• Nie Znaleziono Wyników

Estimation of hydrous-pyrolysis kinetic parameters for oil generation from Baltic Cambrian and Tremadocian source rocks with Type-II kerogen

N/A
N/A
Protected

Academic year: 2022

Share "Estimation of hydrous-pyrolysis kinetic parameters for oil generation from Baltic Cambrian and Tremadocian source rocks with Type-II kerogen"

Copied!
10
0
0

Pełen tekst

(1)

Es ti ma tion of hy drous-py rol y sis ki netic pa ram e ters for oil gen er a tion from Bal tic Cam brian and Tremadocian source rocks with Type-II kerogen

Dariusz WIĘCŁAW, Mi chael D. LEWAN and Maciej J. KOTARBA

Więcław D., Lewan M. D. and Kotarba M. J. (2010) – Es ti ma tion of hy drous-py rol y sis ki netic pa ram e ters for oil gen er a tion from Bal tic Cam brian and Tremadocian source rocks with Type-II kerogen. Geol. Quart., 54 (2): 217–226. Warszawa.

De ter min ing ki netic pa ram e ters for oil gen er a tion from a source rock by hy drous py rol y sis re quires a con sid er able amount of sam ple (ki - lo grams) and lab o ra tory time (sev eral weeks). In an ef fort to cir cum vent these re quire ments, hy drous-py rol y sis (HP) ki netic pa ram e ters for oil gen er a tion from Up per Cam brian and Tremadocian source rocks of the Bal tic re gion are es ti mated by two meth ods: (1) or ganic sul fur con tent in kerogen and (2) HP ex per i ments con ducted at 330 and 355°C for 72 h. Es ti mates for the Up per Cam brian source rocks based on or ganic sul fur con tents gave ac ti va tion en er gies from 47 to 56 kcal/mole and fre quency fac tors from 1.156 ´ 1025 to 1.078 ´ 1028 m.y.–1. Tremadocian source rocks based on or ganic sul fur con tent gave es ti mated ac ti va tion en er gies from 60 to 62 kcal/mole and fre quency fac tors from 1.790 ´ 1029 to 1.104 ´ 1030 m.y.–1. The es ti mates for the Tremadocian source rocks were less af fected by ther mal mat u ra tion be cause their low kerogen S/(S + C) mole frac tions (<0.018) re mained es sen tially con stant. Con versely, the higher kerogen S/(S + C) mole frac tions (>0.018) of the Up per Cam brian source rocks de creased with ther mal mat u ra tion and re sulted in over es ti ma tion of the ki netic pa ram e ters. The sec ond method was de signed to es ti mate ki netic pa ram e ters based on two HP ex per i ments. The as sump - tion that the max i mum yield in cal cu lat ing the rate con stant at 330°C (k330°C) could be de ter mined by a sec ond hy drous py rol y sis ex per i - ment at 355°C for 72 h proved not to be valid. In stead, a pre vi ously es tab lished re la tion ship be tween Rock-Eval hy dro gen in dex and max i mum HP yield for Type-II kerogen was used to cal cu late k330°C from oil yields gen er ated by the HP ex per i ment at 330°C for 72 h as - sum ing a first-or der re ac tion. HP ki netic pa ram e ters were de ter mined from re la tion ships be tween k330°C and the HP ki netic pa ram e ters pre vi ously re ported. These es ti mated HP ki netic pa ram e ters were in agree ment with those ob tained by the first method for im ma ture sam - ples, but un der es ti mated the ki netic pa ram e ters for sam ples at higher ther mal ma tu ri ties. Ap ply ing these es ti mated HP ki netic pa ram e ters to geo log i cal heat ing rates of 1 and 10°C/m.y. in di cated that the Up per Cam brian source rocks would gen er ate oil no ta bly ear lier than the over ly ing Tremadocian source rocks. This was con firmed in part by avail able data from two neigh bor ing bore holes in the Pol ish sec tor of the Bal tic.

Dariusz Więcław, Maciej J. Kotarba, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron men tal Pro tec tion, AGH Uni ver sity of Sci ence and Tech nol ogy, Mickiewicza 30, PL-30-059 Kraków, Po land, e-mails: wieclaw@agh.edu.pl, kotarba@agh.edu.pl; Mi chael D. Lewan, U.S.

Geo log i cal Sur vey, P.O. Box 25046, MS 977, Fed eral Cen ter, Den ver, CO 80225, USA, e-mail: mlewan@usgs.gov (re ceived: No vem ber 03, 2009; ac cepted: May 10, 2010).

Key words: Bal tic re gion, Cam brian, Or do vi cian, hy drous py rol y sis, or ganic sul fur, ki netic pa ram e ters, Type-II kerogen.

INTRODUCTION

The ki netic pa ram e ters for oil gen er a tion from pe tro leum source rocks are one of the most im por tant is sues in pe tro leum geo chem is try and ge ol ogy, es pe cially in mod el ling of pe tro leum pro cesses (Kosakowski et al., 2010; Wróbel and Kosakowski, 2010) and de fin ing pe tro leum sys tems (Kotarba et al., 2010).

The ki net ics of the or ganic mat ter trans for ma tions, and the re - lated pro cesses of pe tro leum gen er a tion, re flect or ganic mat ter struc ture and com po si tion and syn-sed i men tary and post-diagenetic pro cesses. Trans for ma tion of the or ganic mat ter dur ing the burial of pe tro leum source rocks in the de vel op ment of a sed i men tary ba sin over geo log i cal time re lies on chem i cal

ki net ics. There fore, de ter mi na tion of ki netic pa ram e ters is crit i - cal to de ter min ing the tim ing, ex tent, and lo ca tion of pe tro leum gen er a tion (e.g., Lewan and Ru ble, 2002; Kotarba et al., 2010).

The rate con stant (k) for pe tro leum gen er a tion from sed i - men tary or ganic mat ter is de scribed by the Arrhenius equa tion:

k= A0exp(-Ea /RT). The fre quency fac tor (A0) and ac ti va - tion en ergy (Ea) are the crit i cal ki netic pa ram e ters that equate tem per a ture (T) to rates of pe tro leum gen er a tion with the ideal-gas law con stant (R). Two fun da men tally dif fer ent meth - ods for de ter min ing these ki netic pa ram e ters are (i) iso ther mal closed-sys tem hy drous py rol y sis (HP; Lewan, 1985) and (ii) non-iso ther mal open-sys tem an hy drous py rol y sis (Rock-Eval, SR An a lyzer; Burnham and Braun, 1999). These meth ods dif fer not only in ex per i men tal con di tions, but in re ac tion prod ucts

(2)

and ki netic pa ram e ter der i va tions (Lewan and Ru ble, 2002;

Behar et al., 2003). The cred i bil ity of these pa ram e ters is sub - ject to dis cus sion (e.g., Burnham, 1998; Lewan, 1998a). How - ever, HP ki net ics have been shown to pro vide re sults more con - cur rent with con straints of geo log i cal and geo chem i cal data than Rock-Eval (RE) ki net ics for source rocks con tain ing high-sul fur or low-sul fur oil-prone kerogen (Ru ble et al., 2001;

Lewan and Ru ble, 2002; Lewan et al., 2006).

The pro ce dure for de ter min ing HP ki netic pa ram e ters is time-con sum ing and re quires sev eral ki lo grams of im ma ture sam ple. In some stud ies, pub lished HP ki netic pa ram e ters for oil gen er a tion from source rocks with Type-I, -II, and -IIS kerogen have been suc cess fully ap plied to source rocks with sim i lar kerogen types (Lewan, 2002; Pitman et al., 2004; Rob - erts et al., 2004). How ever, re la tion ships be tween ac ti va tion en er gies (Ea), fre quency fac tors (A0) and kerogen or ganic-sul - fur con tent pro vide an in di rect method of de ter min ing HP ki - netic pa ram e ters (Lewan, 1998b; Lewan and Ru ble, 2002;

Lewan et al., 2006) that are more spe cific to a given source rock (e.g., Higley et al., 2009). The ob jec tive of the cur rent study is to use this in di rect method to es ti mate HP ki netic pa - ram e ters for early Pa leo zoic source rocks with Type-II kerogen in the Bal tic region. In ad di tion, these es ti mated ki netic pa ram - e ters were tested on sam ples on which hy drous py rol y sis ex - per i ments at 330 and 355°C for 72 h have been con ducted.

SAMPLES AND METHODS

SAMPLES

Sam ples for this study are from on shore Es to nia and Swe - den, and on- and off-shore Po land (Fig. 1). The depths at which these sam ples were col lected and geo chem i cal data char ac ter iz - ing their kerogen types and ther mal ma tu rity are given in Ta - ble 1. The sam ples are ar ranged in or der of in creas ing ther mal ma tu rity based on the reflectance of vitrinite-like macerals.

Four sam ples (de noted in bold print in Ta ble 1) had suf fi cient quan ti ties and or ganic rich ness to con duct hy drous py rol y sis ex per i ments at 330 and 355°C for 72 h. The four sam ples rep re - sent one Up per Cam brian shale and three Tremadocian shales.

Three of them were col lected from cores of bore holes lo cal ized in the Pol ish Ex clu sive Eco nomic Zone of the Bal tic Sea op er - ated by LOTOS Petrobaltic S.A. Com pany, and one from a cliff ex po sure in the vil lage of Pakri (Es to nia; Fig. 1).

ANALYTICAL METHODS

Screen ing py rol y sis anal y ses of rock sam ples were car ried out with a Rock-Eval Model II in stru ment equipped with an or - ganic car bon mod ule. Mea sure ments of mean ran dom

Fig. 1. Sketch map of the Bal tic re gion show ing the lo ca tion of sam pled bore holes and out crops

(3)

vitrinite-like reflectance (Ro) were car ried out with a Zeiss-Opton microphotometer at a wave-length of 546 nm, in oil. Sam ple prep a ra tion and point counts were car ried out in ac - cor dance with the ICCP pro ce dure (Tay lor et al., 1998). Iso la - tion of kerogen for el e men tal anal y sis was achieved by Soxh let ex trac tion of pul ver ized sam ples with di chloro methane:meth a - nol (93:7 vol.), decalcification of the solid res i due with hy dro - chlo ric acid at room tem per a ture, re moval of sil i cates with con - cen trated hy dro flu oric acid, re moval of neoformed flu o ride phases with hot con cen trated HCl, heavy liq uid sep a ra tion (aque ous ZnBr2 so lu tion, den sity 2.1 g/ml), and Soxh let ex trac - tion with the above-men tioned sol vent mix ture. The el e men tal com po si tion of iso lated kerogen (C, H, N and S) was de ter - mined with a Carlo Erba EA 1108 el e men tal analyser. The quan tity of py rite re main ing in the kerogen con cen trate was ana lysed as iron, on a Perkin-Elmer Plasma 40 ICP-AES in - stru ment af ter di gest ing the ash from burned kerogen (815°C, 30 min.) with hy dro chlo ric acid. The or ganic sul fur con tent in kerogen was cal cu lated as the dif fer ence of to tal and py ritic sul - fur. The ox y gen con tent was cal cu lated as the dif fer ence of 100 per cent tak ing into ac count C, H, N, S, mois ture and ash con - tent. The cal cu lated atomic ra tios and the S/(S + C) mole frac - tions are given in Ta ble 1 for all the sam ples.

The hy drous py rol y sis ex per i ments in volved iso ther mally heat ing 400 g of crushed gravel-sized (0.5 to 2.0 cm) Up per Cam brian and Tremadocian shales in 1-litre Parr re ac tors com - posed of stain less-steel 316 or Hastelloy-C276 in the pres ence of 375 g of dis tilled wa ter for the shale ex per i ments. These pro -

por tions of rock and wa ter were cal cu lated ac cord ing to Lewan (1993a) to ensure that the rocks were in con tact with liq uid H2O (i.e., wa ter) be fore, dur ing, and af ter the ex per i ments. Af ter load ing and seal ing the re ac tor, the re main ing headspace was evac u ated and filled with 170 to 175 kPa of he lium. The re ac tor was then placed in an elec tric heater and brought to the de sired ex per i men tal tem per a ture. Iso ther mal heat ing was con ducted at tem per a tures of 330 and 355°C (±0.5°C). Cool-down times ranged from 18 to 24 h. At the end of the ex per i ments and fol - low ing gas col lec tion, the im mis ci ble ex pelled oil was quan ti ta - tively re moved from the wa ter sur face in the re ac tor with a Pas - teur pi pette and a ben zene rinse (Lewan, 1993a). Im mis ci ble oil quan tity was cal cu lated as the sum of the ex pelled oil re cov ered by the pi pette and evap o rated ben zene rinse.

ESTIMATION OF KINETIC PARAMETERS BASED ON ORGANIC SULFUR CONTENT IN KEROGEN

Lewan (1985) re ported that time-tem per a ture re la tions of oil gen er a tion can dif fer sig nif i cantly from one an other de pend - ing on their or ganic sul fur con tent. This di ver sity is ex plained in part by the fact that S-S and S-C bonds are weaker than C-C bonds in or ganic mat ter. As a re sult, these sul fur bonds break at lower ther mal ma tu ri ties and the free rad i cals they gen er ate ini - ti ate cleav age of C-C bonds at cor re spond ingly lower ther mal ma tu ri ties (Lewan, 1998b). There fore, kerogens with high or -

Borehole/sam ple

des ig na tion# Depth [m] Strat. Sam ple lo ca tion

TOC [wt.%]

Ro

[%]

Tmax

[oC] HI Kerogen Atomic Ra tios

Ea logA0

(log[1/h])

H/C O/C S/(S + C)

Pakri 1 out crop O–Tr Es to nia 16.5 0.33 421 448 0.92 0.05 0.011 60.0 19.31

AS-39 out crop Cm3 Swe den 15.5 0.48 426 292 0.94 0.06 0.021 54.7 17.57

AS-38 out crop Cm3 Swe den 16.4 0.51 425 325 0.96 0.05 0.025 52.6 16.87

AS-33* out crop Cm3 Swe den 13.2 0.52 424 350 1.12 0.07 0.035 47.3 15.12

B4-N1 comp. 1192–1197 Cm3 PL-off. 13.0 0.56 436 364 0.94 0.02 0.018 56.3 18.09

AS-36 out crop O–Tr Swe den 8.1 0.57 440 345 0.96 0.03 0.007 62.2 20.01

B6-3 comp. 1426–1438 Cm3 PL-off. 13.2 0.62 441 331 0.91 0.03 0.010 60.6 19.49

B3-9 1413.85 Cm3 PL-off. 14.0 0.63 430 424 1.10 0.04 0.010 60.6 19.49

B4-1 1103.70 O–Tr PL-off. 10.8 0.73 441 353 1.01 0.03 0.004 63.7 20.54

B7-1 comp. 2320–2323 O–Tr PL-off. 9.6 0.74 434 289 0.93 0.04 0.012 59.5 19.14

B21-1 1731.70 Cm3 PL-off. 14.6 0.84 440 245 0.87 0.03 0.008 61.6 19.84

B6-2 comp. 1432–1438 O–Tr PL-off. 10.6 0.86 441 302 0.95 0.02 0.008 61.6 19.84

Dębki 3 (Db 3) 2680.90 Cm3 PL-on. 7.2 0.99 438 101 0.81 0.06 0.012 59.5 19.14

B16-1 1847.50 Cm3 PL-off. 9.5 1.00 439 131 0.74 0.05 0.010 60.6 19.49

Białogóra 4K

(Bg 4K) 2775.20 Cm2 PL-on. 4.9 1.01 447 117 0.81 0.04 0.016 57.4 18.44

B16-1 1857.60 Cm3 PL-off. 8.8 1.03 441 154 0.75 0.04 0.011 60.0 19.31

Białogóra 3 (Bg 3) 2681.10 Cm3 PL-on. 10.8 1.03 436 134 0.77 0.03 0.012 59.5 19.14

Żarnowiec 6K

(Zn 6K) 2828.50 Cm3 PL-on. 8.8 1.05 443 104 0.75 0.04 0.007 62.2 20.01

# – sam ples used in hy drous py rol y sis ex per i ments de noted in bold print; Strat. – stra tig ra phy; Ro – reflectance of the vitrinite-like macerals; Tmax – max i - mal tem per a ture of the S2 peak (Rock-Eval); HI – hy dro gen in dex [mg HC/g TOC]; Ea – ac ti va tion en ergy [kcal/mol]; A0 – fre quency fac tor; Cm2 – Mid dle Cam brian, Cm3 – Up per Cam brian, O–Tr – Or do vi cian–Tremadocian; PL – Po land, off. – off shore, on. – on shore; * – geo chem i cal data af ter Lewan and Buchardt (1989)

T a b l e 1 Lo ca tion and geo chem i cal de scrip tion of rock sam ples and ki netic pa ram e ters es ti mated from S/(S + C) of iso lated kerogen

(4)

ganic sul fur con tents have lower ac ti va tion en er gies than low-sul fur kerogens. This is in agree ment with ob ser va tions by Orr (1986) that pe tro leum gen er a tion from source rocks with high or ganic sul fur kerogen (i.e., Type-IIS) starts at lower stages of catagenesis. Lewan and Ru ble (2002) re ported an ex - cel lent cor re la tion (r2 = 0.995) be tween HP ki netic pa ram e ters and or ganic sul fur con tent in the im ma ture kerogen de noted as a mole frac tion with car bon [i.e., S/(S + C)], as ex pressed in Equa tion 1.

Ea = -530 73. [ / (S S+C)]+65 87. [1]

Lewan and Ru ble (2002) also re ported an ex cel lent cor re la - tion (r2 = 0.999) be tween ac ti va tion en er gies (Ea, kcal/mole) and fre quency fac tors (A0, [1/h]) de ter mined by hy drous py rol - y sis. This com pen sa tion re la tion is ex pressed in Equa tion 2.

logA0 = (Ea -1335. ) / .3 039 [2]

These two equa tions may be used to es ti mate HP ki netic pa - ram e ters of a source rock by de ter min ing the or ganic sul fur and car bon con tent of its im ma ture Type-II kerogen.

ESTIMATION OF KINETIC PARAMETERS BASED ON RESULTS OF TWO HYDROUS PYROLYSIS

EXPERIMENTS

This method for es ti mat ing HP ki netic pa ram e ters in volved con duct ing two hy drous py rol y sis ex per i ments on aliquots of the four source rock sam ples. One ex per i ment is in tended to es - ti mate a max i mum oil yield, which for Type-II kerogen typ i - cally oc curs at or near 355 ±5°C for 72 h (Lewan and Ru ble, 2002). The other ex per i ment con ducted at a lower ther mal stress con di tion is in tended to de ter mine a rate con stant at a given tem per a ture. This study uses the ex pelled oil yields from ex per i ments con ducted at 330°C for 72 h to de ter mine rate con - stants (i.e., k330°C) be cause this con di tion typ i cally yields 30 to 60 per cent of the max i mum ex pelled oil gen er a tion for Type-II kerogen (e.g., Lewan and Ru ble, 2002; Lewan et al., 2006).

Re la tion ships be tween k330°C and ac ti va tion en er gies and fre quency fac tors of pre vi ously re ported HP ki netic pa ram e - ters (Lewan and Ru ble, 2002) pro vide ex pres sions that can be used to es ti mate Ea and A0 based on one rate con stant.

These re la tion ships for rate con stants cal cu lated with Equa - tion 1 for 330°C (i.e., k330°C) are plot ted against their ac ti va - tion en er gies and fre quency fac tors in Fig ure 2A and B.

A good cor re la tion (r2 = 0.9564) for ln k330°C with ac ti va tion en er gies is ex pressed by:

Ea = -12 07. (lnk330°C)-8 49. [3]

and a good cor re la tion (r2 = 0.9469) for ln k330°C with the fre - quency fac tors is ex pressed by:

lnA0 = -9 074. (lnk330°C)-7 086. [4]

Es ti mat ing k330°C with ex pelled oil yields from one ex per i - ment as sumes a first or der re ac tion rate ex pressed as:

( )

[ ]

{ }

kT = ln 1/ 1- XT /t [5]

where: T is 330°C, X is the frac tion of ex pelled oil and t is 72 h.

The frac tion X is ex pressed as the ex pelled oil yield at 330°C af ter 72 h di vided by the max i mum ex pelled oil yield of the source rock in hy drous py rol y sis ex per i ments.

As sum ing that the yields of ex pelled oil at 355°C af ter 72 h rep re sent max i mum yields, a re la tion ship be tween HP max i - mum yields for im ma ture source rocks with Type-II kerogen (HPmax oil) and Rock-Eval hy dro gen in di ces (HI) has been es - tab lished by Lewan et al. (2006). This re la tion ship shows a good cor re la tion (r2 = 0.9428) be tween the two pa ram e ters based on eight dif fer ent source rocks and is ex pressed as:

HPmaxoil =HI/ .2 028 [6]

Fig. 2A – ac ti va tion en ergy; B – log a rithm of fre quency fac tor ver sus the rate con stant for 330°C from pre vi ously pub lished HP ki netic

pa ram e ters (Lewan and Ru ble, 2002)

GR – Green River Fm., NA – New Al bany Shale, WD – Wood ford Shale, A – Alum Shale, P – Phosphoria Fm., MR – Monterey Fm.

(5)

RESULTS AND DISCUSSION

GENETIC TYPE AND MATURITY OF THE ORGANIC MATTER

Rock-Eval hy dro gen in dex ver sus Tmax tem per a ture (Fig. 3) and atomic H/C ver sus O/C ra tios (Fig. 4) in di cate that Type-II kerogen is pre dom i nant in all of the sam ples con firm ing the re - sults of e.g., Bharati et al. (1992, 1995), Schleicher et al. (1998) and Lewan and Buchardt (1989). The ma tu rity in di ces of the or ganic mat ter (Rock-Eval Tmax and HI, kerogen H/C atomic ra tio and reflectance of the vitrinite-like macerals) are ev i dence that ther mally im ma ture or low ma tu rity sam ples were re -

Fig. 3. Rock-Eval hy dro gen in dex ver sus Tmax tem per a ture for rec og ni tion of kerogen type and de ter min ing the ther mal ma tu rity of or ganic mat ter in Cam brian and Tremadocian source

rocks of the Bal tic re gion

Trend lines of in di vid ual kerogen types (I, II and III) and ma tu rity ranges af ter Espitalié et al. (1985); Ro – vitrinite reflectance scale

Fig. 4. Atomic H/C ver sus atomic O/C ra tios of iso lated kerogen from Cam brian and Tremadocian source rocks of the Bal tic re gion

Kerogen type and ther mal ma tu rity bound aries af ter Hunt (1996);

Ro – vitrinite reflectance scale

Fig. 5A – Rock-Eval Tmax; B – Rock-Eval hy dro gen in dex;

C – kerogen atomic H/C ra tio ver sus reflectance of vitrinite-like macerals

Curves are based on best-fit re gres sions us ing all of the data

(6)

stricted to out crops in Swe den and Es to nia as pre vi ously re - ported by Buchardt et al. (1986), Lewan and Buchardt (1989), Buchardt and Lewan (1990), Leventhal (1991), Bharati et al.

(1992, 1995), and Johannes et al. (2007). In the Pol ish part of the Bal tic re gion Cam brian and Or do vi cian source rocks are early- and mid-ma ture (Ta ble 1 and Figs. 3–5). Schleicher et al.

(1998) and Grotek (2006) dem on strated late- and post-ma ture phase con di tions in the deep bur ied lev els close to the Teisseyre-Tornquist Zone. Fig ure 5 shows that there are gen - eral re la tion ships be tween Tmax, hy dro gen in dex, atomic H/C ra tio and the reflectance of vitrinite-like macerals, but these pa - ram e ters are de pend ent on the ki net ics of pe tro leum for ma tion as de scribed by Lewan (1985). For this rea son, the vitrinite-like reflectance val ues are used as a ther mal stress in di ca tor. As re - ported by Buchardt and Lewan (1990), these reflectance val ues are sup pressed rel a tive to true vitrinite de rived from vas cu lar plants but do in crease with in creas ing ther mal ma tu rity. The scat ter around the gen eral trends in Fig ure 5 may re flect dif fer - ences in the pe tro leum-gen er a tion ki netic pa ram e ters of the sam ples as well as the in flu ence of ra dio ac tive el e ments, oc cur - ring some times in large amounts (Lewan and Buchardt, 1989).

HP KINETIC PARAMETERS ESTIMATED FROM ORGANIC SULFUR CONTENT IN KEROGEN

Based on the kerogen S/(S + C) mole frac tions, the ac ti va - tion en er gies were es ti mated with Equa tion 1 and are given in Ta ble 1 for all the sam ples ir re spec tive of their ther mal ma tu rity lev els. These es ti mated ac ti va tion en er gies were in turn used to es ti mate fre quency fac tors with Equa tion 2. Sam ple AS-33 from Up per Cam brian strata in south ern Swe den has the low est Ea

value of 47.3 kcal/mol, which is sim i lar but slightly less than the 48.1 kcal/mol de ter mined by Lewan and Buchardt (1989). The high est es ti mated Ea is 63.7 kcal/mol for sam ple B4-1 from the Tremadocian strata from a depth of 1.104 m in the Pol ish sec tor of the Bal tic Sea. The range of these two ex treme val ues are from sam ples that have low ther mal ma tu ri ties (vitrinite-like reflectance <0.8%). Kerogen S/(S + C) mole frac tions are ex - pected to de crease with in creas ing ther mal ma tu rity, but they are not sig nif i cantly lower in the more ma ture rocks (vitrinite-like reflectance >0.8%) and as a re sult the es ti mated Ea val ues re main within the range of 47 to 64 kcal/mol (Ta ble 1). Al though S/(S + C) mole frac tions of Type-IIS kerogen have been shown to de crease sig nif i cantly with ther mal mat u ra tion in hy drous py -

rol y sis ex per i ments (Idiz et al., 1990; Nel son et al., 1995;

Amrani et al., 2005), hy drous py rol y sis of source rocks with Type-II kerogen show es sen tially no change (Curtis et al., 2004).

This be hav iour is shown cor re lat ing S/(S + C) mole frac tions of Menilite Shales with Type-II and -IIS kerogen (Curtis et al., 2004), Ghareb Lime stone with Type-IIS kerogen (Amrani et al., 2005) and four sam ples from this study be fore and af ter hy drous py rol y sis ex per i ments (Fig. 6). Even though in di vid ual rocks were heated in dif fer ent con di tions (Menilite Shales – two-step se quen tial HP con ducted in 330°C/72 h fol lowed by 355°C/72 h;

Ghareb Lime stone – 365°C/72 h and Bal tic sam ples – 355°C/72 h) they prob a bly reach ma tu ri ties cor re spond ing to the fi nal stage of the low-tem per a ture thermogenic pro cess (Ro 1.6–1.7%). This state ment con firms pre vi ous stud ies:

Kotarba et al. (2009) showed that the heat ing at 330°C for 72 h and the sub se quent heat ing of the same sam ple at 355°C for 72 h gave a fi nal vitrinite reflectance of 1.60% Ro, Lewan (1985)

Fig. 6. Plot of kerogen S/(S + C) mole frac tions be fore and af ter ther - mal mat u ra tion by hy drous py rol y sis of sam ples used in this study and from Curtis et al. (2004) for the Menilite Shales and Amrani et al.

(2005) for the Ghareb Lime stone

The ver ti cal dashed line sep a rat ing Type-II and -IIS kerogen is based on the con ver sion of the atomic S/C ra tio of 0.04 de fined by Orr and

Sinninghe Damst¾ (1990) to a S/(S + C) mole frac tion of 0.0385

Geo logic Age Units Ea [kcal/mol] logA0 (log[1/h])

Or do vi cian–Tremadocian Mean Min i mum Max i mum Mean Min i mum Max i mum

0.3 to 0.6% Ro (n = 2) 61.1 ±1.5 60.0 62.2 19.66 ±0.49 19.31 20.01

0.6 to 0.9% Ro (n = 3) 61.6 ±2.1 59.5 63.7 19.84 ±0.70 19.14 20.54

Up per Cam brian

0.3 to 0.6% Ro (n = 4) 52.7 ±3.9 47.3 56.3 16.91 ±1.29 15.12 18.09

0.6 to 1.1% Ro (n = 8) 60.6 ±0.6 59.5 62.2 19.49 ±0.31 19.14 20.01

n – num ber of sam ples; other ex pla na tions as in Ta ble 1

T a b l e 2 Mean, stan dard de vi a tion, and range of es ti mated HP ki netic pa ram e ters based on or ganic sul phur con tent of kerogens within

spec i fied ther mal ma tu rity ranges based on reflectance of vitrinite-like macerals

(7)

showed that the ex per i ment at 365°C for 72 h re sults to a vitrinite reflectance greater than 1.67% Ro, and ac cord ing to Lewan (1993b) the ma tu rity of or ganic mat ter af ter ex per i ment at 355°C for 72 h cor re sponds in a vitrinite reflectance of 1.63% Ro.

The im pli ca tion is that S/(S + C) mole frac tions of im ma - ture Type-II kerogen with val ues less than ~0.018 do not change with ther mal mat u ra tion within the range of oil gen er a - tion. As show in Fig ure 6, S/(S + C) mole frac tions of some im - ma ture kerogens (e.g., B7-1) with val ues less than 0.018 can in - crease with ther mal mat u ra tion. The S/(S + C) mole frac tions of ma ture kerogens can be used with cau tion to de ter mine HP ki - netic pa ram e ters, pro vided that there is ev i dence that their im - ma ture equiv a lent was a Type-II kerogen with low or ganic-sul - fur con tents (i.e., S/(S + C) <0.018). Ta ble 1 shows that four of the six ther mally im ma ture (vitrinite-like reflectance <0.6% Ro) source rocks have S/(S + C) mole frac tions equal to or greater than 0.018. As a re sult, as sum ing a con stant S/(S + C) mole frac tion for the ther mally ma ture source rocks this would over - state the es ti mated HP ki netic pa ram e ters. This can be seen in the mean val ues of the es ti mated ki netic pa ram e ters grouped by geo log i cal-age units and ther mal ma tu rity ranges in Ta ble 2.

Al though the num ber of sam ples is lim ited, sev eral gen eral ob - ser va tions can be made. Up per Cam brian source rocks, for which there is the most data, show that the Ea val ues of the ther - mally ma ture sam ples (Ro >0.6%) are over stated, since im ma - ture sam ples have a mean of 52.7 ±3.9 kcal/mole and the ther - mally ma ture sam ples have a mean of 60.6 ±0.6 kcal/mol (Ta - ble 2). This is ex pected for the Up per Cam brian source rocks be cause all four im ma ture sam ples have S/(S + C) mole frac - tions equal to or greater than 0.018. The Tremadocian source rocks show no sig nif i cant dif fer ence be tween the mean Ea val - ues of the im ma ture and ma ture sam ples (Ta ble 2; 61.1 and 61.6 kcal/mol, re spec tively). The con stancy of the es ti mated HP ki netic pa ram e ters with ther mal mat u ra tion is ex plained in part by the Type-II kerogen in the two im ma ture Tremadocian sam ples hav ing S/(S + C) mole frac tions less than 0.02 (Ta - ble 1). Es ti mated ki netic pa ram e ters for the Up per Cam - brian–Tremadocian source rocks may be in flu enced by ir ra di a - tion of or ganic mat ter by ra dio genic el e ment de cay (Lewan and Buchardt, 1989). With only one sam ple of a Mid dle Cam brian source rock, which is ther mally ma ture (vitrinite-like reflectance of 1.01% Ro) it is dif fi cult to as sess the util ity of its es ti mated HP ki netic pa ram e ters. How ever, its S/(S + C) mole

frac tion of 0.016 (Ta ble 1) sug gests the es ti mated HP ki netic pa ram e ters are likely over stated.

KINETIC PARAMETERS ESTIMATED FROM HYDROUS PYROLYSIS EXPERIMENTS

The es ti ma tion of ki netic pa ram e ters from HP ex per i ments re quires knowl edge of the max i mum oil yield of a source rock to cal cu late the frac tion of re ac tion (X) at 330°C af ter 72 h. The two ap proaches used here to de ter mine the max i mum yield are (1) the re la tion ship be tween max i mum HP yield and Rock-Eval HI for im ma ture Type-II and -IIS kerogen (Equa - tions 6) and (2) a hy drous py rol y sis ex per i ment at 355°C af ter 72 h as sum ing that this gives the max i mum oil yield. The two ap proaches give dif fer ent max i mum yields (Ta ble 3). Equa - tion 6 con sis tently gives higher max i mum yields than those de - ter mined by HP. This sug gests that as sum ing max i mum yields for hy drous py rol y sis of a source rock at these con di tions is too low rel a tive to max i mum yields de ter mined by Equa tion 6.

This is a re sult of the as sump tion that 355°C for 72 h rep re sents con di tions for max i mum oil gen er a tion for all source rocks.

Lewan and Ru ble (2002) have re ported max i mum yields of some source rocks at 360°C for 72 and 96 h and Lewan et al.

(2006) at 360 and 365°C for 72 h. There fore, the im pre ci sion of this as sump tion ne gates the uni ver sal use of 355°C for 72 h to de ter mine max i mum oil yields, and only Equa tion 6 is used to es ti mate max i mum oil yields. This as sump tion is re stricted only to Type-II and -IIS kerogens (Lewan et al., 2006).

Us ing the max i mum yields from Equa tion 6, the frac tion of re ac tion (X) was de ter mined for the source rocks at 330°C af ter 72 h. These X val ues were used in Equa tion 5 to cal cu late the rate con stants at 330°C (k330°C) and are given in Ta ble 3. The k330°C val ues are used in Equa tions 3 and 4 to es ti mate hy drous py rol y sis Ea and A0 val ues, re spec tively. These es ti mated val - ues in Ta ble 3 are com pared with those es ti mated by S/(S + C) mole frac tions (Ta ble 1) in Fig ure 7. The two im ma ture source rocks (vitrinite-like reflectance <0.6%) show good agree ment with dif fer ences in Ea val ues less than 1 kcal/mole and log A0

val ues less than 0.6. How ever, dif fer ences be come greater with in creas ing ther mal ma tu rity as shown by the ma ture source rocks (vitrinite-like reflectance >0.6%). In both ma ture source rocks, the ki netic pa ram e ters es ti mated by the S/(S + C) mole frac tions are higher. This can be ex plained in part by the ma ture

Bore hole/

sam ple Ro

[%] HI

Max i mum Yield

[mg/g TOC] Oil Yield at 330°C/72 h k330°C

[1/h]

Ea

[kcal/mol]

lnA0

(ln[1/h]) A0

[1/m.y.]

HI vs. HP* 355°C/72 h [mg/g TOC] X*

Pakri 1 0.33 448 221.1 105.7 42.1 0.1903 2.931E-03 61.9 45.84 7.073E+29

B4-N1

comp. 0.56 364 179.6 118.7 47.2 0.2628 4.235E-03 57.5 42.50 2.508E+28

B7-1 comp. 0.74 289 142.6 86.0 37.4 0.2620 4.220E-03 57.5 42.53 2.594E+28

B6-2 comp. 0.86 302 148.8 117.1 54.5 0.3660 6.330E-03 52.6 38.85 6.547E+26

X – frac tion of the re ac tion; k – rate con stant; * – cal cu lated on the ba sis of a max i mum yield de ter mined by the HP ver sus RE re la tion ship (Equa tion 6);

** – cal cu lated with a max i mum yield de ter mined by Equa tion 3, *** – cal cu lated us ing Equa tion 4; other ex pla na tions as in Ta ble 1

T a b l e 3 Re sults of es ti mat ing HP ki netic pa ram e ters based on two hy drous py rol y sis ex per i ments; one ex per i ment at 355°C for 72 h

to es ti mate max i mum yield, and the other ex per i ment at 330°C for 72 h to es ti mate a first-or der rate con stant

(8)

sam ples hav ing lower Rock-Eval HI val ues, which give lower max i mum oil yields in Equa tion 6. This trans lates into higher rate con stants at 330°C (k330°C) re sult ing A0 [1/m.y.] in lower ki - netic pa ram e ters. There fore, es ti mates of HP ki netic pa ram e - ters based on S/(S + C) mole frac tions of Type-II kerogen ap - pear less sen si tive to the ther mal ma tu rity of the source rock than those based on the two HP ex per i ments. How ever, this con clu sion should be re stricted to Type-II kerogen and will not ap ply to Type-IIS kerogen be cause of sig nif i cant changes in their S/(S + C) mole frac tions with ther mal mat u ra tion (Fig. 6).

GEOLOGICAL IMPLICATIONS

The ge ol ogy and ther mal his tory of the Bal tic re gion are com plex and com pli cated (e.g., Ulmishek, 1990; Brangulis et al., 1992; Karnkowski, 2003; Modliński and Podhalańska, 2010;

Pokorski, 2010; Poprawa et al., 2010) and they are im pos si ble to de scribe by one gen eral model. There fore, in our study the geo - log i cal im pli ca tions of the es ti mated HP ki netic pa ram e ters were ex am ined in sim ple 1-D burial his to ries for geo log i cal heat ing rates of 1 and 10°C/m.y. (Gretener and Curtis, 1982). They were ad justed to the geo log i cal and ther mal con di tions of the Pol ish part of the Bal tic re gion for mod el ling of pe tro leum pro cesses by Kosakowski et al. (2010) and Wróbel and Kosakowski (2010).

Fig ure 8 shows oil-gen er a tion curves us ing the HP ki netic pa - ram e ters es ti mated from the kerogen or ganic-sul fur con tents of the Tremadocian and Up per Cam brian source rocks (Ta ble 2) with geo log i cal time for these two heat ing-rate end mem bers.

The small stan dard de vi a tions for the HP ki netic pa ram e ters of the Tremadocian source rocks (Ta ble 2) are re flected in the nar - row tim ing dif fer ences be tween the max i mum, mean, and min i - mum curves at both heat ing rates (Fig. 8). The mean curve in di - cates that 10% of oil gen er a tion (TR = 0.10) from Tremadocian source rocks would have started be tween 485 and 360 Ma de - pend ing on the heat ing rate. As in di cated by the larger stan dard de vi a tion for the HP ki netic pa ram e ters of the Up per Cam brian source rocks (Ta ble 2), a greater dif fer ence oc curs be tween the min i mum, mean, and max i mum trans for ma tion curves than be - tween those of the Tremadocian source rocks (Fig. 8). It is note - wor thy that the Up per Cam brian source rocks will ma ture ear lier (i.e., at lower ther mal ma tu ri ties) than the over ly ing Trema - docian source rocks. The mag ni tude of this dif fer ence will de - pend on the spe cific ki netic pa ram e ters of the Up per Cam brian source rocks, which show the great est vari abil ity. As an ex am - ple, at a heat ing rate of 10°C/m.y., the mean Tremadocian source rock will have an oil trans for ma tion ra tio of 0.02 at 486 Ma and its un der ly ing Up per Cam brian source rock could have an oil trans for ma tion ra tio of 0.13, 0.50 or 1.0 de pend ing on whether its ki netic pa ram e ters fol lowed the min i mum, mean, or max i - mum curves, re spec tively (Fig. 8A). At the lower heat ing rate, the mean Tremadocian source rock will have an oil trans for ma -

Fig. 7A – ac ti va tion en er gies (Ea); B – log of fre quency fac tors (A0) es ti - mated from kerogen S/(S + C) mole frac tions (solid cir cles con nected with solid line) and by HP ex per i men tally de ter mined k330°C (open cir - cles con nected with dashed line) ver sus reflectance of vitrinite-like macerals

Fig. 8A – oil trans for ma tion ra tios cal cu lated for es ti mated min i mum, mean and max i mum HP ki netic pa ram e ters for Tremadocian and Up - per Cam brian source rocks sub jected to geo log i cal heat ing rates of 10°C/m.y. and B – 1°C/m.y. ver sus geo log i cal time

Ki netic pa ram e ters are in Ta ble 3

(9)

tion ra tio of 0.02 at 372 Ma and its un der ly ing Up per Cam brian source rock could have a trans for ma tion ra tio of 0.15, 0.61, or 1.0 de pend ing on whether its ki netic pa ram e ter fol lowed the min i mum, mean, or max i mum curves, re spec tively (Fig. 8B).

Test ing this pre dic tion re quires hav ing nat u ral data of both units in close prox im ity to one an other that are in the ma tur ing stages of oil gen er a tion. The sam ples from the B4-1 and B4-N1 bore - holes pro vide this sit u a tion, with a Tremadocian sam ple from B4-1 bore hole and an Up per Cam brian sam ple from the neigh - bor ing B4-N1 bore hole (Ta ble 1 and Fig. 1). Lewan (1985, Fig. 5) has re ported a good cor re la tion be tween oil trans for ma - tion ra tios (X) and kerogen atomic H/C ra tios that is in de pend ent of ki netic pa ram e ters for Type-II and -IIS kerogen. Re cal cu lat - ing his poly no mial ex pres sion to solve for oil trans for ma tion ra - tio (X) gives:

X = 2.662(H/C)3 –4.992(H/C)2 +0.785(H/C) +1.653 [7]

Us ing this ex pres sion, the atomic H/C ra tios for the two sam ples give oil trans for ma tion ra tios of 0.097 for the Tremadocian sam ple and 0.191 for the Up per Cam brian sam - ple. These are sig nif i cant dif fer ences con sid er ing the dif fer - ence in depth be tween the sam ples is only ~90 m in the two neigh bour ing bore holes. Al though more subsurface data for these two source rocks in the ma tur ing stages of oil gen er a tion are needed, the avail able data does in di cate that, based on the es ti mated HP ki net ics, the Up per Cam brian source rocks gen - er ate oil no ta bly ear lier than the Tremadocian source rocks.

CONCLUSIONS

The best ap proach to de ter mine oil-gen er a tion ki net ics by hy drous py rol y sis is with a com plete set of tem per a ture and time ex per i ments as dis cussed by Lewan and Ru ble (2002) and Lewan et al. (2006). This com plete ex per i men tal se ries may re - quire 14 to 18 HP ex per i ments, i.e. the large amount of im ma - ture sam ple and ex per i men tal time. To cir cum vent these re - quire ments, two meth ods for es ti mat ing HP ki netic pa ram e ters were eval u ated: (i) us ing the S/(S + C) mole frac tions of im ma - ture kerogen and their re la tion ship to pre vi ously es tab lished HP ki netic pa ram e ters to es ti mate ac ti va tion en er gies (Ea) and fre quency fac tors (A0) and (ii) based on re sults from two hy - drous py rol y sis ex per i ments to de ter mine a rate con stant at 330°C (k330°C). Us ing the first method, the Bal tic Up per Cam - brian and Tremadocian im ma ture source rocks had mean es ti - mated Ea val ues of 52.7 ±3.9 and 61.1 ±1.5 kcal/mol and logA0

val ues of 16.91 ±1.29 and 19.66 ±0.49 (log [1/h]), re spec tively.

Be cause of these pa ram e ters, de pend ing on S/(S + C) ra tio, can

change with mat u ra tion, es ti ma tions made by this method should be re stricted to im ma ture source rocks un less prior knowl edge of how their kerogen S/(S + C) mole frac tions be - have with in creas ing ma tu rity is ob tained.

The es ti mated HP ki netic pa ram e ters for the two im ma ture sam ples by the sec ond method were in good agree ment with those es ti mated by the first method. The Up per Cam brian source rocks had an es ti mated Ea value of 57.5 kcal/mol and A0

value of 2.594 ´ 1028m.y.–1. The Tremadocian source rocks had a mean es ti mated Ea value of 61.9 kcal/mol and A0 value of 7.073 ´ 1029m.y.–1. How ever, the es ti mated HP ki netic pa ram e - ters for the ma ture sam ples con sis tently gave lower val ues than those es ti mated from the first method based on kerogen S/(S + C) mole frac tions.

Both meth ods of es ti mat ing HP ki netic pa ram e ters for source rocks with Type-II kerogen are ap pli ca ble when small amounts of sam ple and lim ited time re strict de ter mi na tions by a com plete se ries of hy drous py rol y sis ex per i ments at var i ous times and tem per a tures. The val ues es ti mated for the Bal tic source rocks pre dict that Up per Cam brian source rocks will gen er ate ex pelled oil at no ta bly lower ther mal ma tu ri ties than over ly ing Tremadocian source rocks. This pre dic tion from the es ti mated HP ki netic pa ram e ters is in part con firmed by sam - ples from neigh bour ing bore holes.

Ac knowl edge ments. This re search was fi nan cially sup - ported by the Pol ish Min is try of En vi ron ment grant no.

180/2005/Wn-06/FG-sm-tx/D. An a lyt i cal work by A. Kowal - ski, H. Zych and T. Kowalski from the AGH Uni ver sity of Sci - ence and Tech nol ogy in Kraków is grate fully ac knowl edged.

The au thors also thank Prof. M. Wag ner from the AGH Uni - ver sity of Sci ence and Tech nol ogy in Kraków, I. Grotek from the Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute in War saw and M. Pawlewicz from the U.S. Geo log i cal Sur vey in Den ver for de ter mi na tion of reflectance on vitrinite-like macerals. We are very grate ful to A. Shogenova and V. Kattai from the Es to nian Acad emy of Sci ences in Tallinn, P. Kosakowski and A. Kowalski from the AGH Uni ver sity of Sci ence and Tech nol ogy in Kraków, and A. Karczewska from the LOTOS Petrobaltic S.A. Com pany in Gdańsk for their help in col lect ing the rock sam ples. The au thors also greatly ap - pre ci ate the thor ough re views by J. Curtis (Col o rado School of Mines, Golden), T. Ru ble (Weatherford Labs, Hous ton), M. Ellis (USGS, Den ver), J. Koester (Oldenburg Uni ver sity) and O. Zdanaviciute (In sti tute of Ge ol ogy and Ge og ra phy, Vilnus) which greatly en hanced the clar ity and ex act ness of the manu script. Any use of trade, prod uct, or firm names is for de - scrip tive pur poses only and does not im ply en dorse ment by the U. S. Gov ern ment.

REFERENCES

AMRANI A., LEWAN M. D. and AIZENSHTAT Z. (2005) – Sta ble sul fur iso tope par ti tion ing dur ing sim u lated pe tro leum for ma tion as de ter - mined by hy drous py rol y sis of Ghareb Lime stone, Is rael. Geochim.

Cosmochim. Acta, 69: 5317–5331.

BEHAR F., LEWAN M. D., LORANT F. and VANDENBROUCKE M.

(2003) – Com par i son of artificial mat u ra tion of lig nite in hy drous and nonhydrous con di tions. Org. Geochem., 34: 575–600.

BHARATI S., LARTER S. and HORSFIELD B. (1992) – The unusual po - ten tial of the Cam brian Alum Shale in Scan di na via as de ter mined by

(10)

quan ti ta tive py rol y sis meth ods. In: Gen er a tion, Ac cu mu la tion and Pro duc tion of Eu rope’s Hy dro car bons II (ed. A. M. Spencer). Spec.

Publ. Eur. Ass. Petrol. Geosc., 2: 103–110. Springer-Verlag Berlin Hei del berg.

BHARATI S., PATIENCE R. L., LARTER S. R., STANDEN G. and POPLETT I. J. F. (1995) – Elu ci da tion of the Alum Shale kerogen struc ture us ing a multi-dis ci plin ary ap proach. Org. Geochem., 23:

1043–1058.

BRANGULIS A. P., KANEV S. V., MARGULIS A. S. and HASETON T.

M. (1992) – Hy dro car bon ge ol ogy of the Bal tic re pub lics and the ad ja - cent Bal tic Sea. In: Gen er a tion, Ac cu mu la tion and Pro duc tion of Eu - rope’s Hy dro car bons II (ed. A. M. Spencer). Spec. Publ. Eur. Ass.

Petrol. Geosc., 2: 111–115. Springer-Verlag Berlin Hei del berg.

BUCHARDT B., CLAUSEN J. and THOMSEN E. (1986) – Car bon iso - tope com po si tion of Lower Pa leo zoic kerogen: ef fects of mat u ra tion.

Org. Geochem., 10: 127–134.

BUCHARDT B. and LEWAN M. D. (1990) – Reflectance of vitrinite-like macerals as a ther mal ma tu rity in dex for Cam brian–Or do vi cian Alum Shale, south ern Scan di na via. Am. Ass. Petrol. Geol. Bull., 74: 394–406.

BURNHAM A. K. (1998) – Com ment on “Ex per i ments on the role of wa ter in pe tro leum for ma tion”. Geochim. Cosmochim. Acta, 62: 2207–2210.

BURNHAM A. K. and BRAUN R. L. (1999) – Global ki net ics anal y sis of com plex ma te ri als. En ergy and Fu els, 13: 1–22.

CURTIS J. B., KOTARBA M. J., LEWAN M. D. and WIĘCŁAW D. (2004) – Oil/source rock cor re la tions in the Pol ish Flysch Carpathians and Me so zoic base ment and or ganic fa cies of the Oligocene Menilite Shales: in sights from hy drous py rol y sis ex per i ments. Org. Geochem., 35: 1573–1596.

ESPITALIÉ J., DEROO G. and MARQUIS F. (1985) – La pyrolyse Rock Eval et ses ap pli ca tions. Re vue Inst. Fran. Petrol., 40: 755–784.

GRETENER P. E. and CURTIS C. D. (1982) – Role of tem per a ture and time on or ganic meta mor phism. Am. Ass. Petrol. Geol. Bull., 66:

1124–1129.

GROTEK I. (2006) – Ther mal ma tu rity of or ganic mat ter from the sed i - men tary cover de pos its from Pom er a nian part of the TESZ, Bal tic Ba - sin and ad ja cent area (in Pol ish with Eng lish sum mary). Pr. Państw.

Inst. Geol., 186: 253–270.

HIGLEY D. K., LEWAN M. D., ROBERTS L. N. R. and HENRY M.

(2009) – Tim ing and pe tro leum sources for the Lower Cre ta ceous Mannville Group oil sands of north ern Al berta based on 4-D mod el - ing. Am. Ass. Petrol. Geol. Bull., 93: 203–230.

HUNT J. M. (1996) – Pe tro leum geo chem is try and ge ol ogy. W. H. Free - man and Com pany, New York.

IDIZ E. F., TANNENBAUM E. and KAPLAN I. R. (1990) – Py rol y sis of high-sul fur Monterey kerogens. In: Geo chem is try of Sul fur in Fos sil Fu els (eds. W. L. Orr and C. M. White). Am. Chem. Soc. Symp. Ser., 429: 575–591. Wash ing ton, DC.

JOHANNES I., KRUUSEMENT K. and VESKI R. (2007) – Eval u a tion of oil po ten tial and py rol y sis ki net ics of re new able fuel and shale sam - ples by Rock-Eval an a lyzer. J. Anal. Appl. Pyrol., 79: 183–190.

KARNKOWSKI P. H. (2003) – Mod el ling of hy dro car bon gen er at ing con - di tions within Lower Palaeozoic strata in the west ern part of the Bal tic Ba sin (in Pol ish with Eng lish sum mary). Prz. Geol., 51 (9): 756–763.

KOSAKOWSKI P., WRÓBEL M. and POPRAWA P. (2010) – Hy dro car - bon gen er a tion and ex pul sion mod el ling of the lower Pa leo zoic source rocks in the Pol ish part of the Bal tic re gion. Geol. Quart., 54 (2):

241–256.

KOTARBA M. J., CURTIS J. B. and LEWAN M. D. (2009) – Com par i son of nat u ral gases ac cu mu lated in Oligocene strata with hy drous py rol y - sis gases from Menilite Shales of the Pol ish Outer Carpathians. Org.

Geochem., 40: 769–783.

KOTARBA M. J., KOSAKOWSKI P., WRÓBEL M. and WIĘCŁAW D.

(2010) – Pe tro leum sys tem and hy dro car bon ex plo ra tion po ten tial of the Lower Pa leo zoic strata of the Pol ish Bal tic re gion. Ma rine and Petrol. Geol., 29 (in press).

LEVENTHAL J. S. (1991) – Com par i son of or ganic geo chem is try and metal en rich ment in two black shales: Cam brian Alum Shale of Swe - den and De vo nian Chat ta nooga Shale of United States. Mineralium Deposita, 26: 104–112.

LEWAN M. D. (1985) – Eval u a tion of pe tro leum gen er a tion by hy drous py rol y sis ex per i men ta tion. Philos. Trans. R. Soc., Lon don, Ser. A., 315: 123–134.

LEWAN M. D. (1993a) – Lab o ra tory sim u la tion of pe tro leum for ma tion:

Hy drous py rol y sis. In: Or ganic Geo chem is try (eds. M. Engel and S.

Macko): 419–442. Ple num Publ. Corp. New York.

LEWAN M. D. (1993b) – Iden ti fy ing and un der stand ing suppressed vitrinite reflectance through hy drous py rol y sis. The So ci ety for Or - ganic Pe trol ogy, Ab stracts and Pro gram, 3: 1–3.

LEWAN M. D. (1998a) – Re ply to the com ment by A. K. Burnham on “Ex - per i ments on the role of wa ter in pe tro leum for ma tion”. Geochim.

Cosmochim. Acta, 62: 2211–2216.

LEWAN M. D. (1998b) – Sul fur-rad i cal con trol on pe tro leum for ma tion rates. Na ture, 391: 164–166.

LEWAN M. D. (2002) – New in sights on tim ing of oil and gas gen er a tion in the cen tral Gulf Coast in te rior zone based on Hy drous-Py rol y sis ki netic Pa ram e ters. Gulf Coast Ass. Geol. Soc. Trans ac tions, 52: 607–620.

LEWAN M. D. and BUCHARDT B. (1989) – Ir ra di a tion of or ganic mat ter by ura nium de cay in the Alum Shale, Swe den. Geochim. Cosmochim.

Acta, 53: 1307–1322.

LEWAN M. D., KOTARBA M. J., CURTIS J. B., WIĘCŁAW D. and KOSAKOWSKI P. (2006) – Oil gen er a tion ki net ics for or ganic fa cies with Type-II and -IIS kerogen in the Menilite Shales of the Pol ish Carpathians. Geochim. Cosmochim. Acta, 70: 3351–3368.

LEWAN M. D. and RUBLE T. E. (2002) – Com par i son of pe tro leum gen er - a tion ki net ics by iso ther mal hy drous and nonisothermal open-sys tem py rol y sis. Org. Geochem., 33: 1457–1475.

MODLIŃSKI Z. and PODHALAŃSKA T. (2010) – Out line of the li thol - ogy and depositional fea tures of the lower Pa leo zoic strata in the Pol - ish part of the Bal tic re gion. Geol. Quart., 54 (2): 109–121.

NELSON B. C., EGLINTON T. I., SEEWALD J. S., VAIRAVAMURTHY M. A. and MIKNIS F. P. (1995) – Trans for ma tions in or ganic sul fur speciation dur ing mat u ra tion of Monterey Shale: Con straints from lab - o ra tory ex per i ments. In: Geo chem i cal Trans for ma tions of Sed i men - tary Sul fur (eds. M. A. Vairavamurthy and M. A. A. Schoonen). Am.

Chem. Soc. Symp. Ser., 612: 138–166. Wash ing ton, DC.

ORR W. L. (1986) – Kerogen/asphaltene/sul fur re la tion ships in sul fur-rich Monterey oils. Org. Geochem., 10: 499–516.

ORR W. L. and SINNINGHE DAMSTÉ J. S. (1990) – Geo chem is try of sul fur in pe tro leum sys tems. In: Geo chem is try of Sul fur in Fos sil Fu els (eds. W. L. Orr and C. M. White). Am. Chem. Soc. Symp. Ser., 429:

2–29. Wash ing ton, DC.

PITMAN J. K., STEINSHOUER D. and LEWAN M. D. (2004) – Pe tro - leum gen er a tion and mi gra tion in the Mesopotamian Ba sin and Zagros fold belt of Iraq: re sults from a ba sin mod el ling study. GeoArabia, 9:

41–72.

POKORSKI J. (2010) – Geo log i cal sec tion through the lower Pa leo zoic strata of the Pol ish part of the Bal tic re gion. Geol. Quart., 54 (2):

123–130.

POPRAWA P., KOSAKOWSKI P. and WRÓBEL M. (2010) – Burial and ther mal his tory of the Pol ish part of the Bal tic re gion. Geol. Quart., 54 (2): 131–142.

ROBERTS L. N. R., LEWAN M. D. and FINN T. M. (2004) – Tim ing of oil and gas gen er a tion of pe tro leum sys tems in the South west ern Wy o - ming Prov ince. Moun tain Ge ol o gist, 41: 87–118.

RUBLE T. E., LEWAN M. D. and PHILP R. P. (2001) – New in sights on the Green River pe tro leum sys tem in the Uinta ba sin from hy drous py rol y - sis ex per i ments. Am. Ass. Petrol. Geol. Bull., 85: 1333–1372.

SCHLEICHER M., KÖSTER J., KULKE H. and WEIL W. (1998) – Res er - voir and source-rock char ac teri sa tion of the Early Palaeozoic in ter val in the Peribaltic Syneclise, north ern Po land. J. Petrol. Geol., 21:

33–56.

TAYLOR G. H., TEICHMÜLLER M., DAVIS A., DIESSEL C. F. K., LITTKE R. and ROBERT P. (1998) – Or ganic Pe trol ogy. Gebrüder Borntraeger, Berlin-Stuttgart.

ULMISHEK G. (1990) – Geo logic evo lu tion and pe tro leum re sources of the Bal tic Ba sin. In: In te rior Cratonic Bas ins. (eds. M. W. Leighton, D.

R. Kolata, D. F. Oltz and J. J. Eidel). Am. Ass. Petrol. Geol. Mem., 51:

603–632.

WRÓBEL M. and KOSAKOWSKI P. (2010) – 2-D mod el ling of pe tro leum pro cesses of the lower Pa leo zoic strata in the Pol ish part of the Bal tic re gion. Geol. Quart., 54 (2): 257–266.

Cytaty

Powiązane dokumenty

W skład Komitetu organizacyjnego kongresu wchodzili między innymi Charles Pietri, ówczesny dyrektor Ecole française de Rome, Paul-Albert Février z Uniwer­ sytetu w

Jedynie w północnej części cmentarzyska, gdzie groby blisko ze sobą sąsiadowały, odnotowano przypadki przecięcia przez młodszy wkop grobowy skraju wkopu grobowego

This paper is devoted to the investigation of the behaviour more general operational functions, when the coefficients /?„ are in C and fulfilling some relations concerning their

Z obszaru polskiej k u ltu ry znane są jego badania twórczości Jan a Kochanowskiego (w perspektyw ie kom paratystycznej) i Ignacego Krasickiego (studia nad Panem

It is common to place the material in a section (sample holder) of a coaxial transmission line (see [1]–[6], and [7], among others) or in a coaxial-circular waveguide (see [8] and

During the design process we took into account a lot of combustible gas sensor specific problems such as their huge power consumption, the necessity to work

Calculation of the stability of the hole according to the modifi ed Lade criteria .... Calculation of the stability of the hole according to the criterion of Mohr–Coulomb

In this paper we shall extend the concept of these spaces to the context of Boehmian spaces and study the Fourier transform theory on these spaces1. These spaces enable us to