• Nie Znaleziono Wyników

On the Convergence of Solutions of Certain Generalized Functional-Differential Equations

N/A
N/A
Protected

Academic year: 2021

Share "On the Convergence of Solutions of Certain Generalized Functional-Differential Equations"

Copied!
10
0
0

Pełen tekst

(1)

UNIVERSITATIS MAEIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXIX, 22 8ECTIO A 1975

Instytut Matematyki, UniwersytetMarii Curie-Sklodowskiej Lublin

WOJCIECH ZYGMUNT

On the Convergence of Solutions of Certain Generalized Functional- Differential Equations

0 zbieżności rozwiązań pewnych równań kotyngensowo-funkcjonałowych О сходимости решений некоторых дифференциально-функциональных включений.

In this paper we show that the main results of J. Błaż [2] may be extended for generalized functional-differential equations. We shall prove three theorems which are the counterpart of theorems 1—3 in [2].

I. We accept the following notations and symbols:

r< 0 is a fixed real number, R+ = [0, oo), Rn denotes a n-dimonsional Euclidean space with the usual norm |a?| — ж?)1/2, where x =(ж1;x2,...

<-i

...,xn), 0 denotes the originof Rn and {6}denotes thesubsetof 72", whose unique element is 0.

For А, В<= Rn

a(x, A) = inf |ж— y\

VtA

d(A, B) = max{supa(x,B),sup a(y, A)}.

xeA ycB

ConvE" is the family of all convex compact and nonempty subsets of R". This family is metrized by the Hausdorff distance d. G is the space of all continuous functions cp-. [r, oo)->Rn with topology defined by an almost uniform convergence on [r, oo)(i.e. an uniform convergence on each compact subinterval of interval [r, oo)). [ę?]B denotes the functiong>

localized to the interval [r, ■»], ||<p||„ = max |/>(<?)|.

r<«t>

The set of all functions [дз]е, where <peC and » > 0, will be denoted by (£.

In this set set we introduce the metric as follows: by the distance two functions [q?and [y]w we mean the distance of graph of these functions (the graph being a subset ofR xRn) in the Hausdorff sense (the so-called graph topology).

(2)

184 Wojciech Zygmunt

Let F be a multivalued mapping (in the abbreviation m.v.m.), F-. R+ x G^ConvjR71, let v: R+ -+R+ and let [£]„e<£.

We shall investigate the existence of solutions for two problems concerning the generalized functional-differential equations:

(1)

99 (Z)e-F(Z, [ç>]v(|)), 0 Z,

<p(Z) = f(Z), r<Z<0, and

(><)

(pMi(0 = £ (0> r «C Z < 0,

where is an arbitrary, but fixed, positive number. By a solution of (1) we meananyfunction tp e G, which isabsolutely continuous on each compact subinterval of the interval R+ = [0, oo), (p'(t)eF(t, [9?]^,)) a.e. / >0 (the abbreviation a.e.Z is used for for almost every t in the Lebesque measure sense), <p(t) = f (Z), r < t< 0. Similarly, a solution of (ill,) is any function g>M.eG which is absolutely continuous on [0, JfJ, <f>'Mi{t')eF(t, [95Mi],(()) a.e’.Z, 0^ Z^ Jf,-, yw.(Z) =^.(df,.) for M{ and = f(Z)' for r^Z^O.

II. Assume the following:

1° The function v is continuous and v(t)^t, t^O.

2° The m.v.m. F satisfies conditions

a) -^(b is Lebesque measurable for each [<??]„«(£, *)

b) F(t, •) is continuous for each t> 0 and there exists a continuous function L: R+->R+ such that

[V’]v(()))<i(0ll7’-V’ll^) for each <>0, 3° There exists a constant k, k > 1, such that

d(-F(Z, [0]„0), {0}) < kL(t), t 0.

4° The following inequality holds

k80J L(s}ds

e

sup --- --- = q< 1 **) 0« k

*) We say that a m.v.m. G: -K+->conv(.Rn) is Lebesque measurable iff the set {teR+: G(t)r\B #=0} is Lebesque measurable for each closed subset B c. Rn.

**) Throughout this paper integrals are understood in the Lebesque sense.

(3)

III. Let p be constant such that

1-3

Denote by C* the family of all functions <peC satisfying the condition llyll = sup

o<i llç’llj

t kf L(s)ds ) 0

It is easy to verify that the set C* with a norm || * || is a complete metric space.

We now state the following theorem:

Theorem 1. Ifthe hypotheses 1° — 4° are fulfilled, then the problem (1) has at least one solution which belongs to C*.

Proof. Let us consider the m.v.m. r defined in C* by formula

r<p =

i

£(0)+ fx(s)ds, 0

Ç(t), r<t<0.

t > 0, where a? is a Lebesque measu-' rable selector of F(-, [<p]v(.))

It follows from Bridgland’s Lemma [3, Lemma 2.8] (cf also [4]) that the m.v.m. F(-, [<£>]„(.)): R+->ConvRn is measurable. Then in view of Kura- towski-Ryll-Nardzewski theorem [6] there exists a measurable selector x of F(-, [<p],,(.)). Thus Frp is nonempty for each <peC*. Using the Bridgland’s theorem [3, Theorem 3.1] we conclude that rq> is closed in G* for gpeC*.

To show the inclusion r<p <=. G*, cpeG*, first let us observe that d(U(<, [?’]^i)), {3}) d(F(t, Dp]^)), F{t, [0]^))) + d[F(t, [0]^), {0})

O||^0 + hL(t) — L(t) ||9?||»(j) +kL(t), and let us choose arbitrary peTcp. We have for / >0

<

cp(t) = f (0) + J x{s')ds.

0

Since x{t)eF(t, [9>]H0) a.e. t 0, then following closelyas in ([2], see the proof of Theorem 1]) we obtain for <>0

(3)

( t J

\r(t)\ |f(O)|+ J \x(s)\ds^ |f(0)| + f (L(s)\\p\\^+ kL(s))ds^pe0 ’ .

0 0

(4)

186 Wojciech Zygmunt Obviously for r < t< 0

(4) 1^(01 = \W)\ < ||£||o,

So in view of (3) and (4) Ill’ll P- Consequently ry <=. C*. Now we shall prove that f is a contraction with constant q,i.e. that D(Ty, rip)< q\\y— y||

for each y, iptC*, where D is the Hausdorff metric (in a family of all nonempty closed subsets of C*) generated by the norm ||-||.

Let y,ipeC*, y ip, and let ytTy. Then, for t > 0, y(t) = £(0)+ J x(s)ds,

0

where x is measurable and x{t)eF(t, [9?],^) a.e. t 0. Since d(F(t, [99]^), F(t,M^i})) <L(t)\\y-ip\\^t), there is yt'F(t, such that \x(t)-yt\

<L(t)\\y-y\\^t).

Let us put K(t) = {yteBn: \x(t)— yt)^L(t)\\y— ip\\^t)}. K(t) is a non­ empty closed convex set and the m.v.m. K: R+^-coavBn is Lebesque measurable. Then the m.v.m. G: J2+->convJB’1 defined by G(t) =6

= F(t, [ip)rW)CiK(t) is also Lebesque measurable (cf for example [4]).

Let z be a measurable selector for G. Then we have z(t)eF(t, [y]^) a.e.

/> 0 and

\x(t)-z(t)\ < L(t)\\y-ip\\<l} a.e. <>0.

Now define a function ip: [r, oo)->j2n by

f(<) =

f(0)+fz(s)ds, 0, 0

f($),

Obviously yePy and — =0 for For t^0

t t

\y(t)-ip{t)\<f ix(s)-z(s)ids< f L(s)Hy-y^(3)ds

0 0

and further identically as in [2, see the proof of Th. 1] we obtain the inequality

k I L(s)dst

|p(J)-y(0K 2ll9

-V

lle

°

Hence ||£—ylK glfo —y||.

From this, and the analogues inequality obtained by interchanging the roles of y and ip, we get D(ry, Tip) q\\y —ip\\.

(5)

So we see that the m.v.m. r fulfills all hypotheses of the contraction principle of Covitz and Nadler [5, Corollary 3] (r maps the complete metric space G* into the family of all nonempty closed subset of G* and is the contraction with constant q < 1) Therefore, there exists a function cpeG* such that cpeTcp what means that

<p'(t)eF(t, [99]^) a.e. <>0,

<p(t) - f(f), r^<<0.

This completes the proof of our Theorem.

IV° Let

Om, = {<P«C: ?>(<)= •pW) forOJf,-}, C*/; = {(peG*: cp(/) =^(df,) for / M}.

Similarly as C* in Theorem 1, the set G*M. with a norm ||• || given by (2) is a complete metric space.

Define on C*M the m.v.m. r by formula t

f(0)+ 0<<<dfn

0 wherexM. is a

measurable se­

lector of Jf,.

£(0)+ f xM.(s)ds, M^t,

0 ^(■» Dp-jf,-]►(.>) >

f(f),

Considering this mapping in the same way as in previously section we get the following

Theorem 2. If hypotheses 1° — 4° are fulfilled, the problem (M{) has at least one solution which belongs to C*ir..

Remark 1. If F is a single-valued mapping, then the problems (1) and (dfj have exactly one solution. This it follows immediately from proof of these theorems.

In this section we prove a theorem which is a generalization of Theorem 3 in [2].

Theorem 3. Let {df,}^ be an increasing sequence of real numbers such that limdfj = +00.

i-*oo

a) If is asequence of solutionsofproblems (df,) (inG*M respectively), then there exists a subsequence {<PMi}}T-i which is uniformly convergent on each compact subinterval of [r, 00) to a function tp and cp is a solution (in C*) of problem (1).

b) If <p0 is a solution (in C*) of problem (1), then there exists a sequence {'Z’.ujyii °f solutions (in C*M{ respectively) of problems (df,), which is uni­ form convergent on each compact subinterval of [r, 00) to the function <p0.

(6)

188 Wojciech Zygmunt Proof, a) It is easy to verify that

i

k JL(s)ds

Pe ° »=1,2,...

and

t

+ J(Z(«)||9,J/.||,(g) + A:Z(8))ds, 0 < t, 0< h, i =1,2,...

0

Since = £(Z) for r<f<0, consequently the functions <pM. are uniformly continuous on each compact subinterval of [r, oo). Thus, by well-known Arzela’s theorem, there exists a subsequence which is almost uniformly convergent on [r, oo) to some function 99. Obviously

<peC*.

To prove that cp is the solution of (1), it suffices to show that q> satisfies the equation (p'(t)eF(t, [^]„(()) almost everywhere on each compact in­ terval [0,T] a R+.

Let us fix arbitrary T> 0 and let us define m.v. mappings G/. [0, T]->

->convR" and G: [0, T]->convR” by formulas Gj(<) = F(t, [?>.afg]»(o) > 0 < t < T,

G(t)=F(t,[v\{l}),

Since <pM converges uniform to

99

in [0,T*], where T* = maxv(t) we

13 o«ssr

conclude that limd(Gj(/), G(t)) = 0 on [0,T].

>-»00

From this it follows that

a.e. Z«[O,T].

By virtue of PliS’s Lemma [6, Lemma 1] we get

<p’(t)cG(t) = F(t, [9?]„(0) a.e. Ze[O, T].

Therefore the proof of the part a) is completed.

Remark 2. In the case when F is a single-valued mapping the whole sequence {99.^.}“, of solutions of (II,) (which in view of Remark 1 are unique) converges to a solution of (1).

b) Now let 9>0 be a solution of (1). Let us define

r . . _ fProj^W/F«,[xD) for (Z, [x]b)6jR+ xGand if ^(f) exists, lProj(0/F(Z,[/]„)) otherwise,

(7)

(1,/) and

W,/)

where Proj(0/Æ) denotes the metric projection a point zeRn onto a no­

nempty compact convex subset K of Rn, i.e.

Proj(z/A) = {yeK-. \y— z\ = inf|fc-«I}.

kdC Obviously / is the single-valued mapping.

According to the result in [1, Chapter VI, v 3, Th. 3]f is continuous in [%]„ for each fixed teR+ and by Castaing’s theorem [4,Th. 5.1]/is Lebesque measurable in f>0 for each fixed [/] e(£. Moreover /satisfies the hypo­

theses 2° b) and 3°. Therefore the following problems

<p'(t) =/(^»

0<*,

VifffO — [Ç’jqlqo)» 0 t

= £(0>

have, in view of our Eemark 1, exactly one solutions ÿ and yM. and, by our Eemark 2, rpM. converges to y. But the function y0 is the solution of (1,/) too, because

f(t, EM(i)) = Proj(^(0/P(<, [<po],(o)) = v'M a.e. 0.

Thus must be =ç)0.

Similarly the functions are solutions of problems (JT,) because

=/(^» [ÿj/f]r(<))e^’(^ ]»(,)) a.e. <e[0, JI,].

This proves the part b) and finally the proof of our Theorem 3 is com­

pleted.

REFERENCES

[1] Bergo Cl., Topological Spaces, Oliver and Boyd, Edinburgh and London 1963.

[2] Błaż J., On a certain differential equation with deviated argument, Prace Mate­

matyczne I, Silesian University, Katowice (1969) 15-23, (in Polish).

[3] Bridgland T., Trajectory integrals of set-valued functions, Pacific J. Math. 33 (1970), 43-68.

[4] Castaing Ch., Sur les multiapplications mesurables, Revue d’lnf et de Rech.

Op., 1 (1967), 91-126.

[5] Covitz H., Nadler S., Multi-valued contraction mappings in generalised metric space, Israel J. Math., 8 (1970), 5-11.

[6] Kuratowski K., Ryll-Nardzewski Cz., A Oeneral Theorem of Selectors Bull.

Acad. Polon. Sci., Ser. sci. math. astr, et phys., 13 (1965), 397 403.

[7] Pliś A., Measurable orientor fields, ibidem 13 (1965), 565-569.

(8)

190 Wojciech Zygmunt

STRESZCZENIE

W pracy podano trzy twierdzenia. Pierwsze dwa — to twierdzenia o istnieniurozwiązaniaw klasie C* równań (1) i (Jf<). Twierdzenie trzecie jest następujące:

a) Jeśli i jest ciągiem rozwiązań (w klasie C*) równań to istnieje podciąg tego ciągu, który na każdym zwartym pod- przedziale przedziału [r, oo) jest jednostajnie zbieżny do rozwiązania (p (w klasie C*) równania (1).

b) Jeżeli <p jest rozwiązaniem (w klasie C*) równania (1), to istnieje ciąg {•PjłĄ.}“ i rozwiązań (w klasie C*) równań (JIt) zbieżny jednostajnie na każdym zwartym podporzedziale przedziału [r, oo) do funkcji (p.

РЕЗЮМЕ

В работе даны три теоремы. Две первые — это теоремы о сущест­

вованию решения в классе С* уравнений (1) и (М{). Теорема третья следующая: Теорема 3: а) Если последовательность решений (в классе С*) уравнений (М{), то из этой последовательности можно выделить подпоследовательность {<Рмц}г^=1, равномерно сходящиеся на каждом компактном интервале луча [г, оо) к решению <р (в классе С*) уравнения (1).

в) Если <р решение (в классе С*) уравнения (1), то существует последовательность решений (в классе С*) уравнений (Л/,), равномерно сходящаяся на каждом компактном интервалелуча [г, оо) к решению (р.

(9)

UNI VE RSITATIS MARIAE CURIE-SKŁODOWSKA

VOL. XXVII SECTIO A 1973

1. P. J. Eenigenburg and E. M. Silvia: A Coefficient Inequality for Bazilevié Functions.

Nierówności na współczynniki dla funkcji Bazileviëa.

2. N. K. Govil and V. K. Jain: On the Enestróm-Kakeya Theorem.

O twierdzeniu Enestróma-Kakeyi.

3. L. Grzegórska: Recurrence Relations for the Moments of the so-called Inflated Distributions.

Wzory rekurencyjne na momenty tak zwanych rozkładów “rozdętych”.

4. L. Grzegórska: Distribution of Sums of the so-called Inflated Distributions.

Rozkłady sum tak zwanych rozkładów “rozdętych”.

5. F. Kudelski: Sur quelques problèmes do la théorie des fonctions subordinées.

O kilku problemach w teorii funkcji podporządkowanych.

6. J. Kurek: Construction of an Object of Center-Projective Connection.

Konstrukcja obiektu koneksji środkowo-rzutowej.

7. H. Mikos: Orthogonality in the N-way Nested Classification.

Ortogonalność w N-krotnej klasyfikacji hierarchicznej.

8. II. Mikos: Variance Component Estimation in the Unbalanced N-way Nested Classification.

Estymacja komponentów wariacyjnych w niezrównoważonej N-krotnej klasyfikacji hierarchicznej.

9. E. Niedokos: Estimation of Variance Components in Unbalanced Mixed Models.

Estymacja komponentów wariacyjnych w modelach mieszanych nie- ortogonalnych.

10. J. Stankiewicz: The Influence of Coefficients on some Properties of Regular Functions.

Wpływ współczynników na pewne własności funkcji regularnych.

11. Z. Stankiewicz: Sur la subordination en domaine de certains opérateurs dans les classes S (a, fi).

Podporządkowanie obszarowe pewnych operatorów w klasach S(a, p).

12. D. Szynal and W. Zięba: On Infinitely Divisible Generalized Distributions in Rk.

O ogólnych rozkładach nieskończenie podzielnych w JRk.

13. J. Zderkiewicz: Sur la courbure des lignes de niveau dans la classe des fonctions convexes d’ ordre a

O krzywiźnie poziomic w klasie funkcji wypukłych rzędu a.

(10)

ANNALE UNIVEKSITATIS MARIAE CU

VOL. XXVIII SECTIO A

Biblioteka Uniwersytetu MARII CURIE-SKLODOWSKIEJ

w Lublinie

n 050 29

CZASOPISMA

1945

1. D. M. Campbell, M. R. Ziegler: The Arg of Finito Order and the Radius of Argument pochodnej i promień prawi rodziny funkcji skończonego rzędu.

2. II. B. Coonce, P. J. Eenigenburg, M. R.

Mocanu Variation II.

Funkcje z ograniczoną wariacją Mocanu II.

3. R. Janicka: An Existence Theorem for an Integro-Differential Equation of Ncutral Type.

Twierdzenie o istnieniu rozwiązań równania całkowo-różniczkowego typu neutralnego.

4. L. Koczan, W. Szapiel: Sur certaines classes de fonctions holomorphes définies par une intégrale de Stieltjes.

O pewnych klasach funkcji holomorficznych określonych całką Stieltjesa.

5. Z. Lewandowski, S. Miller, E. Złotkiewicz: Gamma-Starlike Functions.

Funkcje gamma-gwiaździste.

6. Z. Lewandowski, S. Wajler: Sur les fonctions typiquement réelles bornées.

O funkcjach typowo-rzeczywistych ograniczonych.

7. S. Ruscheweyh: On Starlike Functions.

O funkcjach gwiaździstych.

8. Z. Rychlik: The Convergence of Rosen’s Sériés for the Sums of a Random Number of Independent Random Variables.

O zbieżności szeregów Rosena dla sum niezależnych zmiennych losowych z losową liczbą składników.

9. J. Stankiewicz, J. Waniurski: Some Classes of Functions Subordinate to Linear Transformation and their Applications.

Pewne klasy funkcji regularnych podporządkowanych transformacji ulamkowo-liniowej i ich zastosowania.

10. Z. Stankiewicz: Sur la subordination en domaine de certains opérateurs.

Podporządkowanie obszarowe pewnych operatorów.

11. A. Szybiak: Grassmannian Connections.

Koneksje Grassmannowskie.

12. D. Szynal: Sur une loiforte des grands nombres de variables aléatoires enchaîneés.

O mocnym prawie wielkich liczb dla zmiennych losowych powiązanych w łańcuch Markowa.

13. J. Zderkiewicz: Sur la courbure des lignes do niveau dans la classe. XJ?

O krzywiźnie poziomic w klasie. XJ?

14. W. Zygmunt: On a Certain Paratingent Equation with Deviated Argument.

O pewnym równaniu paratyngensowym z odchylonym argumentem.

15. W. Zygmunt: On Some Properties of a Certain Family of Solutions of Paratin­

gent Equation.

O kilku własnościach pewnej rodziny rozwiązań równania paratyngen- sowego.

UNIWERSYTET MARII CURIE-SKLODOWSKIEJ

LUBLIN

BIURO WYDAWNICTW

Plac Litewski 5 POLAND

Cytaty

Powiązane dokumenty

(2).Ta własność jest najważniejsza, bo z niej wynika wiele pozostałych.. Jej dowód

A global existence of solutions of certain non-linear class of differential-functional equations was investigated in [9], [10].. Generalized solutions of an

In a general case h will be called the generalized Hausdorff metric... Sos ul

lytic in the entire space except the origin... since it is a particular case of

( 0. The results obtained here overlap some results of E.. the successive zeros of an oscillatory solution x{t). This condition is a generalization of one given

In final section, we give our main result concerning with the solvability of the integral equation (1) by applying Darbo fixed point theorem associated with the measure

For the most part, the assumptions imposed on f in the literature imply very simple dynamics of f ; it is usually assumed that f has exactly one fixed point which is,

Key words and phrases: initial boundary value problems, partial functional differential inequalities, Carathéodory solutions, uniqueness, bicharacteristics.. The classical theory