• Nie Znaleziono Wyników

Downloaded from www.Manualslib.com manuals search engine

N/A
N/A
Protected

Academic year: 2021

Share "Downloaded from www.Manualslib.com manuals search engine"

Copied!
64
0
0

Pełen tekst

(1)

VIESMANN VITOCAL 200-S

Air/water heat pump, split version 3.0 to 10.6 kW

VITOCAL 200-S Type AWS

Heat pump with electric drive in split design with external and internal unit.

For central heating and DHW heating in heating systems.

■Internal unit with heat pump control unit Vitotronic 200, cir- culation pump for the heating circuit, 3-way diverter valve, expansion vessel and safety assembly.

■Weatherproof external unit with evaporator, compressor, electronic expansion valve and fan.

Permissible operating pressure: Heating water 3 bar

VITOCAL 200-S Type AWS-AC

Equipment as per AWS type but with an additional cooling function via the heating circuit and an integral instantaneous heating water heater.

5727 210 GB 9/2010

Technical guide

(2)

Index

1. Product information 1. 1 Product description ... 4

■ Benefits ... 4

■ Delivered condition ... 5

1. 2 Specification ... 6

■ Specification ... 6

■ Dimensions ... 8

■ Output diagrams type AWS/AWS-AC 104 ... 13

■ Output diagrams type AWS/AWS-AC 107 ... 14

■ Output diagrams type AWS/AWS-AC 110 ... 15

■ Output diagrams type AWS/AWS-AC 113 ... 17

■ Output correction factor ... 18

■ Residual head of the integral circulation pump ... 19

2. DHW cylinder 2. 1 Vitocell 100-V, type CVW ... 20

2. 2 Vitocell 100 V, type CVA ... 23

2. 3 ... 29

3. Installation accessories 3. 1 Heating circuit (secondary circuit) ... 35

■ Instantaneous heating water heater (3/6/9 kW) ... 35

■ Secondary circuit circulation pump ... 35

3. 2 Cooling ... 36

■ Fan convectors Vitoclima 200-C ... 36

■ Room temperature sensor for separate cooling circuit ... 37

■ Contact temperature sensor ... 38

■ 3-way diverter valve (R 1) ... 38

3. 3 DHW heating with Vitocell 100-V, type CVW ... 38

■ Solar heat exchanger set ... 38

■ Booster heater EHE ... 38

■ Impressed current anode ... 39

3. 4 DHW heating with Vitocell 100-B, type CVB ... 39

■ Immersion heater EHE ... 39

■ Safety equipment to DIN 1988 ... 39

3. 5 Installation of the external unit ... 40

■ Floor bracket for external unit ... 40

■ Bracket set for mounting the external unit on a wall ... 40

4. Design information 4. 1 Power supply and tariffs ... 40

■ Application procedure ... 40

4. 2 Installation ... 40

■ Installing the external unit ... 40

■ Installing the internal unit ... 43

■ Internal and external unit connection ... 43

■ Electrical connections ... 44

4. 3 Hydraulic connections ... 46

4. 4 Noise development ... 47

4. 5 System versions ... 48

4. 6 Sizing the heat pump ... 48

■ Mono-energetic operation ... 48

■ Supplement for DHW heating ... 49

■ Supplement for setback mode ... 49

■ Determining the dual mode point ... 49

4. 7 Sizing the heating water buffer cylinder ... 50

■ Underfloor heating (100 %) ... 50

■ Underfloor heating on the ground floor and radiators in the attic ... 50

■ Radiators (100 %) ... 50

4. 8 DHW connection ... 51

■ Example with Vitocell 100-V, type CVW ... 51

■ Safety valve ... 51

4. 9 Selecting a DHW cylinder ... 51

■ System examples ... 52

4.10 Cooling (type AWS-AC only) ... 53

■ Operating modes ... 53

■ Cooling with an underfloor heating system ... 53

■ Cooling with fan convectors Vitoclima 200-C (accessory) ... 53

Index

(3)

5. Heat pump control unit 5. 1 Vitotronic 200, type WO1A ... 54

■ Structure and functions ... 54

■ Time switch ... 55

■ Setting the operating programs ... 55

■ Frost protection function ... 56

■ Heating and cooling curve settings (slope and level) ... 56

■ Heating systems with heating water buffer cylinder or low loss header ... 56

■ Outside temperature sensor ... 56

■ Specification Vitotronic 200, type WO1A ... 57

5. 2 Control unit accessories ... 57

■ Contactor relay ... 57

■ Cylinder temperature sensor ... 58

■ Extension kit for one heating circuit with mixer with integral mixer motor ... 58

■ Extension kit for one heating circuit with mixer for separate mixer motor ... 59

■ Immersion thermostat ... 59

■ Contact thermostat ... 59

■ Contact temperature sensor as system flow temperature sensor ... 60

■ Mixer motor ... 60

■ Vitotrol 200A ... 60

■ KM BUS distributor ... 61

■ External extension H1 ... 61

■ Mounting base for programming unit ... 62

■ Vitocom 100, type GSM ... 62

6. Keyword index ... 63

Index (cont.)

VIESMANN

5727 210 GB

(4)

1.1 Product description Benefits

Internal unit

A Expansion vessel B Condenser

C 3-way diverter valve heating/DHW D Heating circuit pump

E Vitotronic 200, type WO1A

■ Variable output control with DC inverter technology.

■ High coefficient of performance: COP value to EN 14511 up to 3.5 (air 2 ºC/water 35 ºC) or up to 4.6 (air 7 ºC/water 35 ºC).

(COP = coefficient of performance).

■ Maximum flow temperature: up to 55 ºC.

■ Easy-to-operate Vitotronic control unit with plain text and graphic display.

■ The programming unit part of the control unit can also be fitted on a wall mounting base.

■ No risk of frost in the connection lines between the external and internal unit.

■ Cooling (type AWS-AC) in conjunction with fan convectors or an underfloor heating system.

■ Low operating noise through reduced fan speed during partial load operation.

■ High seasonal performance factor through high efficiency during partial load operation.

Product information

1

(5)

Delivered condition

Type AWS Standard delivery:

■ Complete heat pump with electric drive in split design comprising an external and internal unit.

■ Internal unit (filled with nitrogen):

– Heat pump control unit Vitotronic 200 with outside temperature sensor

– Integral expansion vessel (10 litre capacity)

– Integral safety assembly with safety valve, pressure gauge and air vent valve

– Integral circulation pump for the heating circuit – Integral 3-way diverter valve for central heating/DHW – Plate heat exchanger

– Wall mounting bracket

■ External unit:

– With refrigerant filling (R410A) for single line length 12.0 m – Flanged connections for refrigerant lines

– Inverter controlled, noise attenuated compressor – Fan

– Fin heat exchanger

– Reversing valve with electronic expansion valve

Type AWS-AC Standard delivery:

■ Equipment level as for type AWS.

■ Instantaneous heating water heater integrated into internal unit.

Product information (cont.)

VIESMANN

5727 210 GB

1

(6)

1.2 Specification Specification

Vitocal 200-S

Type AWS/AWS-AC 104 107 110 113

Heating output data at 100 % to EN 14511 (A2/W35 °C, spread 5 K)

Rated heating output kW 3.0 5.6 7.7 10.6

Compressor frequency Hz 60 65 55 75

Fan speed rpm 870 650 650 650

Power consumption kW 0.91 1.73 2.20 3.25

Performance factor ε (COP) in heating mode

3.30 3.24 3.50 3.26

Heating output data at 100 % to EN 14511 (A7/W35 °C, spread 5 K)

Rated heating output kW 4.5 8.0 10.9 14.6

Compressor frequency Hz 60 65 55 75

Fan speed rpm 870 650 650 650

Power consumption kW 0.97 1.88 2.36 3.40

Performance factor ε (COP) in heating mode

4.64 4.26 4.62 4.29

Output control kW 1.2 – 5.3 1.8 – 9.5 5.0 – 14.0 5.0 – 16.1

Cooling capacity data at 100 % to EN 14511 (A35/W7 °C, spread 5 K)

Rated cooling capacity kW 3.2 6.2 7.4 9.1

Compressor frequency Hz 60 65 55 70

Fan speed rpm 870 650 650 650

Power consumption kW 1.08 2.40 2.69 3.64

Performance factor ε (EER) in cooling mode

2.96 2.60 2.75 2.50

Output control kW 1.2 – 3.8 1.6 – 8.0 2.4 – 8.5 2.4 – 10.0

Cooling capacity data at 100 % to EN 14511 (A35/W18 °C, spread 5 K)

Rated cooling capacity kW 4.2 8.8 10.0 12.6

Compressor frequency Hz 60 65 55 70

Fan speed rpm 870 650 650 650

Power consumption kW 1.13 2.63 2.80 4.20

Performance factor ε (EER) in cooling mode

3.72 3.35 3.57 3.00

Air inlet temperature Heating

– Min. °C –15 –15 –15 –15

– Max. °C 35 35 35 35

Cooling (type AWS-AC only)

– Min. °C 15 15 15 15

– Max. °C 45 45 45 45

Heating water at 5 K spread

Content (excl. expansion vessel) l 2.2 2.2 3.2 3.2

Min. flow rate l/h 600 820 1200 1380

Max. external pressure drop (RFH) at min.

flow rate

mbar 590 540 440 380

Max. flow temperature °C 55 55 55 55

Electrical values External unit

– Rated voltage, compressor 1/N/PE 230 V/50 Hz

– Rated current, compressor (max.) A 5 9 10 15

– Starting current, compressor A 10.5 15 10 10

– Starting current, compressor with stalled armature

A 20 25 32 32

– Fuse, internal A 3.5 3.5 3.15 3.15

– IP rating IP 25 25 25 25

Product information

(cont.)

1

(7)

Type AWS/AWS-AC 104 107 110 113 Electrical values

Internal unit

Heat pump control unit/PCB

– Rated voltage control unit/PCB 1/N/PE 230 V/50 Hz

– Fuse protection, power supply 1xB16A

– Fuse, internal 6.3A (slow) / 250 V

Instantaneous heating water heater (phase asymmetrical)

Integral for type AWS-AC

– Rated voltage 3/N/PE 400 V/50 Hz

– Heating output kW 9 9 9 9

– Fuse protection, power supply 3xB16A 3xB16A 3xB16A 3xB16A

IP rating IP 20 20 20 20

Power consumption

– Fan (max.) W 65 70 130 130

– External unit (max.) kW 3.0 3.6 5.8 5.8

– Secondary pump at stage 3/2/1 W 132/92/62 132/92/62 132/92/62 132/92/62

– Control unit/PCB, external unit (max.) W 150 150 150 150

– Control unit/PCB, internal unit (max.) W 5 5 5 5

– Max. nominal rating, control unit/PCB W 1000 1000 1000 1000

Refrigerant circuit

Refrigerant R410A R410A R410A R410A

Fill volume kg 1.2 2.1 2.95 2.95

Top-up amount for line lengths of 12 m to 30 m

g/m 20 60 60 60

Compressor (hermetically sealed) Type of Rotating piston Rotating piston Scroll Scroll

Permiss. operating pressure

– High pressure side bar

MPa

43 4.3

43 4.3

43 4.3

43 4.3

– Low pressure side bar

MPa

43 4.3

43 4.3

43 4.3

43 4.3 Dimensions

External unit

Total length (depth) mm 290 340 340 340

Total width mm 869 1040 900 900

Total height mm 610 865 1255 1255

Internal unit

Total length (depth) mm 360 360 360 360

Total width mm 450 450 450 450

Total height mm 850 850 850 850

Total weight

External unit kg 43 66 110 110

Internal unit kg 35 35 40 40

Permiss. operating pressure, secondary side

bar MPa

3 0.3

3 0.3

3 0.3

3 0.3 Connections/Terminals

Heating water flow G 1¼ 1¼ 1¼ 1¼

Heating water return and DHW cylinder return

G 1¼ 1¼ 1¼ 1¼

DHW cylinder flow G 1¼ 1¼ 1¼ 1¼

Condensate line mm 16 16 16 16

Liquid gas line

– Pipe 7 mm 6 10 10 10

– Internal unit UNF ⅝ ⅝ ⅝ ⅝

– External unit UNF ⁷⁄₁₆ ⅝ ⅝ ⅝

Hot gas line

– Pipe 7 mm 12 16 16 16

– Internal unit UNF ⅞ ⅞ ⅞ ⅞

– External unit UNF ¾ ⅞ ⅞ ⅞

Max. line length, liquid gas line, hot gas line

m 25 30 30 30

Max. height differential between the inter- nal and the external unit

m 10 15 15 15

Product information (cont.)

VIESMANN

5727 210 GB

1

(8)

Type AWS/AWS-AC 104 107 110 113 Weighted total sound power level

(external unit)

Test with reference to DIN EN 12102/

DIN EN ISO 9614-2 under the following conditions: Inlet temperature 7 °C ±3 K, flow temperature 35 °C ±5 K

at rated heating output dB(A) 60 62 62 63

Dimensions

Internal unit

850

450

114105116

360

+ 230 V~

400 V~

<42 V >42 V

1160

A

Product information

(cont.)

1

(9)

100

1000

100

230 V~

<42 V >42 V

400 V~

Symbol Explanation Connection

Refrigerant lines from/to the external unit:

– Hot gas line – 4 kW: 7 12 mm

– 7 kW: 7 16 mm –10 kW: 7 16 mm –13 kW: 7 16 mm

– Liquid gas line – 4 kW: 7 6 mm

– 7 kW: 7 10 mm –10 kW: 7 10 mm –13 kW: 7 10 mm

DHW cylinder flow (heating water side) G 1¼

+

Heating water return and DHW cylinder return G 1¼

Heating water flow G 1¼

A Drain & fill valve —

Safety valve —

Product information (cont.)

VIESMANN

5727 210 GB

1

(10)

External unit

Type AWS/AWS-AC 104

74

293

290

610

500 40

795 869

Product information

(cont.)

1

(11)

Type AWS/AWS-AC 107

340 9501040

865

527

378

90

Product information (cont.)

VIESMANN

5727 210 GB

1

(12)

Type AWS/AWS-AC 110 and 113 340

1225

900

705 97

357

437

Product information

(cont.)

1

(13)

Output diagrams type AWS/AWS-AC 104

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

Output in kW

2 4 6

55°C

B A

35°C 45°C35°C

45°C55°C

0

Air intake temperature in °C

20 25 30

Output in kW

2 4 6

35 18 °C

7°C 18 °C

7°C C

D

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

ε coeffic. of perf. (COP)

2 4 6

55 °C 45 °C 35 °C

0

Air intake temperature in °C

20 25 30

ε energy effic. ratio EER

2 4 6

18 °C

35 7 °C

Curves subject to the flow temperature:

A Heating output at flow temperatures of 35 °C, 45 °C, 55 °C B Electrical power consumption for heating at flow temperatures of

35 °C, 45 °C, 55 °C

C Cooling capacity at flow temperatures of 18 °C, 7 °C, type AWS- AC only

D Electrical power consumption for cooling at flow temperatures of 18 °C, 7 °C

Note

The COP data in the tables and diagrams was calculated with refer- ence to DIN EN 14511.

Heating output data

Operating point W °C 35

A °C -15 -7 2 7 10 12 20 30

Heating output kW 1.7 2.6 3.0 4.5 4.6 4.8 5.0 5.5

Power consumption kW 0.87 0.90 0.91 0.97 0.95 0.96 0.95 0.96

Performance factor ε (COP) 1.90 2.85 3.30 4.64 4.83 5.00 5.27 5.70

Operating point W °C 45

A °C -15 -7 2 7 10 12 20 30

Heating output kW 1.5 2.3 2.8 4.0 4.2 4.4 4.6 5.0

Power consumption kW 0.94 1.05 1.07 1.14 1.15 1.17 1.14 1.13

Performance factor ε (COP) 1.60 2.20 2.65 3.55 3.67 3.75 4.04 4.41

Operating point W °C 55

A °C -15 -7 2 7 10 12 20 30

Heating output kW 1.3 2.0 2.7 3.7 3.8 4.0 4.3 4.7

Power consumption kW 1.13 1.20 1.25 1.34 1.33 1.29 1.30 1.37

Performance factor ε (COP) 1.16 1.70 2.12 2.74 2.87 3.10 3.30 3.45

Product information (cont.)

VIESMANN

5727 210 GB

1

(14)

Cooling capacity data (type AWS-AC only)

Operating point W °C 18 7

A °C 20 25 27 30 35 20 25 27 30 35

Cooling capacity kW 5.3 4.9 4.7 4.5 4.2 3.4 3.3 3.2 3.1 3.2

Power consumption kW 1.07 1.11 1.13 1.14 1.13 0.96 1.00 1.04 1.05 1.08

Performance factor EER 4.94 4.40 4.20 3.95 3.72 3.54 3.30 3.10 2.95 2.96

Output diagrams type AWS/AWS-AC 107

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

10

Output in kW

2 4 6 8

35 °C 12

55 °C 45 °C 35 °C

B 45 °CA 55 °C

0

Air intake temperature in °C

20 25 30

Output in kW

2 4 6

35 8

10

7 °C

18 °C 7 °C

C

D

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

ε coeffic. of perf. (COP)

2 4 6

55 °C 45 °C 35 °C

0

Air intake temperature in °C20 25 30

ε energy effic. ratio EER

2 4 6

35 18°C7°C

Product information

(cont.)

1

(15)

Curves subject to the flow temperature:

A Heating output at flow temperatures of 35 °C, 45 °C, 55 °C B Electrical power consumption for heating at flow temperatures of

35 °C, 45 °C, 55 °C

C Cooling capacity at flow temperatures of 18 °C, 7 °C, type AWS- AC only

D Electrical power consumption for cooling at flow temperatures of 18 °C, 7 °C

Note

The COP data in the tables and diagrams was calculated with refer- ence to DIN EN 14511.

Heating output data

Operating point W °C 35

A °C -15 -7 2 7 10 12 20 30

Heating output kW 3.4 4.6 5.6 8.0 8.2 8.5 9.9 11.8

Power consumption kW 1.63 1.77 1.73 1.88 1.91 1.91 1.90 1.88

Performance factor ε (COP) 2.06 2.60 3.24 4.26 4.28 4.48 5.19 6.31

Operating point W °C 45

A °C -15 -7 2 7 10 12 20 30

Heating output kW 3.0 4.4 5.3 6.8 7.3 7.5 9.3 10.4

Power consumption kW 1.96 2.14 2.19 2.31 2.323 2.33 2.36 2.32

Performance factor ε (COP) 1.54 2.05 2.44 2.94 3.15 3.22 3.93 4.47

Operating point W °C 55

A °C -15 -7 2 7 10 12 20 30

Heating output kW 2.8 3.8 5.1 6.0 6.5 6.6 7.8 9.5

Power consumption kW 2.40 2.48 2.64 2.77 2.79 2.80 2.77 2.86

Performance factor ε (COP) 1.17 1.53 1.93 2.16 2.34 2.36 2.81 3.33

Cooling capacity data (type AWS-AC only)

Operating point W °C 18 7

A °C 20 25 27 30 35 20 25 27 30 35

Cooling capacity kW 10.02 9.9 9.8 9.4 8.8 7.9 7.5 7.2 6.8 6.2

Power consumption kW 1.91 2.13 2.23 2.35 2.63 1.82 1.99 2.07 2.19 2.40

Performance factor EER 5.33 4.65 4.39 4.00 3.35 4.36 3.74 3.49 3.10 2.60

Output diagrams type AWS/AWS-AC 110

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

10

Output in kW

2 4 6 8

12 55 °C

B A

35 °C 45 °C 35 °C

45 °C 55 °C 14

Product information (cont.)

VIESMANN

5727 210 GB

1

(16)

0

Air intake temperature in °C

20 25 30

Output in kW

2 4 6

35 8

10 12

18 °C 7 °C 18 °C

7 °C C

D

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

ε coeff. perf. (COP)

2 4

45 °C 35 °C

55 °C 4

6

0

Air intake temperature in °C20 25 30

ε energy effic. ratio EER

2 4 6

35 18 °C

7 °C

Curves subject to the flow temperature:

A Heating output at flow temperatures of 35 °C, 45 °C, 55 °C B Electrical power consumption for heating at flow temperatures of

35 °C, 45 °C, 55 °C

C Cooling capacity at flow temperatures of 18 °C, 7 °C, type AWS- AC only

D Electrical power consumption for cooling at flow temperatures of 18 °C, 7 °C

Note

The COP data in the tables and diagrams was calculated with refer- ence to DIN EN 14511.

Heating output data

Operating point W °C 35

A °C -15 -7 2 7 10 12 20 30

Heating output kW 3.2 5.8 7.7 10.9 11.2 12.0 13.6 14.5

Power consumption kW 2.08 2.21 2.20 2.36 2.32 2.30 2.21 2.11

Performance factor ε (COP) 1.55 2.61 3.50 4.62 4.84 5.20 6.18 6.88

Operating point W °C 45

A °C -15 -7 2 7 10 12 20 30

Heating output kW 3.0 5.1 7.0 10.3 10.7 11.1 12.7 13.6

Power consumption kW 2.33 2.63 2.66 2.88 2.86 2.85 2.78 2.71

Performance factor ε (COP) 1.3 1.9 2.6 3.6 3.8 3.9 4.6 5.0

Operating point W °C 55

A °C -15 -7 2 7 10 12 20 30

Heating output kW 2.6 4.7 6.6 9.2 10.0 10.5 11.5 11.8

Power consumption kW 2.78 3.11 3.27 3.49 3.45 3.39 3.41 3.38

Performance factor ε (COP) 0.9 1.5 2.0 2.6 2.9 3.1 3.4 3.5

Cooling capacity data (type AWS-AC only)

Operating point W °C 18 7

A °C 20 25 27 30 35 20 25 27 30 35

Cooling capacity kW 11.80 11.58 11.21 10.66 10.0 8.39 7.95 7.97 7.42 7.4

Power consumption kW 1.99 2.17 2.28 2.44 2.80 2.03 2.18 2.24 2.40 2.69

Performance factor EER 5.93 5.34 4.93 4.37 3.57 4.14 3.65 3.56 3.09 2.75

Product information

(cont.)

1

(17)

Output diagrams type AWS/AWS-AC 113

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

10

Output in kW

2 4 6 8

35°C 45 °C

12 14

55°C

B A

16 18 20

55°C 45 °C 35°C

0

Air intake temperature in °C

20 25 30

Output in kW

2 4 6

35 8

10 12 14

18 °C 7 °C 18 °C 7 °C

C

D

0

Air intake temperature in °C

-15 -10 -5 0 5 10 15 20 25 30

ε coeffic. of perf. (COP)

2 4 6

55°C 45°C 35°C

0

Air intake temperature in °C

20 25 30

ε energy effic. ratio EER

2 4 6

35 18 °C

7 °C

Curves subject to the flow temperature:

A Heating output at flow temperatures of 35 °C, 45 °C, 55 °C B Electrical power consumption for heating at flow temperatures of

35 °C, 45 °C, 55 °C

Product information (cont.)

VIESMANN

5727 210 GB

1

(18)

C Cooling capacity at flow temperatures of 18 °C, 7 °C, type AWS- AC only

D Electrical power consumption for cooling at flow temperatures of 18 °C, 7 °C

Note

The COP data in the tables and diagrams was calculated with refer- ence to DIN EN 14511.

Heating output data

Operating point W °C 35

A °C -15 -7 2 7 10 12 20 30

Heating output kW 5.8 8.47 10.6 14.6 14.8 15.82 17.9 19.63

Power consumption kW 3.09 3.23 3.26 3.40 3.37 3.42 3.39 3.30

Performance factor ε (COP) 1.89 2.62 3.25 4.29 4.40 4.63 5.29 5.96

Operating point W °C 45

A °C -15 -7 2 7 10 12 20 30

Heating output kW 5.2 7.5 10.0 13.1 14.1 14.7 16.8 17.8

Power consumption kW 3.47 3.57 3.60 4.19 4.19 4.19 4.15 4.04

Performance factor ε (COP) 1.5 2.1 2.8 3.1 3.4 3.5 4.1 4.4

Operating point W °C 55

A °C -15 -7 2 7 10 12 20 30

Heating output kW 4.5 6.6 8.7 11.7 13.0 13.6 15.5 16.7

Power consumption kW 3.91 4.14 4.07 4.86 5.02 5.03 5.04 4.99

Performance factor ε (COP) 1.2 1.6 2.1 2.4 2.6 2.7 3.1 3.3

Cooling capacity data (type AWS-AC only)

Operating point W °C 18 7

A °C 20 25 27 30 35 20 25 27 30 35

Cooling capacity kW 13.8 13.3 13.0 12.4 11.5 10.9 10.5 10.1 9.4 9.1

Power consumption kW 2.86 3.13 3.25 3.45 3.84 10.9 10.5 10.1 9.4 9.1

Performance factor EER 4.83 4.24 3.99 3.58 3.00 3.81 3.43 3.19 2.82 2.50

Output correction factor

Heating (type AWS/AWS-AC)

0 5 10 20 25 30

0.90

Line length in m

Output correction

15 0.92

0.94 0.96 0.98 1.00

Relative to A2/W35 and A7/W35

Product information

(cont.)

1

(19)

Cooling (type AWS-AC)

0 5 10 20 25 30

0.60

Line length in m

Output correction

15 0.64

0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

A

B

A A35/W18 B A35/W7

Example:

■ Type AWS-AC 107

■ Length of refrigerant line: 10 m

Corrected output:

■ Rated heating output relative to A2/W35:

5.6 kW x 0.98 = 5.49 kW

■ Rated cooling capacity relative to A35/W7:

6.2 kW x 0.98 = 6.07 kW

Residual head of the integral circulation pump

Type AWS/AWS-AC 104/107

00 0.5 1.0 1.5 2.0 2.5

200 400 600

Pump rate in m³/h

Residual head in mbar

B A

A Without integral instantaneous heating water heater B With integral instantaneous heating water heater

Type AWS/AWS-AC 110/113

B A

00 0.5 1.0 1.5 2.0 2.5

200 400 600

Pump rate in m³/h

Residual head in mbar

A Without integral instantaneous heating water heater B With integral instantaneous heating water heater

Product information (cont.)

VIESMANN

5727 210 GB

1

(20)

2.1 Vitocell 100-V, type CVW

See information on the design of the DHW cylinder from page 51.

For DHW heating in conjunction with heat pumps up to 16 kW and solar collectors; also suitable for boilers and district heating systems.

Suitable for the following systems:

■ DHW temperature up to 95 °C

■ Heating water flow temperature up to 110 °C

■ Solar flow temperature up to 140 °C

■ Operating pressure on the heating water side up to 10 bar

■ Operating pressure on the solar side up to 10 bar

■ Operating pressure on the DHW side up to 10 bar

Cylinder capacity l 390

DIN register no. 0260/05-13 MC/E

Continuous output

for DHW heating from 10 to 45 °C and a heating water flow temperature of ... at the heating water throughput stated below

90 °C kW 109

l/h 2678

80 °C kW 87

l/h 2138

70 °C kW 77

l/h 1892

60 °C kW 48

l/h 1179

50 °C kW 26

l/h 639

Continuous output

for DHW heating from 10 to 60 °C and a heating water flow temperature of ... at the heating water throughput stated below

90 °C kW 98

l/h 1686

80 °C kW 78

l/h 1342

70 °C kW 54

l/h 929

Heating water throughput for the stated continuous outputs m3/h 3.0

Draw-off rate l/min 15

Available water volume without booster

– Cylinder volume heated to 45 °C, water at t = 45 °C (constant)

l 280

– Cylinder volume heated to 55 °C, water at t = 55 °C (constant)

l 280

Heat-up time

for connection of a heat pump with 16 kW rated heating output and a heating water flow temperature of 55 or 65 °C

– for heating DHW from 10 to 45 °C min 60

– for heating DHW from 10 to 55 °C min 77

Max. connectable heat pump output

at 65 °C heating water flow temperature and 55 °C DHW temperature and the stated heating water throughput

kW 16

Max. aperture surface that can be connected to the solar indirect coil set (accessory)

– Vitosol-F m2 11.5

– Vitosol-T m2 6

Performance factor NL in conjunction with a heat pump

Cylinder storage temperature 45 °C 2.4

50 °C 3.0

Standby heat loss q BS

(standard parameter to DIN V 18599)

kWh/24 h 2.78

Dimensions

Length (7) – incl. thermal insulation mm 850

– excl. thermal insulation mm 650

Total width – incl. thermal insulation mm 918

– excl. thermal insulation mm 881

Height – incl. thermal insulation mm 1629

– excl. thermal insulation mm 1522

Height when tilted – excl. thermal insulation mm 1550

Weight incl. thermal insulation kg 190

Total weight in operation Incl. immersion heater

kg 582

Heating water content l 27

Heating surface m2 4.1

DHW cylinder

2

(21)

Cylinder capacity l 390 Connections

Heating water flow and return R 1¼

Cold water, hot water R 1¼

Solar internal indirect coil set [indirect coils] R ¾

DHW circulation R 1

Immersion heater Rp 1½

Information regarding continuous output

When designing the system for the continuous output as stated or cal- culated, allow for the corresponding circulation pump. The stated con- tinuous output is only achieved when the rated boiler output contin- uous output.

107

455

349 399

591 849 969 1089 1458

422101415221629

WW1

ZHV SPR1

WW2 SPR2 KW/E ELH1

HR ELH2/R

881 918

650 850 SPR2

E Drain

ELH1 Connections for immersion heater ELH2 Flanged aperture for immersion heater HR Heating water return

HV Heating water flow KW Cold water

R Inspection/clean-out aperture with flange cover SPR1 Cylinder temperature control sensor

SPR2 Temperature sensor of the solar internal indirect coil set WW1 DHW

WW2 Hot water from the solar internal indirect coil set Z DHW circulation

Performance factor NL

According to DIN 4708, without return temperature limit.

Cylinder storage temperature Tcyl = cold water inlet temperature +50 K

+5 K/–0 K

Performance factor NL at heating water flow temperature

90 °C 16.5

80 °C 15.5

70 °C 12.0

Performance factor NL

The performance factor NL varies according to the cylinder storage temperature Tcyl.

Standard values

■ Tcyl = 60 °C 1.0 × NL

■ Tcyl = 55 °C 0.75 × NL

■ Tcyl = 50 °C 0.55 × NL

■ Tcyl = 45 °C 0.3 × NL Peak output (over 10 minutes)

Relative to the performance factor NL.

DHW heating from 10 to 45 °C without return temperature limit.

Peak output (l/10 min) at a heating water flow temperature of

90 °C 540

80 °C 521

70 °C 455

Max. draw-off rate (over 10 minutes) Relative to the performance factor NL. With booster.

DHW heating from 10 to 45 °C.

Max. draw-off rate (l/min) at a heating water flow temperature of

90 °C 54

80 °C 52

70 °C 46

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(22)

Pressure drop

500 600 800 1000 2000 3000 4000 5000 6000 8000 10000 3

45 6 108 20 30 4050 60 10080 200 300 400500 600 1000800

Pressure drop in mbar

Heating water throughput in litres/h Pressure drop on the heating water side

500 600 800 1000 2000 3000 4000 5000 3

45 6 108 20 30 4050 60 10080

Pressure drop in mbar

DHW throughput in l/h Pressure drop on the DHW side

DHW cylinder

(cont.)

2

(23)

2.2 Vitocell 100 V, type CVA

See information on the design of the DHW cylinder from page 51.

For DHW heating in conjunction with boilers and district heating sys- tems, as option with electric heater as accessory for DHW cylinders with 300 and 500 l capacity.

Suitable for the following systems:

■ DHW temperatures up to 95 °C

■ Heating water flow temperature up to 160 °C

■ Operating pressure on the heating water side up to 25 bar

■ Operating pressure on the DHW side up to 10 bar

Capacity l 160 200 300 500 750 1000

DIN reg. no. 0241/06–13 MC/E

Continuous output

for DHW heating from 10 to 45 °C and a heating water flow tempera- ture of ... at the heating water throughput stated below

90 °C kW 40 40 53 70 123 136

l/h 982 982 1302 1720 3022 3341

80 °C kW 32 32 44 58 99 111

l/h 786 786 1081 1425 2432 2725

70 °C kW 25 25 33 45 75 86

l/h 614 614 811 1106 1843 2113

60 °C kW 17 17 23 32 53 59

l/h 417 417 565 786 1302 1450

50 °C kW 9 9 18 24 28 33

l/h 221 221 442 589 688 810

Continuous output

for DHW heating from 10 to 60 °C and a heating water flow tempera- ture of ... at the heating water throughput stated below

90 °C kW 36 36 45 53 102 121

l/h 619 619 774 911 1754 2081

80 °C kW 28 28 34 44 77 91

l/h 482 482 584 756 1324 1565

70 °C kW 19 19 23 33 53 61

l/h 327 327 395 567 912 1050

Heating water flow rate for the stated contin- uous outputs

m3/h 3.0 3.0 3.0 3.0 5.0 5.0

Standby heat loss qBS

at a temp. differential of 45 K (actual value acc.

to DIN 4753-8.

500 l: Standard parameter to DIN V 18599) kWh/

24 h

1.50 1.70 2.20 3.20 3.70 4.30

Thermal insulation Rigid PUR foam Flexible polyurethane foam

Dimensions

Length (7)

– incl. thermal insulation a mm 581 581 633 850 960 1060

– excl. thermal insulation mm — — — 650 750 850

Width

– incl. thermal insulation b mm 608 608 705 898 1046 1144

– excl. thermal insulation mm — — — 837 947 1047

Height

– incl. thermal insulation c mm 1189 1409 1746 1955 2100 2160

– excl. thermal insulation mm — — — 1844 2005 2060

Height of unit when tilted

– incl. thermal insulation mm 1260 1460 1792 — — —

– excl. thermal insulation mm — — — 1860 2050 2100

Installation height mm — — — 2045 2190 2250

Weight including thermal insulation kg 86 97 151 181 295 367

Heating water content l 5.5 5.5 10.0 12.5 24.5 26.8

Heating surface m2 1.0 1.0 1.5 1.9 3.7 4.0

Connections

Heating water flow and return R 1" 1" 1" 1" 1¼" 1¼"

Cold water, DHW R ¾" ¾" 1" 1¼" 1¼" 1¼"

DHW circulation R ¾" ¾" 1" 1" 1¼" 1¼"

Information regarding continuous output

When designing the system for continuous output as stated or calcu- lated, allow for the corresponding circulation pump. The stated con- tinuous output is only achieved when the rated boiler output contin- uous output.

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(24)

160 and 200 litre capacity

SPR

b

a

cdefgh

k b

VA WW

ZHV/SPR

HR BÖ

KW/E

BÖ Inspection and cleaning aperture

E Drain

HR Heating water return HV Heating water flow KW Cold water

SPR Cylinder temperature sensor of the cylinder temperature control or the control thermostat

VA Protective magnesium anode WW DHW

Z DHW circulation

Capacity l 160 200

Length (7) a mm 581 581

Width b mm 608 608

Height c mm 1189 1409

d mm 1050 1270

e mm 884 884

f mm 634 634

g mm 249 249

h mm 72 72

k mm 317 317

300 litre capacity

l

SPR

b

a

cdefgh

k

m

VA WW

Z HV/SPR

HR

KW/E b

BÖ Inspection and cleaning aperture

E Drain

HR Heating water return HV Heating water flow KW Cold water

SPR Cylinder temperature sensor of the cylinder temperature control or the control thermostat

VA Protective magnesium anode WW DHW

Z DHW circulation

DHW cylinder

(cont.)

2

(25)

Capacity l 300

Length (7) a mm 633

Width b mm 705

Height c mm 1746

d mm 1600

e mm 1115

f mm 875

g mm 260

h mm 76

k mm 343

l mm 7 100

m mm 333

500 litre capacity

h a

bn o

SPR

l

k

m

BÖ VA

WW

Z

HR

KW/E

g f e d c

HV/SPR

b

BÖ Inspection and cleaning aperture

E Drain

HR Heating water return HV Heating water flow KW Cold water

SPR Cylinder temperature sensor of the cylinder temperature control or the control thermostat

VA Protective magnesium anode WW DHW

Z DHW circulation

Capacity l 500

Length (7) a mm 850

Width b mm 898

Height c mm 1955

d mm 1784

e mm 1230

f mm 924

g mm 349

h mm 107

k mm 455

l mm 7 100

m mm 422

n mm 837

excl. thermal insulation o mm 7 650

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(26)

750 and 1000 litre capacity

HR

a

b n o

cdefgh

k

lm

WW

Z

SPR

KW/E VA

HV/SPR

b

BÖ Inspection and cleaning aperture

E Drain

HR Heating water return HV Heating water flow KW Cold water

SPR Cylinder temperature sensor of the cylinder temperature control or the control thermostat

VA Protective magnesium anode WW DHW

Z DHW circulation

Capacity l 750 1000

Length (7) a mm 960 1060

Width b mm 1046 1144

Height c mm 2100 2160

d mm 1923 2025

e mm 1327 1373

f mm 901 952

g mm 321 332

h mm 104 104

k mm 505 555

l mm 7 180 7 180

m mm 457 468

n mm 947 1047

excl. thermal insulation o mm 7 750 7 850

Performance factor NL To DIN 4708.

Cylinder storage temperature Tcyl = cold water inlet temperature + 50 K +5 K/-0 K

Capacity l 160 200 300 500 750 1000

Performance factor NL at a heating water flow tem- perature of

90 °C 2.5 4.0 9.7 21.0 40.0 45.0

80 °C 2.4 3.7 9.3 19.0 34.0 43.0

70 °C 2.2 3.5 8.7 16.5 26.5 40.0

Performance factor NL

The performance factor NL varies according to the cylinder storage temperature Tcyl.

Standard values for

■ Tcyl = 60 °C 1.0 × NL

■ Tcyl = 55 °C 0.75 × NL

■ Tcyl = 50 °C 0.55 × NL

■ Tcyl = 45 °C 0.3 × NL

DHW cylinder

(cont.)

2

(27)

Peak output (during 10 minutes) Relative to the performance factor NL. DHW heating from 10 to 45 °C.

Capacity l 160 200 300 500 750 1000

Peak output (l/10 min) at a heating water flow temper- ature of

90 °C 210 262 407 618 898 962

80 °C 207 252 399 583 814 939

70 °C 199 246 385 540 704 898

Max. draw-off rate (over 10 minutes) Relative to the performance factor NL. With booster heating.

DHW heating from 10 to 45 °C.

Capacity l 160 200 300 500 750 1000

Max. draw-off rate (l/min) at a heating water flow tem- perature of

90 °C 21 26 41 62 90 96

80 °C 21 25 40 58 81 94

70 °C 20 25 39 54 70 90

Available water volume Cylinder content heated to 60 °C.

Without booster heating.

Capacity l 160 200 300 500 750 1000

Draw-off rate l/min 10 10 15 15 20 20

Available water volume water at t = 60 °C (continuous)

l 120 145 240 420 615 835

Heat-up time

The heat-up times will be achieved, if the max. continuous output of the DHW cylinder is made available at the respective heating water flow temperature and when heating DHW from 10 to 60 °C.

Capacity l 160 200 300 500 750 1000

Heat-up time (min.) at a heating water flow tempera- ture of

90 °C 19 19 23 28 24 36

80 °C 24 24 31 36 33 46

70 °C 34 37 45 50 47 71

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(28)

Pressure drop

D E A CB

Pressure drop in mbar 4 56 8 10 20 30 40 50 60 80 100 200 300 400 500

500 600 800 1000 2000 3000 4000 5000 6000 7000 Heating water throughput in litres/h of one cylinder cell.

Pressure drop on the heating water side

A Cylinder capacity 160 and 200 l B Capacity 300 l

C Capacity 500 l D Capacity 750 l E Capacity 1000 l

1 2 3 4 56 8 10 20 30 40 5060 80 100

500 600 800 1000 2000 3000 4000 5000 6000

Pressure drop in mbar

DHW throughput in l/h

C D E

A B

Pressure drop on the DHW side

A Cylinder capacity 160 and 200 l B Capacity 300 l

C Capacity 500 l D Capacity 750 l E Capacity 1000 l

DHW cylinder

(cont.)

2

(29)

See information on the design of the DHW cylinder from page 51.

For DHW heating in conjunction with boilers and solar collectors for dual-mode operation.

Suitable for the following systems:

■ DHW temperature up to 95 °C

■ Heating water flow temperature up to 160 °C

■ Solar flow temperature up to 160 °C

■ Operating pressure on the heating water side up to 10 bar

■ Operating pressure on the solar side up to 10 bar

■ Operating pressure on the DHW side up to 10 bar

Cylinder capacity l 300 400 500

Indirect coil upper lower upper lower upper lower

DIN register no. 0242/06-13 MC/E

Continuous output

for DHW heating from 10 to 45 °C and a heating water flow temperature of ... at the heating water throughput stated below

90 °C kW 31 53 42 63 47 70

l/h 761 1302 1032 1548 1154 1720

80 °C kW 26 44 33 52 40 58

l/h 638 1081 811 1278 982 1425

70 °C kW 20 33 25 39 30 45

l/h 491 811 614 958 737 1106

60 °C kW 15 23 17 27 22 32

l/h 368 565 418 663 540 786

50 °C kW 11 18 10 13 16 24

l/h 270 442 246 319 393 589

Continuous output

for DHW heating from 10 to 60 °C and a heating water flow temperature of ... at the heating water throughput stated below

90 °C kW 23 45 36 56 36 53

l/h 395 774 619 963 619 911

80 °C kW 20 34 27 42 30 44

l/h 344 584 464 722 516 756

70 °C kW 15 23 18 29 22 33

l/h 258 395 310 499 378 567

Heating water throughput for the stated continuous outputs m3/h 3.0 3.0 3.0

Max. connectable aperture area Vitosol m2 10 12 15

Max. connectable heat pump output

at 55 °C heating water flow temperature and 45 °C DHW tem- perature for the given heating water throughput (both internal indirect coils connected in series)

kW 8 8 10

Thermal insulation Rigid PUR foam Flexible PUR foam Flexible PUR foam

Standby heat loss q BS

(standard parameter)

kWh/

24 h

1.00 1.08 1.30

Standby capacity Vaux l 127 167 231

Solar capacity Vsol l 173 233 269

Dimensions

Length a (7) – incl. thermal insulation mm 633 850 850

– excl. thermal insulation mm – 650 650

Total width b – incl. thermal insulation mm 705 918 918

– excl. thermal insulation mm – 881 881

Height c – incl. thermal insulation mm 1746 1630 1955

– excl. thermal insulation mm – 1518 1844

Height when tilted – incl. thermal insulation mm 1792 – –

– excl. thermal insulation mm – 1550 1860

Weight incl. thermal insulation kg 160 167 205

Total weight in operation with immersion heater kg 462 569 707

Heating water content l 6 10 6.5 10.5 9 12.5

Heating surface m2 0.9 1.5 1.0 1.5 1.4 1.9

Connections

Indirect coils R 1 1 1

Cold water, hot water R 1 1¼ 1¼

DHW circulation R 1 1 1

Immersion heater Rp 1½ 1½ 1½

Information regarding the upper indirect coil

The upper indirect coil is intended to be connected to a heat source.

Information regarding the lower indirect coil

The lower indirect coil is intended to be connected to solar collec- tors.

To install the cylinder temperature sensor, use the threaded elbow with sensor well provided in the standard delivery.

Information regarding continuous output

When designing the system for the continuous output as stated or cal- culated, allow for the corresponding circulation pump. The stated con- tinuous output is only achieved when the rated boiler output contin- uous output.

Vitocell 100-B with 300 and 400 l capacity is also available in white.

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(30)

300 litre capacity VA

343 b

a

c160013551115995875

26076

333935

WW

HV/SPR1 Z HR HVs/SPR2 TH

R ELH

KW/E HRs

Ø 100

SPR1/

SPR2

E Drain

ELH Immersion heater HR Heating water return

HRs Heating water return, solar thermal system HV Heating water flow

HVs Heating water flow, solar thermal system KW Cold water

R Inspection and cleaning aperture with flange cover (also suit- able for installation of an immersion heater)

SPR1 Cylinder temperature control sensor SPR2 Temperature sensors/thermometer TH Thermometer (accessory) VA Protective magnesium anode

WW DHW

Z DHW circulation

Cylinder capacity l 300

a mm 633

b mm 705

c mm 1746

DHW cylinder

(cont.)

2

(31)

400 and 500 litre capacity

k g

Ø 100l

455

h f

i e d c

Ø 650

a

b 881

m

VA ELH TH

R

WW

Z HV/SPR1

HRs HVs/SPR2 HR

KW/E

SPR1/

SPR2

E Drain

ELH Immersion heater HR Heating water return

HRs Heating water return, solar thermal system HV Heating water flow

HVs Heating water flow, solar thermal system KW Cold water

R Inspection and cleaning aperture with flange cover (also suit- able for installation of an immersion heater)

SPR1 Cylinder temperature control sensor SPR2 Temperature sensors/thermometer TH Thermometer (accessory) VA Protective magnesium anode

WW DHW

Z DHW circulation

Cylinder capacity

l 400 500

a mm 850 850

b mm 918 918

c mm 1630 1955

d mm 1458 1784

e mm 1204 1444

f mm 1044 1230

g mm 924 1044

h mm 804 924

i mm 349 349

k mm 107 107

l mm 422 422

m mm 864 984

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(32)

Cylinder temperature sensor for solar operation

Arrangement of cylinder temperature sensor in the heating water return HRs

A Cylinder temperature sensor (standard delivery of solar control unit)

B Threaded elbow fitting with sensor well (standard delivery)

Performance factor NL

To DIN 4708.

Upper indirect coil.

Cylinder storage temperature Tcyl = cold water inlet temperature +50 K

+5 K/-0 K

Cylinder capacity l 300 400 500

Performance factor NL at heating water flow temperature

90 °C 1.6 3.0 6.0

80 °C 1.5 3.0 6.0

70 °C 1.4 2.5 5.0

Information regarding performance factor NL

For multi-cylinder banks, the performance factor NL, the peak output and the max. draw off rate cannot be determined by multiplying the performance factor NL, the peak output and the max. draw off rate of the individual cylinders by the number of cylinders.

The performance factor NL varies according to the cylinder storage temperature Tcyl.

Standard values

■ Tcyl = 60 °C 1.0 × NL

■ Tcyl = 55 °C 0.75 × NL

■ Tcyl = 50 °C 0.55 × NL

■ Tcyl = 45 °C 0.3 × NL

Peak output (over 10 minutes) Relative to the performance factor NL. DHW heating from 10 to 45 °C.

Cylinder capacity l 300 400 500

Peak output (l/10 min) at heating water flow temperature

90 °C 173 230 319

80 °C 168 230 319

70 °C 164 210 299

Max. draw-off rate (over 10 minutes) Relative to the performance factor NL. With booster.

DHW heating from 10 to 45 °C.

Cylinder capacity l 300 400 500

Max. draw-off rate (l/min) at heating water flow temperature

90 °C 17 23 32

80 °C 17 23 32

70 °C 16 21 30

DHW cylinder

(cont.)

2

(33)

Information regarding max. draw-off rate

For multi-cylinder banks, the performance factor NL, the peak output and the max. draw off rate cannot be determined by multiplying the performance factor NL, the peak output and the max. draw off rate of the individual cylinders by the number of cylinders.

Available water volume Cylinder volume heated to 60 °C.

Without booster.

Cylinder capacity l 300 400 500

Draw-off rate l/min 15 15 15

Available water volume l 110 120 220

Water with t = 60 °C (constant)

Heat-up time

The heat-up times specified will be achieved subject to the maximum continuous output of the DHW cylinder being made available at the relevant heating water flow temperature and when DHW is heated from 10 to 60 °C.

Cylinder capacity l 300 400 500

Heat-up time (min.) at heating water flow temperature

90 °C 16 17 19

80 °C 22 23 24

70 °C 30 36 37

DHW cylinder (cont.)

VIESMANN

5727 210 GB

2

(34)

Pressure drop

500 600 800 1000 2000 3000 4000 5000 6000 8000 10000 3

45 6 108 20 30 4050 60 10080 200 300 400500 600 1000800

Pressure drop in mbar

Heating water throughput in litres/h A B C D

Pressure drop on the heating water side

A Cylinder capacity 300 l (upper indirect coil) B Cylinder capacity 300 l (lower indirect coil)

Cylinder capacity 400 and 500 l (upper indirect coil)

C Cylinder capacity 500 l (lower indirect coil) D Cylinder capacity 400 l (lower indirect coil)

500 600 800 1000 2000 3000 4000 5000 3

45 6 108 20 30 4050 60 10080

Pressure drop in mbar

DHW throughput in litres/h

A B

Pressure drop on the DHW side

A Cylinder capacity 300 l B Cylinder capacity 400 and 500 l

DHW cylinder

(cont.)

2

(35)

3.1 Heating circuit (secondary circuit) Instantaneous heating water heater (3/6/9 kW)

Part no. Z008 988

For installation into the Vitocal, can be plugged in electrically and hydraulically

■ High limit safety cut-out

■ Control module

■ Thermal insulation

Note

Type AWS-AC has an integral instantaneous heating water heater.

Secondary circuit circulation pump

As heating circuit pump or as circulation pump for cylinder heating

Circulation pump Energy Effi- ciency Cate- gory

Part no.

Wilo high efficiency circulation pump, type Stratos Para 25/1-7, 230 V~

with hydraulic connection acces- sories

A 7423 916

Grundfos standard circulation pump, type UPS 25-60, 230 V~

B 7338 851

Wilo curves, type Stratos Para 25/1-7

0 1 2 4 3 5 6 7

0 1 2 3 4

Head in m

Pump rate in m³/h

0 1 2 3 4

Pump rate in m³/h 0

40 60 Output in W

Grundfos curves UPS 25-60

3 2 1

0.5

0.0 1.0 1.5 2.0 2.5 0

1.0 2.0 3.0

UPS 25-60

3.0 3.5 4.0 4.0

Flow rate in m³/h

Head in m

4.5 5.0 5.0

6.0

Power consumption: 45 to 90 W

Installation accessories

VIESMANN

5727 210 GB

3

(36)

3.2 Cooling

Fan convectors Vitoclima 200-C

■ With three-way control valve

■ With 4-pipe heat exchanger for heating and cooling

■ For wall mounting

Fan convector Vitoclima 200-C Type V202H V203H V206H V209H

Z004 926 Z004 927 Z004 928 Z004 929

Plinth for floor mounting 7267 205

Air filter (5 pce) 7428 521 7428 522 7428 523

Specification

Fan convectors Vitoclima 200-C Type V202H V203H V206H V209H

Cooling capacity kW 2.0 3.4 5.6 8.8

Output kW 2.0 3.7 5.3 9.4

Power supply [terminals] 1/N/PE 230 V/50 Hz

Fan power consumption

at speed V1 W 45 57 107 188

at speed V2 W 37 47 81 132

at speed V3 W 27 39 64 112

at speed V4 W 19 36 55 101

at speed V5 W 16 33 41 90

Cooling valve

kv value m3/h 1.6 1.6 1.6 2.5

Connection R 1/2 R 1/2 R 1/2 R 3/4

Heating valve

kv value m3/h 1.6 1.6 1.6 1.6

Connection R 1/2 R 1/2 R 1/2 R 1/2

Condensate connection Ø mm 18.5 18.5 18.5 18.5

Thermostatically activated servomotor

Max. permiss. ambient temperature °C 50 50 50 50

Max. permiss. media temperature °C 110 110 110 110

Power consumption W 3 3 3 3

Rated current mA 13 13 13 13

Weight kg 20 30 39 50

Factory-set fan speed

Dimensions

73 c100

231204

90 170

ab

Front and side view

A Plinth (accessory)

Installation accessories

(cont.)

3

(37)

Type Dimensions in mm

a b c

V202H 768 762 478

V203H 1138 1132 478

V206H 1508 1502 478

V209H 1508 1502 578

100

a

b c d

Wall mounting (front view)

A Air outlet B Top

C 4 fixing holes 7 8 mm D Bottom

E Floor F Air inlet

Type Dimensions in mm

a b c d

V202H 500 430 360 150

V203H 870 430 360 150

V206H 1240 430 360 150

V209H 1240 530 365 157

100 100

g h

g h

220 220

ab a

b

cdef

c d e f

Position of the hydraulic connections (side view, both sides)

A R.H.

B L.H.

C Heating return connection D Cooling return connection E Heating flow connection F Cooling flow connection

Type Dimensions in mm

a b c d e f g h k

V202H 98 56 237 254 390 408 147 189 518

V203H 98 56 237 254 390 408 147 189 518

V206H 98 56 237 254 390 408 147 189 548

V209H 83 40 235 246 495 506 145 188 618

Room temperature sensor for separate cooling circuit

Part no. 7408 012

Installation in the room to be cooled on an internal wall, opposite radi- ators/heat sinks. Never install inside shelving units, in recesses, or immediately by a door or heat source (e.g. direct sunlight, fireplace, TV set, etc.).

Connect the room temperature sensor to the control unit.

Installation accessories (cont.)

VIESMANN

5727 210 GB

3

(38)

20

□80

Connection:

■ 2-core lead with a cross-section of 1.5 mm2 (copper)

■ Lead length from the remote control up to 30 m

■ Never route this lead immediately next to 230/400 V cables

Specification

Protection class III

IP rating IP 30 to EN 60529;

ensure through appropri- ate design/installation Permissible ambient temperature

– during operation 0 to +40 °C

– during storage and transport -20 to +65 °C

Contact temperature sensor

Part no. 7183 288

For capturing the flow temperature of the separate cooling circuit or the heating circuit without mixer, if it is designed as a cooling circuit.

42 40

76

Specification

Lead length 5.8 m, fully wired

IP rating IP 32 to EN 60529; ensure

through appropriate design and installation

Sensor type Viessmann Ni500

Permissible ambient temperature

– during operation 0 to +120 °C

– during storage and transport -20 to +70 °C

3-way diverter valve (R 1)

Part no. 7814 924

■ For bypass circuit of the heating water buffer cylinder in cooling mode

■ 2 pieces required

3.3 DHW heating with Vitocell 100-V, type CVW Solar heat exchanger set

Part no. 7186 663

■ For connecting solar collectors to the Vitocell 100-V, type CVW

Booster heater EHE

■ For installation in the flanged aperture in the lower section of the Vitocell 100-V, type CVW.

Part no. Z004 955

■ For installation in the flanged aperture in the upper section of the Vitocell 100-V, type CVW.

Part no. 7247 972

Only use the booster heater with soft to medium hard water up to 14

°dH (hardness level 2, up to 2.5 mol/m3).

The output can be selected: 2, 4 or 6 kW

Components:

■ High limit safety cut-out

■ Control thermostat

Note

A contactor relay, part no. 7814 681, is required for switching the booster heater via the heat pump.

Specification

Heating output kW 2 4 6

Rated voltage 3/N/PE 400 V/50 Hz

IP rating IP 54

Rated current A 8.7 8.7 8.7

Heat-up time from 10 to 60 °C

– Immersion heater, bottom h 8.5 4.3 2.8

– Immersion heater, top h 4.0 2.0 1.3

Installation accessories

(cont.)

3

(39)

Note

The immersion heaters part no. Z004 955 and 7147 972 must not be used for operation at 230 V~. In this case, commercially available immersion heaters must be used for operation with Vitocell 100-V, type CVW.

Impressed current anode

Part no. Z004 247

■ Maintenance free

■ In place of the supplied magnesium anode

3.4 DHW heating with Vitocell 100-B, type CVB Immersion heater EHE

■ Part no. Z004 954 For cylinder capacity of 300 l

■ Part no. Z004 955 For cylinder capacity of 500 l

For installation into the lower flanged aperture.

Only use with soft to medium hard water up to 14 °dH (hardness level 2, up to 2.5 mol/m3).

Optional heating output: 2, 4 or 6 kW

Components:

■ High limit safety cut-out

■ Temperature controller

Note

A contactor relay, part no. 7814 681, is required for switching the booster heater via the heat pump.

Specification

Output kW 2 4 6

Rated voltage 3/N/PE 400 V/50 Hz

IP rating IP 54

Rated current A 8.7 8.7 8.7

Heat-up time from 10 to 60 °C

– Immersion heater, bottom h 8.5 4.3 2.8

– Immersion heater, top h 4.0 2.0 1.3

Note

The immersion heaters part no. Z004 954 and Z004 955 must not be used for operation at 230 V~. In this case, commercially available immersion heaters must be used for operation with Vitocell 100-B, type CVB.

Safety equipment to DIN 1988

■ 10 bar

Part no. 7180 662

■ a 6 bar Part no. 7179 666 Components:

■ Shut-off valve

■ Non-return valve and test connector

■ Pressure gauge connector

■ Diaphragm safety valve

Installation accessories (cont.)

VIESMANN

5727 210 GB

3

(40)

3.5 Installation of the external unit Floor bracket for external unit

■ Part no. 7249 299 Floor bracket

2 pieces, length 450 mm

■ Part no. 7249 300 Cover for floor bracket 4 pce

For installation on a flat roof or level ground surface.

Bracket set for mounting the external unit on a wall

■ Part no. 7441 143 Type AWS 104 Type AWS-AC 104

■ Part no. Z008 956 Type AWS 107/110/113 Type AWS-AC 107/110/113

Design information

4.1 Power supply and tariffs

According to current Federal tariffs [Germany], the electrical demand for heat pumps is considered domestic usage. Where heat pumps are used to heat buildings, the local power supply company must first give permission [check with your local power supply company].

Check the connection conditions specified by your local power supply utility for the stated equipment details. It is crucial to establish whether a mono-mode and/or mono-energetic heat pump operation is feasible in the supply area.

It is also important to obtain information about standing charges and energy tariffs, about the options for utilising off-peak electricity during the night and about any power-off periods.

Address any questions relating to these issues to your customer's local power supply utility.

Application procedure

The following details are required to assess the effect of the heat pump operation on the grid of your local power supply utility:

■ User address

■ Location where the heat pump is to be used

■ Type of demand in accordance with general tariffs

(domestic, agricultural, commercial, professional and other use)

■ Intended heat pump operating mode

■ Heat pump manufacturer

■ Type of heat pump

■ Connected load in kW (from rated voltage and rated current)

■ Max. starting current in A

■ Max. heat load of the building in kW

4.2 Installation

Installing the external unit

The units are suitable for external installation and have a coating that offers a high level of corrosion protection.

Requirements of the installation room Note

The unit may only be installed in areas where temperatures below –10 °C only ever occur briefly during the course of the year.

We recommend that the unit is not installed in locations higher than 1000 m above sea level. Otherwise a drop in performance is to be expected.

■ Select a location with good air circulation, so that the cooled air can escape downwards and be replenished by the heated air.

■ Never install with the discharge side facing the main wind direction.

■ The heat exchanger of the external unit must not be blocked by leaves, snow, etc.

■ Never install in corners, recesses or between walls, as this leads to increases in sound emissions.

Note

The sound pressure level decreases by approx. 1 dB(A)/m out- doors.

■ Never install next to or below bedroom windows.

■ Never install closer than 3 m from pathways, downpipes or sealed surfaces. The cooled air in the discharge area creates a risk of ice forming when there are outside temperatures below 10 °C.

■ Easy accessibility for maintenance work (see minimum clearances on page 41).

Condensate drain requirements

■ Ensure that condensate can drain freely, route the condensate drain pipe with a slope and avoid counter-slopes.

■ If the condensate should soak away, create a firm gravel bed under the external unit. The drain pipe must terminate at a depth that is free from the risk of frost (at least 900 mm deep).

Installation accessories

(cont.)

4

Cytaty

Powiązane dokumenty

Terapia uza­ leżnień jest jednak znacznie trudniejsza niż profilaktyka, gdyż oprócz uczenia dojrzałej postawy wobec życia wymaga jednocześnie likwidowania biologicz­ nych

Wenn man eine mehr summarische Vorstellung gewinnen will über die Abnahme der Sink- sicherheit nach ein, zwei oder auch mehr Verletzungen für Schiffe, die mehr oder weniger

Our contributions are as follows. 1) We propose a generic occlusion aware multi-sensor Bayesian filter for object detection and tracking. 2) We apply the proposed filter as a radar

Taking as a starting point the work presented in [13] on PETC simplifies some of the constructions by reducing a line search over the reals (continuous time), as in [16], to a

Drobne pominięcia dostrzega się również w tych fragmentach „Rozmów”, gdzie profesor Mączak jako sty­ pendystów Towarzystwa Miłośników Historii pełniących dyżury w lektorium

N ie doszukując się wszystkich racji, które skłoniły praw odaw cę kościel­ nego do zaaplikow ania do spraw o nieważność m ałżeństwa norm zwyczaj­ nego procesu

Nie bez racji historycy praw a tra k tu ją konflikt Kościoła z rządem w owym czasie jako casus zderzenia się nowego ze starym : ustroju o sil­ nej,

Dzisiejsze potrzeby zarzπdzania zaspokaja w za- kresie wsparcia procesÛw podejmowania decyzji technologia informacyjna hur- towni danych, ktÛrej celem jest