• Nie Znaleziono Wyników

Interval Averages

N/A
N/A
Protected

Academic year: 2021

Share "Interval Averages"

Copied!
8
0
0

Pełen tekst

(1)

ANNALES

U N I V E R S I T A T I S MARIAE C U R I E - S K L O D O W S K A LUBLIN —POLONIA

VOL. XL, 17 SECTIO A 1986

Department of Mathematics University of Crete

V. NESTORIDIS

Interval Averages

Sredmie po przedzialach

CpeAneeno HHTcpBoJiax

Abstract. It is known that lor every h function f*1 in (z{ and every zQ , [zQ| 1 , there are eA v• 9-

t R , and £ , 0 < £ , sucn tnat i<z ; =

£ f(ei^eii;} dt . .«e snow that if i is a comormal•£

mapping from (z| ^1 onto a Jordan domain with analytic uounua- ry» then £ ^.cfQ1 " Jz0| » wbere cf z* 0 is a constant independent from zQ , |zQl 1 . The exponent 1/2 is une uesu possible in this case.

.Introduction. Suppose that f is a function of class if1 in the open unit disk D . In ^2J , £3] it nas been proven tnat every value f(,z0J , zp i D , is of the form

■^20) = f j 3 yyy- f(.ei’^ ) dt?" , for some inoerval Id T = ''i n

*ith length /l[ , 0 ¿2|l| 23f . The auove property nas ueeu haed in order to evaluate the B.iai.O. norm

(2)

IP II = sup -Vi In1*)- iil-M

’ I

C

T interval [| il Jx 1 J

lor all inner functions if ; more precisely ¿lltfll = ’ ^or every non-constant inner function.

A first extension of the above property of H functions consists in replacing the Lebesgue measure d J- by any finite

\

stricrly positive continuous measure /l on T = 'll D . Then the same result holds, provided that f is in the disk algebra

and f(.zQ) ^2) • An example given in [4] shows that the condition ftzQ) f(.T) is not superflous. An open question, as for as I know, is to characterize the measure!for which this condition is not needed.

In the same paper j^4j the following has been proved:

Suppose if : T1—> C - [wj , w fe C , is a continuous function. Then (i) and (.ii) are equivalent:

(i) The wincing number of with respect to w is non zero.

(ii) for every finite strictly positive continuous measure A on T , there is an interval 1 C T with lenght [I( , 0 |l| 2X , such that

= >717 j ‘ .

The proof (i) (ii) is purely topological. For the con­

verse a rather delicate construction is needed.

Tne above equivalence allows us to determine the range of the BifiO norms ^ll<f • u 1( , when u varies in the set of all topolo­

gical homeomorphisms of T onto I’ and is

(3)

Interval Averages 165

any given continuous uniwouular function (J : r —* I •

Some of the above results nave been extended in the case of functions of several complex variables [?]• Tor instance.we have the following:

Suppose j? : uQ---- > Gn is of class in tne open unit ball 3., of Cn .Let z t b„ be such tnat tne se t

n on

i Z Bn 8 contains at least one isolateu point.

Then is of the form

Tv

-J---y(

where A is the Lebesgue measure on bn , j e /D an ,

°<f^2 and Su>f) = i , witn

the .euclidean norm.

The condition that the set £ z £ : j'Qz) = i\zQjj

contains at least one isolated point does not appear in tne case 0=1 ; in this case this condition is automatically fulfilled or the function in question is constant.

The proofs of the aoove results do not give an^ essential

<lhantitativo information. A natural question, us 6. ricnoriXues others suggested, is to compare £ with tne distance of

% from the boundary. In the present article we prove tne following quantitative result.

.Theorem, Let f : D —!> C be a conformal mapping irorn tne open unit disk L onto a Jordan domain with analytic uoundary.

¿ken tnere is a constant 0 , aucn tnat tne following fa-dds:

-ii. ZQ € S , e1 I a D and £ , 0 <C £ X 3T . are relatea

ft2o) = J fte1^ o1*) dt , then <S [zo| .

(4)

The exponent 1/2 in the above case is the best possible, as one can easilly check by the trivial example fQz) S z .

a more tecunical argument gives £ Ci(1-|zo|

in the more general case oi univalent ii functions, ,7a do not include the proof of this fact, because the sharp result

£ LU-|zop , with L> 0 an absolute constant, has recently been obtained ([&])•

x roof oi tne theorem. i’irst vt& observe that every conformal mapping from D onto a Jordan domain with analytic boundary can be extended by reflexion to a univalent map in a larger disk M 4 r » r y 1 (.£ij). Then by compactness

|i\z,| ^G^ = , for all z , | z 1 1 and

elt) + °°

and

fte^e^) + 0° for all ei'^ , ei<: g, T ,

^t5

applying the 1/4 -Ko0be Theorem (.[?]) to the function gz Ij) = f(.zQ + t1-|z pj) , | j I 4 1 , we find

dietlflz0) , ft®)) -J- [f '(.zQ)| 11 - |z0|) Q1 - lzo| ) .

On the other hand,'since

•£

f(,ei'^eit) dt , we have ftz0) = ^

dist(.f(.zo) , f(T)) |ftzQ) - fie1* )l -6

(5)

Interval Averages 167

Cl)

M. f(.eit>'eii;)dt - f(.eił> J

fÇeit?'eit) - fQe1^ )l Qtl .a

Thus, we find

ífw ‘ •>-l«„l)¿lá- p [ft. 1*.11 )-ft. 1*)]

dt

we use now the following finite raylor development::

ft.1* .»Wt.1 *) .ainsií sih,

lfc=O d/ i fuct

+ X R(,J- , t) .

The Lagrange formula yields that

^t

Therefore we find .£

•£

[ft. 1 *. 11)-«.1*] «

tut +

£ t) at ,

Since -jy- tat = 0 , 2k

-£ '■at

^C2(.f) ana ¡Ri.,t)}^2C4U)

(6)

wo lind

£

x 9 fC-QfJ ca<.f4 /

^C^(f)-£ , where C^(f) = max — , “ j** S. +eO

C-tf) , . 9

Combining this with (1) we find —jj—^“ l80Pi CjWi ,

C„(f}

. . tI K

whicu gives £ ^^,(1-|zQJ ) , with Cf= .¿y ^>0

iiEii'hKShClSS

[1] ahifors, L.V., Complex Analysis, 2nd edition, McGraw-Hill, hew fork 1966,

[2] hanikas, N., Hestoridis, V., Interval averages of H1 func­

tions and L.M.O., Conference of Harmonic Analysis at Cortona, Lecture Motes 992, Springer-Verlag, 1982, 174-192.

[j] hanikas, H., Ne&eoriais, V,, A Property of H1 functions, Complex Variables, Vol. 4 (1985), 277-284.

¡4J Hestoridls, V., Holomorphic functions, measures and nun, Arkiv för Mathematik, to appear.

[5] hestoridis, V., Averages of holomorphic mappings, Proc.

Cambridge Phil. Soc., to appear.

[cj ..¡estoridiB, V., Interval jSstimatea for univalent functions, under preparation.

Pomaerenke, Ch., univalent functions, Vandenhoeck and Bu recht, Göttingen 1975.

(7)

Średnio po przedziałach 169

STRESZCZENIE

Jak wiadomo, dla każdej funkcji klasy H1 w kole |'z|<l i dla każdego 2 . j * 1, Istnieją liczby e* « CR , oraz £ , 0 < fc $ Jj , takie, że f(z ) “ A" f(ef* e14) dfc Dowodzi się,

o * ~t

te jeżli f jest odwzorowaniem konforemnym koła jednostkowego na obszar Jordana o brzegu anaUtycznym, to fc j ęf (l - |zol) ’ , 1/2 gdzie Cj > 0 jest stałą niezależną od zQ, |zq| < 1. Wykładnik l/2 jest możUwie najlepszy.

PE3EME

Itak MBBeCTHO, iwa Zd6oS iyHKIJMK KJiacea H1 B eAHHKMHOM Kpyre u ajih jidOoA tobkh. zq, |z0|< 1» cymecTuycT wwa e1*

* £ , 04£ ś *JT , T8KMB BTO f(z0) = |£ e11) dt.

/loKaauBaeTca, mto ajih KOH<J>ópuHoro OTOópasceHHs efl«HH9Horo «pyra

«a TopflaHOByi) oOaacTb c aHajinTnqecKo!ł rpamcjeft £&

rfle oiio nocTOHHHaa ho38bhckm8 ot zQ, |zQ|<1- 3ncnoHeHT | cauHiS

^y’uuiii.

(8)

Cytaty

Powiązane dokumenty

I would like to thank Professors Peter Pflug and W lodzimierz Zwonek for their valuable

The two new theorems in this paper provide upper bounds on the con- centration function of additive functions evaluated on shifted γ-twin prime, where γ is any positive even

Throughout the sequel, k, m, and n denote positive integers, p, q, and r signify primes, and x and y represent sufficiently large positive real numbers unless otherwise

This phenomenon is known in the literature as “absence of the Poincar´e Lemma” and was already proved in case the Levi form is non-degenerate (i.e.. The idea of our proof, which

This in turn implies that the original function F (λ) has a pole of order at most r at 1, cf. Further related lite- rature includes [N. For a historical account of the latter see

Note that we consider 0 to be a natural number, this is a convention, some textbook author may exclude 0 from the set of natural numbers.. In other words rational numbers are

In the previous section we used vectors to describe positions and displacements of points in space, but vectors can represent quantities other than displacements; for

[36] —, —, Pseudo-euclidean Hurwitz pair and generalized Fueter equations, in: Clifford Al- gebras and Their Applications in Mathematical Physics, Proceedings, Canterbury 1985,