• Nie Znaleziono Wyników

Grey box modeling of municipal solid waste

N/A
N/A
Protected

Academic year: 2021

Share "Grey box modeling of municipal solid waste"

Copied!
51
0
0

Pełen tekst

(1)

TU Delft

Grey box modeling of Municipal Solid Waste

(2)

This presentation

What is Municipal Solid Waste?

Why do we need to manage it?

How can we model Municipal Solid Waste?

What kind of reactions take place?

(3)
(4)

What is Municipal Solid Waste

(5)

What is Municipal Solid Waste

Why do we need to manage it?

(6)

What is Municipal Solid Waste

Why do we need to manage it?

(7)

What is Municipal Solid Waste

Why do we need to manage it?

Gas emissions

(8)

What is Municipal Solid Waste

Why do we need to manage it?

Gas emissions

(9)

How do we model MSW

What do we need to know?

Soi

l

Landfill

Groundwater

Gas Leachate

(10)

How do we model MSW

What do we need to know?

Soi

l

Landfill

Groundwater

1. The remaining emission potential

Gas

(11)

How do we model MSW

What do we need to know?

Soil

Landfill

Groundwater

1. The remaining emission potential 2. The environmental impact

(for now and in the future) Gas

(12)

How do we model MSW

What do we need to know?

Soi

l

Landfill

Groundwater

1. The remaining emission potential 2. The environmental impact

(for now and in the future)

3. Optimization of leachate treatment 4. Optimization of biogas extraction

Gas

(13)

How do we model MSW

What do we need to know?

Soi

l

Landfill

Groundwater

1. The remaining emission potential 2. The environmental impact

(for now and in the future)

3. Optimization of leachate treatment 4. Optimization of biogas extraction 5. Stimulation of potential reduction

Gas

(14)

How do we model MSW

(15)

How do we model MSW

What do we know?

Very heterogeneous system!! Large scale!!

Measurements alone are not sufficient to quantify landfill behavior

(16)

How do we model MSW

Our modelling approach

(17)

How do we model MSW

Our modelling approach

Previous research indicates two fields dominating emissions

Transport:

Water flow in porous media, unsaturated, Richards equation, preferential flow, convection, dispersion, diffusion, multiphase system,

(18)

How do we model MSW

Our modelling approach

Previous research indicates two fields dominating emissions

Transport:

Water flow in porous media, unsaturated, Richards equation, preferential flow, convection, dispersion, diffusion, multiphase system,

reactive (kinetics & equilibrium)

Bio(geo)chemistry:

(An)aerobic degradation of organics, redox

reactions, dissolution/precipitation of minerals, metal/salt leaching, gas production, multicomponent system, reactive (kinetics & equilibrium)

(19)

How do we model MSW

Our approach

Immobile water (Biochemistry)

A.G. van Turnhout

Mobile water (Transport)

S. Baviskar

Coupled model (by Diffusion)

A. Bun

Parameter information (Geophysics)

(20)

How do we model MSW

Our approach

Immobile water (Biochemistry)

A.G. van Turnhout

Mobile water (Transport)

S. Baviskar

Coupled model (by Diffusion)

A. Bun

Parameter information (Geophysics)

(21)

How do we model MSW

Immobile water pocket

(22)

How do we model MSW

Shredded Municipal Solid Waste

Immobile water pocket

Column experiment

(23)

How do we model MSW

Shredded Municipal Solid Waste

Immobile water pocket Column experiment Numerical model

(24)

How do we model MSW

Shredded Municipal Solid Waste

Immobile water pocket Column experiment Numerical model Data & model

results

(25)

How do we model MSW

(26)

How do we model MSW

Biochemistry:

(An)aerobic degradation of organics, redox reactions, dissolution & precipitation of minerals, metal/salt leaching.

(27)

How do we model MSW

White box:

Too many processes & parameters to consider.

System becomes redundant, too uncertain.

Black box: Too little information to

model complete set of emission parameters

The biochemical sub-model

Biochemistry:

(An)aerobic degradation of organics, redox reactions, dissolution & precipitation of minerals, metal/salt leaching.

(28)

How do we model MSW

White box:

Too many processes & parameters to consider.

System becomes redundant, too uncertain.

Black box: Too little information to

model complete set of emission parameters

The biochemical sub-model

Biochemistry:

(An)aerobic degradation of organics, redox reactions, dissolution & precipitation of minerals, metal/salt leaching.

(29)

How do we model MSW

White box:

Too many processes & parameters to consider.

System becomes redundant, too uncertain.

Black box: Too little information to

model complete set of emission parameters

Grey box:

Reduces number of processes while keeping enough complexity Utilizes ‘bottleneck’ processes

The biochemical sub-model

Biochemistry:

(An)aerobic degradation of organics, redox reactions, dissolution & precipitation of minerals, metal/salt leaching.

(30)

How do we model MSW

Where to simplify the model?

Model only the slow dominant reactions

(31)

How do we model MSW

Where to simplify the model?

Model only the slow dominant reactions

1. Hydrolysis and Methanogenesis kinetics

2. Mass transport kinetics neglected

(32)

How do we model MSW

Where to simplify the model?

Model only the slow dominant reactions

1. Hydrolysis and Methanogenesis kinetics

2. Mass transport kinetics neglected

INCLUDING

Accurate calculation of chemical and

physical equilibrium

(33)

How do we model MSW

Lumped hydrolysis

(pH and VFA inhibition)

CxHyOzNi + H2O → VFA + NH3 + X + CO2

1.

(34)

How do we model MSW

Lumped hydrolysis

(pH and VFA inhibition)

CxHyOzNi + H2O → VFA + NH3 + X + CO2

Methanogenesis

(pH and NH3 inhibition)

VFA + NH3 → CH4 + CO2 + X

1.

2.

(35)

How do we model MSW

Lumped hydrolysis

(pH and VFA inhibition)

CxHyOzNi + H2O → VFA + NH3 + X + CO2

Chemical speciation/precipitation/dissolution

Compound speciations → pH Ca + CO3 ↔ CaCO3

Methanogenesis

(pH and NH3 inhibition)

VFA + NH3 → CH4 + CO2 + X

1.

2.

3.

(36)

How do we model MSW

Lumped hydrolysis

(pH and VFA inhibition)

CxHyOzNi + H2O → VFA + NH3 + X + CO2

Chemical speciation/precipitation/dissolution

Compound speciations → pH Ca + CO3 ↔ CaCO3

Methanogenesis (pH and NH3 inhibition) VFA + NH3 → CH4 + CO2 + X Phase equilibrium C(s) ↔ C(aq) ↔ C(g)

1.

2.

3.

4.

(37)

How do we model MSW

Estimate and collect all parameters in a matrix in Spreadsheet

The biochemical grey model

Implementation

(38)

How do we model MSW

Estimate and collect all parameters in a matrix in Spreadsheet

Import

Import

Import

Solve kinetics (mass balances) in MATLAB

The biochemical grey model

Implementation

(39)

How do we model MSW

Estimate and collect all parameters in a matrix in Spreadsheet

Solve chemical equilibrium in ORCHESTRA

(at every time step)

Import

Import

Import

Solve kinetics (mass balances) in MATLAB

The biochemical grey model

Implementation

(40)

How do we model MSW

Estimate and collect all parameters in a matrix in Spreadsheet

Solve chemical equilibrium in ORCHESTRA

(at every time step)

Import

Import

Import

Solve kinetics (mass balances) in MATLAB

Output

Output

Output

The biochemical grey model

Implementation

(41)

How do we model MSW

(42)

How do we model MSW

Parameter/process check with DREAM

1. Initial conditions (experiment)

2. Parameters (literature)

Model parameters

k(hyd) pHi(hyd) VFAi μmax Ks pHi(hyd)

(43)

How do we model MSW

Parameter/process check with DREAM

1. Initial conditions (experiment)

2. Parameters (literature)

Model parameters

DREAM

1. Optimizes parameters according to information in data by SLS

2. Calculates density distributions and correlation with Bayesian statistics 3. Parameters (optimized)

k(hyd) pHi(hyd) VFAi μmax k(hyd) pHi(hyd)

VFAi μmax Ks pHi(hyd)

(44)

How do we model MSW

Parameter/process check with DREAM

1. Initial conditions (experiment)

2. Parameters (literature)

Model parameters

DREAM

1. Optimizes parameters according to information in data by SLS

2. Calculates density distributions and correlation with Bayesian statistics 3. Parameters (optimized)

k(hyd) pHi(hyd) VFAi μmax k(hyd) pHi(hyd)

VFAi μmax Ks pHi(hyd)

(45)

How do we model MSW

The biochemical grey model

(logarithmic scales)

(46)

Lab, Column & Pilot scale experiments

How do we model MSW

(47)

Lab, Column & Pilot scale experiments

How do we model MSW

Extend model for other cases like;

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation,

slow hydrolyzing substrates….

(48)

Lab, Column & Pilot scale experiments

How do we model MSW

Extend model for other cases like;

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation,

slow hydrolyzing substrates….

Use modelled pH to predict metal/salt complexation

(49)

Lab, Column & Pilot scale experiments

How do we model MSW

Extend model for other cases like;

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation,

slow hydrolyzing substrates….

Use modelled pH to predict metal/salt complexation Couple models to

hydrological model

(50)

How do we model MSW

Test different scenarios Create grey model per case Combine

Conclusion & Outlook

1. Irrigation/Recirculation 2. Aeration 3. 1 & 2 intermittent 4. 1 & 2 continuous 5. Nothing DREAM DREAM DREAM DREAM DREAM Combined Bio-Transport model

(51)

Cytaty

Powiązane dokumenty

The third contribution is the implementation of Elgar, a shared work- space system for diagnosis that provides two coordination mechanisms for teamwork. However, such systems

W kręgach wyższych urzędników carskich panował zresztą pogląd, że Medem już wcześniej dopuszczał się nadużyć, pozostawał jednak bez­ karny ponieważ był protegowanym

Możemy co prawda na podstawie przytoczonych wzmianek źródłowych oraz rozwiązań hipotetycznych zupełnie nieźle przyjrzeć się mobilności biskupa Gerwarda wiosną

Wydaje mi się jednak, że bardziej dogodne, a także łatwiejsze do realizacji, byłoby zastosowanie konsekwentnej klasyfikacji rzeczowej, stosownie do najważniejszych

Tu dużej rangi nabiera zarządzanie portfelem produktów jako wartość dla klienta oraz zarządzanie wartością portfela innowacji, które nie jest traktowane jako wprowadzenie

Linearized expressions, neglecting the dependency of the force on the mean wind speed and the coupling between flap and edge wise blade motion – among other things, are adopted

Określenie stadium, na jakim aktualnie znajduje się dane zagłębienie bywa często problematyczne, ponieważ jest to obszar rolniczy, znacznie przekształcony przez

Gdyby jednak duch Prusa próbował z zaświatów za pośrednictwem jakiegoś „ziemskiego korespondenta” (w takiej roli wystąpił niegdyś Andrzej Tauber- Ziółkowski)