b u t i o n s o n t h e c o n e 2 0 " w i t h d i f f e r e n t value o f pfac. The i n f l u e n c e s o f t h e scale f a c t o r o n t h e results are s m a l l , t h o u g h s l i g h t

(9)

S. Wang. C. Cuedes Soares / Ocean Engineering 78 (2014) 73-88 81

d i f f e r e n c e s are f o u n d a r o u n d the m i d d l e stage o f t h e i m p a c t i n the curves.

4.3. Time step

A n ALE f o r m u l a t i o n consists o f a Lagrangian t i m e step f o l l o w e d by an a d v e c t i o n step, w h i c h updates t h e v e l o c i t y a n d d i s p l a c e m e n t o n each n o d e at o n e t i m e step. A stable t i m e step is o f great s i g n i f i c a n t to the n u m e r i c a l results. The t i m e step s h o u l d n o t be larger t h a n the c r i t i c a l one, o t h e r w i s e n e g a t i v e v o l u m e errors w i l l a p p e a r B u t i f the t i m e step is set t o one v a l u e t h a t is t o o s m a l l ,

o

0.15 0.2 0.25 0.3 0.35

d ( t ) / R

Fig. 16. Tlie impact coefficient for a cone20 impacting w i t h calm water w i t h p f

10 O pfac 0.5 pfac 0.1 • pfac 0.01 d(t)/R=0.164 0 I 0.1 0.2 0.3 0.4 0.5 X/R 0.6

Fig. 17. Pressure distributions on the surface of cone20 at d(t)//?=0.164 for

d i f f e r e n t

t h e n t h e c o m p u t a t i o n a l t i m e w i l l increase c o r r e s p o n d e n t l y . The c r i t i c a l t i m e step size is t h e m i n i m u m t i m e value t h a t t h e s o u n d travels t h r o u g h any e l e m e n t s i n t h e m o d e l . The c r i t i c a l t i m e step size can be a p p r o x i m a t e d f i r s t l y before t h e s i m u l a t i o n , i n o r d e r to set o n e scale f a c t o r t o o b t a i n one a p p r o p r i a t e t i m e step. In LS-DYNA T h e o r y m a n u a l , t i m e step calculations f o r d i f f e r e n t types o f e l e m e n t s are e x p l a i n e d t h r o u g h m a t h e m a t i c a l f o r m u l a t i o n s .

Obviously, t h e c r i t i c a l t i m e step is r e l a t e d t o t h e m i n i m u m size of t h e e l e m e n t , a n d t h e scale f a c t o r is b e t w e e n 0 and 1. For one n u m e r i c a l m o d e l , a p r o p e r t i m e step v a l u e can b e achieved b y a d j u s t i n g t h e scale factor. I n p r e s e n t w o r k , t h e t i m e step f o r t h e m o d e l s w i t h 0.067R m e s h size is 4.69E-07s, a n d t h e value is 2.28E-07s f o r t h e m o d e l s w i t h 0.033R m e s h size, 1.14E-2.28E-07s f o r t h e m o d e l s w i t h 0.0167R m e s h size. It is f o u n d t h a t the value is p r o p o r t i o n a l to t h e m e s h size. W h e n t h e i m p a c t v e l o c i t y is 18 m/s, t h e n u m e r i c a l s o l u t i o n t i m e is decreased greatly, so a v e r y s m a l l scale f a c t o r 0.05 is a p p l i e d t o m a k e the s o l u t i o n stable, w h i c h f o l l o w s a v e r y s m a l l t i m e step 5.71E-08s.

5. V a l i d a t i o n a n d results

A c c o r d i n g to t h e d r o p tests o f t h e t h r e e d i m e n s i o n a l bodies De Backer e t al. ( 2 0 0 9 ) , t h e acceleration, i m p a c t v e l o c i t y , p e n e t r a -t i o n d e p -t h and pressure d i s -t r i b u -t i o n s d u r i n g -t h e w a -t e r i m p a c -t are p r e d i c t e d a n d c o m p a r e d w i t h the m e a s u r e d values, as w e l l as t h e c a l c u l a t i o n s f r o m a s y m p t o t i c t h e o r y . In o r d e r t o reduce t h e i n f l u e n c e o f t h e a s s u m p t i o n s m e n t i o n e d above, o n l y the i n i t i a l stage o f t h e i m p a c t is i n v e s t i g a t e d . F u r t h e r m o r e , t h e i m p a c t c o e f f i c i e n t s o n t h e h e m i s p h e r e a n d cones are c o m p u t e d and c o m p a r e d to s o m e p u b l i s h e d results, w i t h t h e a s s u m p t i o n o f c o n s t a n t i m p a c t v e l o c i t y . To e x a m i n e t h e i n f l u e n c e s o f t h i s a s s u m p t i o n , t h e p r e d i c t i o n s f r o m t h e m o d e l w i t h d r o p v e l o c i t y a n d c o n s t a n t v e l o c i t y are c o m p a r e d f i r s t l y .

5 . 3 . Influence of impact velocity

Fig. 18 c o m p a r e s the i m p a c t c o e f f i c i e n t s o n t h e h e m i s p h e r e w i t h d i f f e r e n t types o f i m p a c t v e l o c i t y . T w o v e l o c i t i e s v = 4 m / s a n d v = 18 m/s are selected. As seen, at t h e i n i t i a l stage, t h e i m p a c t c o e f f i c i e n t s f r o m t w o m o d e l s agree w e l l , w h i l e t h e d i f f e r e n c e s b e t w e e n t h e m b e c o m e larger as t h e p e n e t r a t i o n d e p t h raises. For a h i g h e r i m p a c t v e l o c i t y , the i n f l u e n c e s are m o r e a p p a r e n t . Obviously, t h e i m p a c t f o r c e o n a h e m i s p h e r e e n t e r i n g w i t h a c o n s t a n t v e l o c i t y is higher, since t h a t t h e i m p a c t v e l o c i t y o f t h e d r o p case decays due t o t h e r e s u l t a n t f o r c e o n t h e s t r u c t u r e .

Fig. 19 c o m p a r e s the i m p a c t c o e f f i c i e n t s o n t h e cone20- w i t h d i f f e r e n t types o f i m p a c t v e l o c i t y . As seen, a t t h e i n i t i a l stage, the

1.2 1 0.8 Ö 0.6 0.4 0.2 0 ft') v> J - V=4m/s 0 0.05 0.1 0.15 0.2 0.25 d ( t y R

1

0.8

S

0-6 0.4 0.2 0 ( . ( . ' -V=18m/s 0.1 0.2 d(t)/R 0.4

(10)

82 S, Wang. C. Guedes Soares / Ocean Engineering 78 (2014) 73-88 Ü - V = 1 8 m / s — Drop VQ=18m/s 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 d{t)/R

Fig. 19. Comparison o f impact coefficients on ttie cone20 entering water w i t l i

constant and drop velocity. V=18 m/s.

-zr 10 0- 0 S 10 0.5 1.5 Time (s) 2.5 3 x10"^ • V = 1 8 m / s - D r o p V p = 1 8 m / s

Fig. 20. Comparison of pressure histories on the cone20' entering water w i t h

constant and drop velocity. V=\8 mis.

i m p a c t c o e f f i c i e n t s f r o m t w o m o d e l s agree w e l l , w h i l e t h e d i f f e r -ences b e t w e e n t h e m b e c o m e larger as t h e p e n e t r a t i o n d e p t h raises. T h e peak v a l u e f r o m t h e m o d e l w i t h c o n s t a n t v e l o c i t y is m u c h larger, a l t h o u g h t h e n o n - d i m e n s i o n a l p e n e t r a t i o n d e p t h s o f the cone u n d e r w a t e r are v e r y close w h e n t h e peak values occur. T h e d i f f e r e n c e s b e t w e e n t h e i m p a c t forces are d u e to t h e pressures o n t h e w e t t e d s u r f a c e o f t h e s t r u c t u r e . Fig. 2 0 s h o w s t h e pressures o f t h r e e p o s i t i o n s , w h i c h are d e n o t e d b y x = 0 . 2 5 R , x = 0 . 5 R a n d x = 0 . 7 5 R , o n t h e cone i n x - z plane. For the m o d e l w i t h a d r o p t v e l o c i t y , t h e pressure decays m o r e q u i c k l y a f t e r the peak value occurs. T h u s , t h e d i f f e r e n c e s b e c o m e larger as the i m p a c t processes.

5.2. Drop 3D structures

5.2.1. Hemisphere

Fig. 21 s h o w s t h e p r e d i c t e d , m e a s u r e d a n d t h e o r e t i c a l accel-e r a t i o n o f t h accel-e h accel-e m i s p h accel-e r accel-e d u r i n g 0.012s a f t accel-e r t h accel-e b o t t o m o f t h accel-e b o d y t o u c h e s w a t e r The t h e o r e t i c a l c a l c u l a t i o n s are based o n t h e

600 400 200 -200 -400 E X P ( A c c e l e r o m e t e t ) T h e o r e t i c a l ( A M ) T h e o r e t i c a l ( P l ) " — ' — L S - D Y N A 0 0.002 0.004 0.006 0.008 0.01 0.012 T i m e ( s )

Fig. 21. Predicted and measured acceleration on the hemisphere.

_o (D > • • EXP(Accelerometer) EXP{HSC) — Theoretical(AM) -Theoretical(PI) LS-DYNA • 0 0.002 0.004 0.006 0.008 0.01 0.012 T i m e ( s )

Fig. 22. Predicted and measured impact velocity on the hemisphere.

pressure i n t e g r a t i o n m e t h o d a n d a d d e d mass m e t h o d . A l t h o u g h t h e e x p e r i m e n t a l data has lots o f h i g h f r e q u e n c y noises, t h e p r e d i c t i o n o f LS-DYNA agree w e l l w i t h i t , w h i l e t h e t h e o r e t i c a l c a l c u l a t i o n s o v e r e s t i m a t e t h e a c c e l e r a t i o n o f t h e s t r u c t u r e .

As p l o t t e d i n Fig. 22, t h e i m p a c t v e l o c i t y o b t a i n e d b y LS-DYNA is l o w e r t h a n t h a t m e a s u r e d i n the test, a n d t h e d i f f e r e n c e b e t w e e n t h e m becomes larger as t i m e goes by, m a i n l y d u e t o t h e f r i c t i o n c r e a t e d f r o m t h e f r e e l y m o v e m e n t o f t h e s t r u c t u r e a l o n g the g u i d i n g system i n t h e test. As e x p e c t e d , t h e h e m i s p h e r e d r o p s m o r e q u i c k l y f r o m t h e p o i n t o f v i e w o f t h e o r e t i c a l s o l u t i o n s . C o r r e s p o n d i n g l y , t h e p e n e t r a t i o n d e p t h s b e l o w t h e c a l m w a t e r d u r i n g this t i m e s p a n o f t h e h e m i s p h e r e are c o m p a r e d i n Fig. 23, w h i c h also s h o w s t h a t the d e v i a t i o n b e t w e e n t h e m e a s u r e d value a n d t h e p r e d i c t e d ones f r o m p r e s e n t w o r k a n d t h e o r e t i c a l s o l u -t i o n s are o b s e r v e d m o r e o b v i o u s l y as -t i m e progresses. Fig. 24 p l o t s t h e pressure h i s t o r i e s o f t h e t w o p o i n t s a t r = 4 c m a n d r = 9 c m o n t h e h e m i s p h e r e as i l l u s t r a t e d i n Fig. 1. As m e n t i o n e d i n W a n g et a l . ( 2 0 1 2 ) , t h e a s y m p t o t i c t h e o r y o v e r -e s t i m a t -e s t h -e pr-essur-e o f s h i p - l i k -e s -e c t i o n s , i n p a r t i c u l a r f o r a s m a l l d e a d r i s e angle, the s i m i l a r b e h a v i o r is o b s e r v e d here f o r b o t h o f t h e p r e s s u r e p o i n t s . For t h e p r e s s u r e p o i n t at r = 9 c i n , t h e p r e d i c t i o n s f r o m LS-DYNA are i n g o o d a g r e e m e n t w i t h t h e m e a s u r e d ones, i n c l u d i n g t h e r i s i n g t i m e o f t h e p e a k v a l u e a n d as w e l l t h e m a x i m u m v a l u e o f the p r e s s u r e , t h o u g h s o m e n u m e r i c a l noises exist. As t o t h e p r e s s u r e p o i n t at r = 4 c m , t h e p r e d i c t e d peak v a l u e is s m a l l e r t h a n t h e m e a s u r e d one. T h i s is m a i n l y d u e t o t h e t h r e e - d i m e n s i o n a l i t y o f t h e s i m u l a t i o n , f o r w h i c h t h e p r e s s u r e c a p t u r e d b y t h e v i r t u a l s e n s o r is m o r e e a s i l y d i s t u r b e d b y f r e q u e n c y noises, a n d p r o b a b l y t h e pressure is a f f e c t e d b y t h e p o s i t i o n o f t h e sensor.

(11)

S. Wang, C. Guedes Soares / Ocean Engineering 78 (2014) 73-88 83 0.05 0.04 0,03 E X P ( A c c e l e r o m e t e r ) E X P ( H S C ) - " n i e o r e t i c a l ( A M ) " n i e o r e t i c a l ( P I ) L S - D Y N A 0 0.002 0.004 0.006 0.008 0.01 T i m e ( s )

Fig. 23. Predicted and measured penetration on the hemisphere.

100 50 -100 -150 -200 E X P ( A c c e l e r o m e t e r ) - T t i e o r e t i c a l ( A M ) T h e o r e t i c a l ( P I ) • L S - D Y N A 0 0.002 0.004 0.006 0.008 0.01 0.012 T i m e ( s )

Fig. 25. Predicted and measured acceleration on the cone20 .

O - EXP t = 4 c m K30A • EXP r = 9 c m K 3 0 A A s y m p t o t i c theory r=4cm • A s y m p t o t i c theory r = 9 c m - L S - D Y N A r = 4 c m • L S - D Y N A r = 9 c m 0.002 0.006 T i m e ( s ) 0.008

Fig. 24. Predicted and measured pressure distribution at r = 4 c m on the

hemisphere.

5.2.2. Cone

20-Figs. 2 5 - 2 7 s h o w t h e p r e d i c t e d a n d m e a s u r e d acceleration, i m p a c t v e l o c i t y a n d p e n e t r a t i o n d e p t h f o r t h e r i g i d cone w i t h a deadrise angle o f 2 0 ' d u r i n g the i m p a c t . The c o m p a r i s o n s b e t w e e n t h e calculations i n t h i s w o r k w i t h t h e m e a s u r e d a n d t h e o r e t i c a l values are s i m i l a r t o t h a t o f the h e m i s p h e r e .

Fig. 28 plots t h e pressure histories o f t h e t w o p o i n t s at r = 4 c m a n d r = 9 c m o n t h e cone 20". The s i m u l a t e d r i s i n g t i m e o f t h e pressure p o i n t s at r = 4 c m is a l i t t l e b i t earlier t h a n those f r o m t h e tests. Probably i t is due to w a t e r j e t o f t h e f r e e surface i n t h e m o d e l i n g , w h i c h affects t h e pressure v a l u e earlier. For t h e peak values, t h e one at r = 4 c m is s m a l l e r t h a n t h a t f r o m t h e e x p e r i -m e n t a l a n d t h e o r e t i c a l s o l u t i o n , a n d t h i s d i f f e r e n c e w a s also observed i n t h e s t u d y o f 2 D w e d g e w i t h a deadrise angle 2 0 " b y W a n g a n d Guedes Soares ( S u b m i t t e d f o r P u b l i c a t i o n ) . S i m i l a r to t h e e x p e r i m e n t s , the p r e d i c t e d peak pressure at r = 9 c m is larger t h a n t h e one at r = 4 c m . 4.5 O 2.5 • EXP(Accelerometer) • EXP(HSC) Theoretical(AM) Theorefical(PI) LS-DYNA -0 -0.-0-02 -0.-0-04 -0.-0-06 -0.-0-08 -0.-01 -0.-012 T i m e ( s )

Fig. 26. Predicted and measured impact velocity on the cone20 .

0.05 -g- 0.04 sz & 0.03 c O I 0.02 (D C a> CL 0.01 EXP(Accelerometer) EXP(HSC) Theoretica!(AM) -Theoretical(PI) - LS-DYNA 5mm O L i i 0 0.002 0.004 0.006 0.008 0.01 0.012 T i m e ( s )

Fig. 27. Predicted and measured penetration on the cone20

Probably, i t is d u e to t h e w a t e r surface e l e v a t i o n d u r i n g t h e i m p a c t . H i g h i m p u l s e s are observed f o r these t w o pressures.

5.2.3. Cone 45'

Figs. 2 9 - 3 1 s h o w the p r e d i c t e d a n d m e a s u r e d acceleration, i m p a c t v e l o c i t y a n d p e n e t r a t i o n d e p t h f o r t h e rigid cone w i t h a d e a d r i s e angle o f 4 5 " d u r i n g t h e i m p a c t . Q u i t e g o o d agreements b e t w e e n t h e p r e d i c t i o n s a n d m e a s u r e d values are f o u n d i n t h e i n i t i a l stage, w h i l e t h e discrepancies increase as t i m e goes by.

Fig. 32 p l o t s the pressure histories o f t h e t w o p o i n t s at r = 4 c m a n d r = 9 c m o n t h e cone 45". Obviously, t h e p r e d i c t e d pressure peak at r = 4 c m is m u c h l o w e r t h a n t h e e x p e r i m e n t a l results. It can be n o t i c e d t h a t t h e r i s i n g t i m e o f the s i m u l a t e d pressure at r = 9 c m is earlier t h a n t h e m e a s u r e d a n d a s y m p t o t i c ones. 5.3. Impact coefficient The n o n - d i m e n s i o n a l i m p a c t c o e f f i c i e n t o n a h e m i s p h e r e is p l o t t e d i n Figure a n d c o m p a r e d w i t h e x p e r i m e n t a l m e a s u r e m e n t s a n d n u m e r i c a l calculations. It m u s t be n o t e d t h a t t h e i m p a c t v e l o c i t y o f t h e h e m i s p h e r e is c o n s t a n t here. As seen i n t h i s f i g u r e , t h e p r e d i c t i o n i n p r e s e n t w o r k has g o o d consistency w i t h o t h e r calculations at t h e l a t e stage. A t t h e early stage, the p r e s e n t m e t h o d u n d e r e s t i m a t e s t h e i m p a c t c o e f f i c i e n t . T h i s is c o n s i s t e n t w i t h the p r e d i c t i o n o f t h e pressure values at r = 4 c m w h i c h are p l o t t e d i n Fig. 2 4 . I t is d u e to t h e m e s h size o f

Cytaty

Powiązane dokumenty

Rosiński zwrócił uwagę na fakt, iż w opisie biblij­ nym nie chodziło o sposób pow stania świata i człowieka (ewolu- cjonizm , kreacjonizm ), gdyż pojęcia te

Implication of Inspection Updating on System Fatigue Reliability of Offshore Structures Torgeir Moan — Norwegian University o f Science and Technology. Ruxin Song — Brown &amp;

Toteż w momencie, gdy obiektyw filmowy skierujemy na cokolwiek, natychmiast powstaje pytanie dotyczące nie tylko tego, co znalazło się w polu jego widzenia, ale też tego, co dla

Kluczowym dla rozwiązania zadania wydaje się być spostrzeżenie, że jeśli wartości azymutów Słońca będą należały do poszczególnych ćwiartek azymutu przez taki sam

Due to the political, economic and cultural situation in the long decade of the 1980s in Poland (reaching into the 1970s, with ramifications still in the 1990s), it is difficult

Stanisław Borowski (sekretarz redakcji), Józef Górski, Wiktor Jaśkie­ wicz, Alfons Klafkowski, Kazimierz Kolańczyk, Adam Łopatka, (sekre­ tarz redakcji), Alfred Ohanowicz

The Numerical Simulation o f Green Water Loading Including Vessel Motions and the Incoming Wave Field [OMAE2005-67448] Modeling Two-Phase Flow With Offshore Applications

XXI M IĘDZYNARODOW Y KONGRES STUDIÓW BIZANTYŃSKICH W dniach 21-26 sierpnia 2006 roku odbędzie się w Londynie XXI Międzynaro­ dowy Kongres Studiów Bizantyńskich, organizowany