• Nie Znaleziono Wyników

The Contribution of Two-Particle–Two-Hole Final States in Electron-Nucleus Scattering

N/A
N/A
Protected

Academic year: 2021

Share "The Contribution of Two-Particle–Two-Hole Final States in Electron-Nucleus Scattering"

Copied!
80
0
0

Pełen tekst

(1)

Final States in Electron-Nucleus Scattering

Kajetan Niewczas

Institute of Theoretical Physics University of Wrocław

October 24th 2016

(2)

Motivation

Ratio of MiniBooNE νµCCQE data versus a RFG simulation as a function of reconstructed muon angle and kinetic energy. The prediction is prior to any CCQE model adjustments. The effective axial

(3)

e

( E

k0

, k

0

)

e

( E

k

, k )

γ (ω, q )

I ( M

A

, 0 )

F ( E

F

, p

F

)

(4)

Electron-nucleus interaction

Initial state:

i

i = | k , s i

e

⊗ | I i

A

(1) Final state:

f

i = k

0

, s

0

e

⊗ | F , p

F

i

A

(2)

T-matrix element:

D Ψ

f

i T ˆ

Ψ

i

E

= Z

d

4

q e

2

q

2

δ

(4)

( q + k

0

− k ) ¯ u (

k0

, s

0

) γ

µ

u (

k

, s )

× ( 2 π)δ

T

( E

F

− M

A

+ ω)

 F ,

pF

Z

V

d

3x e−iq·x

J

µ

(

x

) I



.

(3)

(5)

Initial state:

i

i = | k , s i

e

⊗ | I i

A

(1) Final state:

f

i = k

0

, s

0

e

⊗ | F , p

F

i

A

(2)

T-matrix element:

D Ψ

f

i T ˆ

Ψ

i

E

= Z

d

4

q e

2

q

2

δ

(4)

( q + k

0

− k ) ¯ u ( k

0

, s

0

) γ

µ

u ( k , s )

× ( 2 π)δ

T

( E

F

− M

A

+ ω)

 F , p

F

Z

V

d

3

x e

−iq·x

J

µ

( x ) I



.

(3)

(6)

Electron-nucleus interaction

Cross section:

d σ

F

d

3

k

0

d

3

p

F

= 1 4

1 E

k

M

A

E

k0

E

F

α

2

q

4

L

µν

W

µν

(4)

Leptonic tensor:

L

µν

1 2

X

s,s0

¯

u (

k0

, s

0

) γ

µ

u (

k

, s ) ¯ u (

k

, s ) γ

ν

u (

k0

, s

0

) (5)

(7)

Cross section:

d σ

F

d

3

k

0

d

3

p

F

= 1 4

1 E

k

M

A

E

k0

E

F

α

2

q

4

L

µν

W

µν

(4)

Leptonic tensor:

L

µν

1 2

X

s,s0

¯

u ( k

0

, s

0

) γ

µ

u ( k , s ) ¯ u ( k , s ) γ

ν

u ( k

0

, s

0

) (5)

(8)

Electron-nucleus interaction

Hadronic tensor:

W

µν

= X

σI

 F , p

F

Z

V

d

3

x e

−iq·x

J

µ

( x ) I



×

 I

Z

V

d

3

x e

iq·x

J

ν†

( x )

F , p

F



× 1

( 2 π)

3

V δ( E

F

− M

A

− ω)

q=k −k0

(6)

(9)

Inclusive cross section:

d σ = X

F

d σ

F

(7)

Hadronic tensor:

W

µν

= X

F ,σI

Z d

3pF

 F ,

pF

Z

V

d

3x e−iq·x

J

µ

(

x

) I



×

 I

Z

V

d

3x eiq·x

J

ν†

(

x

)

F ,

pF



× 1

( 2 π)

3

V δ( E

F

− M

A

− ω)

q=k −k0

(8)

(10)

Electron-nucleus interaction

Inclusive cross section:

d σ = X

F

d σ

F

(7)

Hadronic tensor:

W

µν

= X

F ,σI

Z d

3

p

F

 F , p

F

Z

V

d

3

x e

−iq·x

J

µ

( x ) I



×

 I

Z

V

d

3

x e

iq·x

J

ν†

( x )

F , p

F



× 1

( 2 π)

3

V δ( E

F

− M

A

− ω)

q=k −k0

(8)

(11)

e ( E k

0

, k 0 )

e ( E k , k )

γ (ω, q )

N ( E p , p )

N ( E p

0

, p 0 )

(12)

IA

One-body current:

J

µ

( x ) ≈

A

X

N=p,n

X

σN0

Z d

3

p

N0

( 2 π)

3

2E

N0

d

3

p

N

( 2 π)

3

2E

N

N

0

, p

N0

j

µ

( x )

N , p

N

× a

N0

( p

N0

) a

N

( p

N

)

τNN0

(9)

Matrix element:

 F ,

pF

Z

V

d

3x e−iq·x

J

µ

(

x

) I



=

= ( 2 π)

3

A

X

N=p,n

X

σN0

Z d

3pN0

( 2 π)

3

2E

N0

d

3pN

( 2 π)

3

2E

N

δ

V(3)

(

pN0

pN

q

)

×

N

0

,

pN0

j

µ

( 0 )

N ,

pN

D F ,

pF

a

N0

(

pN0

) a

N

(

pN

) I

E

(10)

(13)

One-body current:

J

µ

( x ) ≈

A

X

N=p,n

X

σN0

Z d

3

p

N0

( 2 π)

3

2E

N0

d

3

p

N

( 2 π)

3

2E

N

N

0

, p

N0

j

µ

( x )

N , p

N

× a

N0

( p

N0

) a

N

( p

N

)

τNN0

(9)

Matrix element:

 F , p

F

Z

V

d

3

x e

−iq·x

J

µ

( x ) I



=

= ( 2 π)

3

A

X

N=p,n

X

σN0

Z d

3

p

N0

( 2 π)

3

2E

N0

d

3

p

N

( 2 π)

3

2E

N

δ

V(3)

( p

N0

p

N

q )

×

N

0

, p

N0

j

µ

( 0 )

N , p

N

D F , p

F

a

N0

( p

N0

) a

N

( p

N

) I

E

(10)

(14)

IA

Hadronic tensor:

W

µν

= X

F ,σI

Z

d

3

p

F

( 2 π)

3

V δ( E

F

− M

A

− ω)

×

A

X

N=p,n

X

σN0

Z d

3

p

N0

( 2 π)

3

2E

N0

d

3

p

N

( 2 π)

3

2E

N

δ

(3)V

( p

N0

p

N

q )

×

N

0

, p

N0

j

µ

( 0 )

N , p

N

D F , p

F

a

N0

( p

N0

) a

N

( p

N

) I

E

×

A

X

M=p,n

X

σM0

Z d

3

p

M0

( 2 π)

3

√ 2E

M0

d

3

p

M

( 2 π)

3

2E

M

δ

(3)V

( p

M

p

M0

+ q )

× D M , p

M

j

ν†

( 0 ) M

0

, p

M0

E D I

a

M

( p

M

) a

M0

( p

M0

) F , p

F

E

.

(11)

(15)

Elementary cross section:

 d σ d Ω

k0



N

0

, p

N0

j

µ

( 0 )

N , p

N

2

(12)

Spectral function:

P ( E ,

p

) ∼ D

F ,

pF

a

N0

(

pN0

) a

N

(

pN

) I

E

2

(13)

Different matrix elements, hence no factorization in IA!

(16)

Factorization

Elementary cross section:

 d σ d Ω

k0



N

0

, p

N0

j

µ

( 0 )

N , p

N

2

(12)

Spectral function:

P ( E , p ) ∼ D

F , p

F

a

N0

( p

N0

) a

N

( p

N

) I

E

2

(13)

Different matrix elements, hence no factorization in IA!

(17)

Elementary cross section:

 d σ d Ω

k0



N

0

, p

N0

j

µ

( 0 )

N , p

N

2

(12)

Spectral function:

P ( E , p ) ∼ D

F , p

F

a

N0

( p

N0

) a

N

( p

N

) I

E

2

(13)

Different matrix elements, hence no factorization in IA!

(18)

Plane wave IA (PWIA)

Final state factorization:

| F , p

F

i

A

→ | X , p

X

i ⊗ | R , p

R

i

A−1

(14) The inclusive cross section:

d σ = X

X ,R

d σ

X ,R

, (15)

d σ

d Ω

k0

dE

k0

= 1 8 ( 2 π)

3

E

k0

E

k

1 M

A

E

X

E

R

α

2

q

4

L

µν

W

µν

(16)

(19)

Final state factorization:

| F , p

F

i

A

→ | X , p

X

i ⊗ | R , p

R

i

A−1

(14) The inclusive cross section:

d σ = X

X ,R

d σ

X ,R

, (15)

d σ

d Ω

k0

dE

k0

= 1 8 ( 2 π)

3

E

k0

E

k

1 M

A

E

X

E

R

α

2

q

4

L

µν

W

µν

(16)

(20)

Plane wave IA (PWIA)

Final state factorization:

| F , p

F

i

A

→ | X , p

X

i ⊗ | R , p

R

i

A−1

(14) The inclusive cross section:

d σ = X

X ,R

d σ

X ,R

, (15)

d σ

d Ω

k0

dE

k0

= 1 8 ( 2 π)

3

E

k0

E

k

1 M

A

E

X

E

R

α

2

q

4

L

µν

W

µν

(16)

(21)

Hadronic tensor:

W

µν

= X

X ,R,σI

Z

d

3

p

X

d

3

p

R

( 2 π)

3

V δ( E

F

− M

A

− ω)

×

A

X

N=p,n

X

σN0

Z d

3

p

N0

( 2 π)

3

2E

N0

d

3

p

N

( 2 π)

3

2E

N

δ

(3)V

( p

N0

p

N

q )

×

N

0

, p

N0

j

µ

( 0 )

N , p

N

D

X , p

X

; R , p

R

a

N0

( p

N0

) a

N

( p

N

) I

E

×

A

X

M=p,n

X

σM0

Z d

3

p

M0

( 2 π)

3

√ 2E

M0

d

3

p

M

( 2 π)

3

2E

M

δ

(3)V

( p

M

p

M0

+ q )

× D M , p

M

j

ν†

( 0 ) M

0

, p

M0

E D I

a

M

( p

M

) a

M0

( p

M0

)

X , p

X

; R , p

R

E

(17)

(22)

PWIA

One-particle states annihilation:

D

X , p

X

; R , p

R

a

N0

( p

N0

) a

N

( p

N

) I

E D I

a

M

( p

M

) a

M0

( p

M0

)

X , p

X

; R , p

R

E

= ( 2 π)

3

p

E

X

δ

(3)

( p

X

p

N0

X ,N0

h R , p

R

| a

N

( p

N

)| I i

× ( 2 π)

3

p

E

X

δ

(3)

( p

X

p

M0

X ,M0

D I

a

M

( p

M

)

R , p

R

E

(18) Identification of N and M [2]:

W

µν

= 1 2

X

σX,R A

X

N=p,n

Z

d

3pX

d

3p

δ( E

F

− M

A

− ω) δ

(3)

(

pX

p

q

)

× 1

( 2 π)

6

2E

N

|h X ,

pX

| j

µ

( 0 )| N ,

p

i|

2

|h R , −

p

| a

N

(

p

)| I i|

2

(19)

(23)

One-particle states annihilation:

D

X , p

X

; R , p

R

a

N0

( p

N0

) a

N

( p

N

) I

E D I

a

M

( p

M

) a

M0

( p

M0

)

X , p

X

; R , p

R

E

= ( 2 π)

3

p

E

X

δ

(3)

( p

X

p

N0

X ,N0

h R , p

R

| a

N

( p

N

)| I i

× ( 2 π)

3

p

E

X

δ

(3)

( p

X

p

M0

X ,M0

D I

a

M

( p

M

)

R , p

R

E

(18) Identification of N and M [2]:

W

µν

= 1 2

X

σX,R A

X

N=p,n

Z

d

3

p

X

d

3

p δ( E

F

− M

A

− ω) δ

(3)

( p

X

pq )

× 1

( 2 π)

6

2E

N

|h X , p

X

| j

µ

( 0 )| N , p i|

2

|h R , − p | a

N

( p )| I i|

2

(19)

(24)

PWIA

Spectral function:

P

N

( p , E ) = 1 ( 2 π)

6

2E

N

X

R

|h R , − p | a

N

( p )| I i|

2

δ( E − M + M

A

− E

R

) (20)

Hadronic tensor:

W

µν

= X

σX

A

X

N=p,n

Z

d

3pX

d

3pdE PN

(

p

, E )

× |h X ,

pX

| j

µ

( 0 )| N ,

p

i|

2

δ( M − E − E

X

+ ω) δ

(3)

(

pX

p

q

),

(21)

(25)

Spectral function:

P

N

( p , E ) = 1 ( 2 π)

6

2E

N

X

R

|h R , − p | a

N

( p )| I i|

2

δ( E − M + M

A

− E

R

) (20)

Hadronic tensor:

W

µν

= X

σX

A

X

N=p,n

Z

d

3

p

X

d

3

pdE P

N

( p , E )

× |h X , p

X

| j

µ

( 0 )| N , p i|

2

δ( M − E − E

X

+ ω) δ

(3)

( p

X

pq ),

(21)

(26)

PWIA

Elementary hadronic tensor:

ω

Nµν

1 2

X

σN0N

N

0

, p

0

j

µ

( 0 )

N , p

2

δ( M − E − E

p0

+ ω) δ

(3)

( p

0

pq ) (22) Effective energy transfer:

˜

ω ≡ ω − B = ω + M − E − p

p2

+ M

2

(23)

˜

q ≡ (˜ ω,

q

) (24)

ω

Nµν

= 1 2

X

σN0N

N

0

,

p0

j

µ

( 0 )

N ,

p

2

δ

(4)

( p

0

− p − ˜ q ) (25)

(27)

Elementary hadronic tensor:

ω

Nµν

1 2

X

σN0N

N

0

, p

0

j

µ

( 0 )

N , p

2

δ( M − E − E

p0

+ ω) δ

(3)

( p

0

pq ) (22) Effective energy transfer:

˜

ω ≡ ω − B = ω + M − E − p

p

2

+ M

2

(23)

˜

q ≡ (˜ ω, q ) (24)

ω

Nµν

= 1 2

X

σN0N

N

0

,

p0

j

µ

( 0 )

N ,

p

2

δ

(4)

( p

0

− p − ˜ q ) (25)

(28)

PWIA

Elementary hadronic tensor:

ω

Nµν

1 2

X

σN0N

N

0

, p

0

j

µ

( 0 )

N , p

2

δ( M − E − E

p0

+ ω) δ

(3)

( p

0

pq ) (22) Effective energy transfer:

˜

ω ≡ ω − B = ω + M − E − p

p

2

+ M

2

(23)

˜

q ≡ (˜ ω, q ) (24)

ω

Nµν

= 1 2

X

σN0N

N

0

, p

0

j

µ

( 0 )

N , p

2

δ

(4)

( p

0

− p − ˜ q ) (25)

(29)

W

µν

= Z

d

3

p

0

d

3

pdE ZP

p

( p , E ) ω

µνp

+ ( A − Z ) P

n

( p , E ) ω

nµν



(26)

Integration:

d σ = d Ω

k0

dE

k0

d

3p0

d

3pdE

... (27)

P (

p

, E ) : δ(...) (28)

ω

µν

: δ

(4)

(...) (29)

→ d σ = d Ω

k0

d

3pdE

... (30)

(30)

Factorized cross section

W

µν

= Z

d

3

p

0

d

3

pdE ZP

p

( p , E ) ω

µνp

+ ( A − Z ) P

n

( p , E ) ω

nµν



(26)

Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (27)

P (

p

, E ) : δ(...) (28)

ω

µν

: δ

(4)

(...) (29)

→ d σ = d Ω

k0

d

3pdE

... (30)

(31)

W

µν

= Z

d

3

p

0

d

3

pdE ZP

p

( p , E ) ω

µνp

+ ( A − Z ) P

n

( p , E ) ω

nµν



(26)

Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (27)

P ( p , E ) : δ(...) (28)

ω

µν

: δ

(4)

(...) (29)

→ d σ = d Ω

k0

d

3pdE

... (30)

(32)

Factorized cross section

W

µν

= Z

d

3

p

0

d

3

pdE ZP

p

( p , E ) ω

µνp

+ ( A − Z ) P

n

( p , E ) ω

nµν



(26)

Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (27)

P ( p , E ) : δ(...) (28)

ω

µν

: δ

(4)

(...) (29)

→ d σ = d Ω

k0

d

3

pdE ... (30)

(33)

 d σ d Ω

k0



A

= Z

d

3

pdE χ



ZP

p

( p , E )

 d σ

p

d Ω

k0



+ ( A − Z ) P

n

( p , E )

 d σ

n

d Ω

k0

 (31) Kinematical factor:

χ = 1 2 ( 2 π)

3

ME

p

M

A2

E

R

(32)

Elementary cross section:

 d σ

N

d Ω

k0



= 1 4

E

k20

E

k2

1 ME

p

α

2

q

4

L

µν

ω

Nµν

(33)

(34)

J.A. Caballero et al. [3]

d

5

σ

d Ω

k0

dE

k0

d Ω

p0

= 2 α

2

q

4

 E

k0

E

k

 | p

0

| MM

R

M

A

f

rec

2 X

|M|

2

(34) where

M = j

µe

J

Nµ

(35)

j

µe

= ¯ u

σ

k 0

(

k0

µ

u

σk

(

k

) (36)

J

Nµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

Ψ

mbb

(

p

) (37)

Using completeness:

J

Nµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

u

σp

(

p

)[¯ u

σp

(

p

mbb

(

p

)] (38)

[¯ u

σp

(

p

mbb

(

p

)] ∼ α

b

(

p

) (39)

(35)

d

5

σ

d Ω

k0

dE

k0

d Ω

p0

= 2 α

2

q

4

 E

k0

E

k

 | p

0

| MM

R

M

A

f

rec

2 X

|M|

2

(34) where

M = j

µe

J

Nµ

(35)

j

µe

= ¯ u

σ

k 0

( k

0

µ

u

σk

( k ) (36)

J

Nµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

Ψ

mbb

( p ) (37)

Using completeness:

J

Nµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

u

σp

(

p

)[¯ u

σp

(

p

mbb

(

p

)] (38)

[¯ u

σp

(

p

mbb

(

p

)] ∼ α

b

(

p

) (39)

(36)

J.A. Caballero et al. [3]

d

5

σ

d Ω

k0

dE

k0

d Ω

p0

= 2 α

2

q

4

 E

k0

E

k

 | p

0

| MM

R

M

A

f

rec

2 X

|M|

2

(34) where

M = j

µe

J

Nµ

(35)

j

µe

= ¯ u

σ

k 0

( k

0

µ

u

σk

( k ) (36)

J

Nµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

Ψ

mbb

( p ) (37)

Using completeness:

J

Nµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

u

σp

( p )[¯ u

σp

( p

mbb

( p )] (38)

[¯ u

σp

( p

mbb

( p )] ∼ α

b

( p ) (39)

(37)

Initial state factorization (mean-field):

| I i → X

b

Z

d

3

p

b

(| R

b

, − p

b

i ⊗ | b , p

b

i) α

b

( p

b

) (40) Matrix element:

h R , −

p

| a

N

(

p

)| I i = X

b

( 2 π)

3

p

2E

N

δ

R,Rb

δ

N,b

α

b

(

p

) (41) Integration:

d σ = d Ω

k0

dE

k0

d

3p0

d

3pdE

... (42)

P (

p

, E ) : δ(...) (43)

ω

µν

: δ

(4)

(...) (44)

→ d σ = d Ω

k0

dE

k0

d Ω

p0

... (45)

(38)

Specific nucleon solution

Initial state factorization (mean-field):

| I i → X

b

Z

d

3

p

b

(| R

b

, − p

b

i ⊗ | b , p

b

i) α

b

( p

b

) (40) Matrix element:

h R , − p | a

N

( p )| I i = X

b

( 2 π)

3

p

2E

N

δ

R,Rb

δ

N,b

α

b

( p ) (41) Integration:

d σ = d Ω

k0

dE

k0

d

3p0

d

3pdE

... (42)

P (

p

, E ) : δ(...) (43)

ω

µν

: δ

(4)

(...) (44)

→ d σ = d Ω

k0

dE

k0

d Ω

p0

... (45)

(39)

Initial state factorization (mean-field):

| I i → X

b

Z

d

3

p

b

(| R

b

, − p

b

i ⊗ | b , p

b

i) α

b

( p

b

) (40) Matrix element:

h R , − p | a

N

( p )| I i = X

b

( 2 π)

3

p

2E

N

δ

R,Rb

δ

N,b

α

b

( p ) (41) Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (42)

P (

p

, E ) : δ(...) (43)

ω

µν

: δ

(4)

(...) (44)

→ d σ = d Ω

k0

dE

k0

d Ω

p0

... (45)

(40)

Specific nucleon solution

Initial state factorization (mean-field):

| I i → X

b

Z

d

3

p

b

(| R

b

, − p

b

i ⊗ | b , p

b

i) α

b

( p

b

) (40) Matrix element:

h R , − p | a

N

( p )| I i = X

b

( 2 π)

3

p

2E

N

δ

R,Rb

δ

N,b

α

b

( p ) (41) Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (42)

P ( p , E ) : δ(...) (43)

ω

µν

: δ

(4)

(...) (44)

→ d σ = d Ω

k0

dE

k0

d Ω

p0

... (45)

(41)

Initial state factorization (mean-field):

| I i → X

b

Z

d

3

p

b

(| R

b

, − p

b

i ⊗ | b , p

b

i) α

b

( p

b

) (40) Matrix element:

h R , − p | a

N

( p )| I i = X

b

( 2 π)

3

p

2E

N

δ

R,Rb

δ

N,b

α

b

( p ) (41) Integration:

d σ = d Ω

k0

dE

k0

d

3

p

0

d

3

pdE ... (42)

P ( p , E ) : δ(...) (43)

ω

µν

: δ

(4)

(...) (44)

→ d σ = d Ω

k0

dE

k0

d Ω

p0

... (45)

(42)

Specific nucleon solution

Cross section:

 d σ

b

d Ω

k0

dE

k0

d Ω

p0



A

= X

b

χ

 d σ d Ω

k0



α

2b

( p ) (46)

where

χ = 1 ( 2 π)

3

E

k

E

k0

ME

p

| p

0

|

M

A

E

R

(47)

(43)

Completeness:

X

s

u

α

( p , s )¯ u

β

( p , s ) − v

α

( p , s )¯ v

β

( p = δ

αβ

(48)

Now

J

Nµ

= J

uµ

− J

vµ

(49) where

J

uµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

u

σp

(

p

)[¯ u

σp

(

p

mbb

(

p

)] (50) [¯ u

σp

(

p

mbb

(

p

)] ∼ α

b

(

p

) (51) and

J

vµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

v

σp

(

p

)[¯ v

σp

(

p

mbb

(

p

)] (52)

[¯ v

σp

(

p

mbb

(

p

)] ∼ β

b

(

p

) (53)

(44)

J.A. Caballero et al. [3] - Relativistic PWIA (RPWIA)

Completeness:

X

s

u

α

( p , s )¯ u

β

( p , s ) − v

α

( p , s )¯ v

β

( p = δ

αβ

(48)

Now

J

Nµ

= J

uµ

− J

vµ

(49) where

J

uµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

u

σp

(

p

)[¯ u

σp

(

p

mbb

(

p

)] (50) [¯ u

σp

(

p

mbb

(

p

)] ∼ α

b

(

p

) (51) and

J

vµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

v

σp

(

p

)[¯ v

σp

(

p

mbb

(

p

)] (52)

[¯ v

σp

(

p

mbb

(

p

)] ∼ β

b

(

p

) (53)

(45)

Completeness:

X

s

u

α

( p , s )¯ u

β

( p , s ) − v

α

( p , s )¯ v

β

( p = δ

αβ

(48)

Now

J

Nµ

= J

uµ

− J

vµ

(49) where

J

uµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

u

σp

( p )[¯ u

σp

( p

mbb

( p )] (50) [¯ u

σp

( p

mbb

( p )] ∼ α

b

( p ) (51) and

J

vµ

= ¯ u

σ

p0

(

p0

) ˆ J

µ

v

σp

(

p

)[¯ v

σp

(

p

mbb

(

p

)] (52)

[¯ v

σp

(

p

mbb

(

p

)] ∼ β

b

(

p

) (53)

(46)

J.A. Caballero et al. [3] - Relativistic PWIA (RPWIA)

Completeness:

X

s

u

α

( p , s )¯ u

β

( p , s ) − v

α

( p , s )¯ v

β

( p = δ

αβ

(48)

Now

J

Nµ

= J

uµ

− J

vµ

(49) where

J

uµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

u

σp

( p )[¯ u

σp

( p

mbb

( p )] (50) [¯ u

σp

( p

mbb

( p )] ∼ α

b

( p ) (51) and

J

vµ

= ¯ u

σ

p0

( p

0

) ˆ J

µ

v

σp

( p )[¯ v

σp

( p

mbb

( p )] (52)

[¯ v

σp

( p

mbb

( p )] ∼ β

b

( p ) (53)

Cytaty

Powiązane dokumenty

However, the peculiarities near the onset of complete spin polarization are less pronounced in Si/ SiGe quantum wells than in MOSFETs: only a weakening, but not absence, of

In the case when the sources emit either spin-polarized or entangled electrons, partial distinguishability of electrons 共coming from two different sources 兲 suppresses the

9 Już w 1985 roku Zbigniew Brzeziński rozważał realną możliwość „likwidacji spuścizny Jałty na Wschodzie" i dobrowolnego rozwiązania się imperium (Przyszłość

De waarden in lichtblauw bij de vergelijking met de Eurocode geven aan waar v min maatgevend werd na invoering van de vmin op basis van de notitie waarbij rekening gehouden werd met

„W szelkie poglądy w spraw ach politycznych, generalizując się, stają się nader niebezpiecznymi z tego pow odu, że stanow ią pod niejakim względem czynnik dla

Historia tego miasta należy do historii powszechnej, jest — czy powinna być — przykładem całościowej wiedzy o gospodarce, polityce i kulturze, o przeszłości

In this paper, we present the phase-averaged velocity statistics of the discrete vortices obtained by PIV measurement in a turbulent channel flow with a rectangular cylinder

Poza tym w pracy znajduje się skorowidz rzeczowy pozwalający na odszukanie interesujących nas informacji oraz aneks zawierający uzupełnienia, jakie nastąpiły w