• Nie Znaleziono Wyników

UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ

N/A
N/A
Protected

Academic year: 2021

Share "UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ"

Copied!
6
0
0

Pełen tekst

(1)

MODELOWANIE INŻYNIERSKIE nr 47, ISSN 1896-771X

UKŁAD KONDYCJONUJĄCO- PRZETWARZAJĄCY

ELEKTROMECHANICZNEGO PRZETWORNIKA DRGAŃ

Maciej Rosół

1a

, Bogdan Sapiński

2b

, Jakub Jasiński

1c

1AGH Akademia Górniczo-Hutnicza, Katedra Automatyki i Inżynierii Biomedycznej

2AGH Akademia Górniczo-Hutnicza, Katedra Automatyzacji Procesów

amr@agh.edu.pl, b deep@agh.edu.pl, c qbajkrk@gmail.com

Streszczenie

W pracy opisano zaprojektowany i wykonany układ kondycjonująco-przetwarzający napięcie wyjściowe elektro- mechanicznego przetwornika drgań, którego działanie opiera się na prawie indukcji elektromagnetycznej Faradaya.

Układ ten oraz przetwornik są podzespołami budowanego w ramach realizowanego przez autorów projektu linio- wego tłumika magnetoreologicznego (MR) z odzyskiem energii. Przedstawiono także wyniki badań laboratoryj- nych opracowanego układu w stanie jałowym i obciążenia.

Słowa kluczowe: przetwornik elektromechaniczny, tłumik MR, układ kondycjonująco-przetwarzający, drgania

THE SIGNAL CONDITIONING AND PROCESSING SYSTEM TO SUPPORT AN ELECTROMECHANICAL VIBRATION CONVERTER

Summary

The paper presents the newly designed and fabricated conditioning and processing system converts the output voltage from an electromechanical vibration converter based on the Faraday's laws of electromagnetic induction.

This system and the converter are both sub-assemblies of a linear mangnetorheological (MR) damper with the energy recovery capability, being developed by the authors. The results of laboratory testing of the conditioning system during the idle run and under load are summarised.

Keywords: electromechanical transducer, MR damper, conditioning and processing system, vibrations

1. WSTĘP

Tradycyjne semiaktywne układy redukcji drgań z tłumikami MR są układami ze sprzężeniem zwrotnym.

Energia elektryczna, potrzebna do aktywacji tłumików MR w układach ochrony obiektów drgających, pochodzi z zewnętrznego źródła prądu stałego o mocy rzędu watów. W niektórych przypadkach źródłem tej energii może być sam obiekt drgający. Aby było to możliwe, do układu należy wprowadzić elektromechaniczny prze- twornik drgań (generator), którego zadaniem jest prze- twarzanie energii drgań na energię elektryczną [3, 4].

Faradaya, prędkość obiektu drgającego jest „przetwa- rzana” na napięcie indukowane w jego cewce. Napięcie to powoduje zmianę natężenia prądu w cewce sterującej tłumika MR (odbiorniku) i w konsekwencji zmianę siły generowanej przez tłumik. Z reguły do aktywacji tłumi- ka MR nie jest wykorzystywane wprost napięcie indu- kowane przez generator, lecz napięcie przetworzone przez odpowiedni układ kondycjonująco-przetwarzający.

Przedstawiony w pracy układ kondycjonująco- przetwarzający opracowano dla generatorów przeznaczo-

(2)

Maciej Rosół, Bogdan Sapiński, Jakub Jasiński

wytwarzających siłę (moment) rzędu kilku niutonów (niutonometrów). Wykonanie układu poprzedzone było budową modelu, identyfikacją oraz symulacjami kompu- terowymi [2]. Celem badań opracowanego układu były pomiary i analiza rzeczywistych parametrów elektrycz- nych oraz porównanie ich z parametrami przyjętymi na etapie projektowania, a także określenie granicznych wartości napięć i natężenia prądów dla założonego obciążenia (cewki sterującej tłumika MR).

2. BUDOWA UKŁADU

Schemat blokowy układu kondycjonująco- przetwarzającego pokazano na rys. 1. Głównymi blokami układu są: prostownik z mostkiem Graetza, przetwornica napięcia DC/DC, blok pomiarowy oraz sterownik z mikrokontrolerem PIC18.

Napięcie wyjściowe przetwornika u0 jest wstępnie prostowane przez zbudowany na diodach Schottkyego [7]

mostek Graetza. Napięcie wyprostowane u jest podawa- ne na wejście przetwornicy DC/DC. Napięcie wyjściowe z tej przetwornicy up zasila obciążenie (cewkę sterującą) przez klucz analogowy Ks. Klucz Ks jest sterowany za pomocą mikrokontrolera przez wyjście cyfrowe, co umożliwia uzyskanie zadanej wartości natężenia prądu w cewce.

Przetwornicę DC/DC zbudowano na układzie LM2623 [6] stosowanym w przetwornicach podwyższają- cych napięcie. Układ LM2623 ma sprawność sięgającą 90%, akceptuje napięcia wejściowe (0.8–14) V i pozwala uzyskać napięcia wyjściowe (1.24–14) V [1]. W opraco- wanym układzie kondycjonowania przyjęto napięcie wyjściowe przetwornicy +5 V.

Blok pomiarowy zbudowano przy użyciu energoosz- czędnych wzmacniaczy operacyjnych LT1496 [8], zasila- nych napięciem ±15 V z przetwornicy DC/DC +5V/±15V typu IQ05 15S. Blok ten przetwarza napię- ciowe sygnały analogowe x1, z (z czujników przemiesz- czeń), napięć u0, u, natężenia prądów i0, i do wartości

napięć akceptowalnych przez przetwornik A/C mikro- kontrolera PIC18 [5]. Przetworzone przez ten blok sygnały pomiarowe oznaczono: x1’, z’, u0’, u’, i0’, i’.

Mikrokontroler PIC18 służy do sterowania kluczem analogowym Kz, przez który zasilana jest przetwornica +5/±15V oraz do komunikacji z komputerem przez port USB. Pomiar natężenia prądów i0 oraz i dokonywany jest przez wykorzystujący efekt Halla czujnik prądu ACS712 [9], o czułości 185 mV/A i maksymalnym prądzie 5 A, który jest zasilany napięciem +5V DC.

Rys. 2. Obwód drukowany układu kondycjonująco- przetwarzającego

Zastosowany w układzie 8-bitowy mikrokontroler PIC18 zasilany napięciem (2.0 −3.6) V ma kilka trybów zarządzania energią (cechuje się poborem prądu ok. 10.2 mA w trybie aktywnym), 13 kanałowy 10/12−bitowy przetwornik A/C, wystarczającą do sterowania prze- twornicą moc obliczeniową (12 MIPS przy częstotliwości taktowania 48 MHz) oraz możliwość komunikacji z urządzeniami zewnętrznymi przez port USB 2.0 lub RS232.

Opisany układ kondycjonująco-przetwarzający wy- konano w postaci obwodu drukowanego (płytki PCB), którego widok pokazano na rys. 2.

Rys. 1. Schemat blokowy układu kondycjonująco-przetwarzającego

(3)

UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO…

3. BADANIA UKŁADU

Badania laboratoryjne przeprowadzono w celu po- miaru oraz analizy rzeczywistych parametrów elektrycz- nych wykonanego układu kondycjonująco- przetwarzającego i porównanie ich z parametrami zało- żonymi na etapie projektowania, a także określenia granicznych wartości napięć i natężenia prądów dla założonego obciążenia

Schemat stanowiska, na którym prowadzono badania opracowanego układu, pokazano na rys. 3. W skład stanowiska wchodzą: komputer z kartą wejść/wyjść typu RT-DAC4/PCI, analogowy napięciowy sterownik mocy, układ kondycjonująco-przetwarzający i tłumik MR. Na komputerze, w środowisku MATLAB/Simulink, jest uruchamiana aplikacja czasu rzeczywistego, odtwarzają- ca rzeczywisty napięciowy sygnał wyjściowy z elektro- magnetycznego przetwornika drgań, zarejestrowany podczas jego badań na maszynie wytrzymałościowej.

Wymagane przez cewkę sterującą wartości napięcia i natężenia prądu są uzyskiwane za pośrednictwem analo- gowego sterownika mocy. Wyjście tego sterownika jest podłączone do wejścia u0 układu kondycjonująco- przetwarzającego, którego napięcie wyjściowe zasila cewkę sterującą tłumika MR.

Badania przeprowadzono w stanie jałowym oraz w stanie obciążenia (cewką sterującą tłumika MR) przy dwóch rodzajach sygnałów przemieszczenia (wymusze- nia) z: sinusoidalnego o amplitudzie 10 mm i częstotli- wości z zakresu (0.5, 6.5) Hz zmienianą z krokiem 0.5 Hz) oraz chirp o amplitudzie 10 mm i rosnącej oraz malejącej częstotliwości z zakresu (0.1, 4.5) Hz. Wybra- ne wyniki badań przedstawiono na rys. 4−7. Obrazują one przebiegi czasowe napięcia wyjściowego przetworni- ka u0, napięcia wejściowego i wyjściowego przetwornicy u, up oraz natężenia prądu w cewce sterującej tłumika i przy w/w parametrach sygnałów przemieszczenia.

Przebiegi z rys. 4 dotyczą stanu jałowego przy wymu- szeniu sinusoidalnym o częstotliwości 1.5 Hz. Amplituda

napięcia u0 okresowo przekracza wartość 0.7 V (w chwi- lach t: 1.87, 5.5, 9.19 s). Napięcie wyprostowane u ma mniejszą wartość, skutkiem czego jest załączenie prze- twornicy DC/DC tylko w tych chwilach czasowych, dla których u>0.8 V. Na wyjściu przetwornicy pojawia się wówczas napięcie up wynoszące około 4.7 V, które z czasem przyjmuje wartość równą zero.

Na rys. 5 przedstawiono przebiegi w stanie jałowym przy wymuszeniu sinusoidalnym o częstotliwości 2.5 Hz.

Amplituda napięcia u0 w całym obserwowanym okresie przekracza wartość 4 V. Powoduje to ustalenie się na wejściu przetwornicy napięcia u o średniej wartości ok.

3.95 V. W efekcie, na wyjściu przetwornicy otrzymuje się stabilne napięcie up=4.85 V.

Na rys. 6 pokazano przebiegi czasowe u0, u oraz up

uzyskane przy wymuszeniu typu chirp. Częstotliwość sygnału chirp w przedziale czasu (0, 43.5) s narastała od 0.1 Hz do 4.5 Hz, a następnie malała do 0.1 Hz (t=88 s).

Z wykresów wynika, że praca przetwornicy zależy od częstotliwości wymuszenia:

od 0.1 Hz do 2.24 Hz (t=14.69 s), napięcie up=0 V,

od 2.25 Hz do 2.5 Hz (t=28.45 s), przetwornica pracuje niestabilnie, napięcie up zmienia się okresowo od około 4.85 V do 0 V,

− od 2.55 Hz do 4.5 Hz, przetwornica pracuje stabilnie, tzn. na wyjściu jest utrzymywane na- pięcie o założonej wartości (w tym przypadku up=4.85 V) przy wahaniach nieprzekraczają- cych 10%.

Należy zauważyć, że ponowne wyłączenie przetwor- nicy (malejąca częstotliwość wymuszenia), następuje przy częstotliwości 2.49 Hz. Powyżej częstotliwości 3.51 Hz napięcie u przekracza założoną wartość up, co powo- duje, że zakłócenia z wejścia przetwornicy przenoszą się na jej wyjście.

Rys. 3. Schemat blokowy stanowiska

(4)

Maciej Rosół, Bogdan Sapiński, Jakub Jasiński

Rys. 4. Napięcia: a) u0, b) u, c) up: f=1.5 Hz Rys. 5. Napięcia: a) u0, b) u, c) up: f=2.5 Hz

0 2 4 6 8 10

-3 -2 -1 0 1 2 3 4

t [s]

u 0 [V]

a)

0 2 4 6 8 10

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

u [V]

b)

0 2 4 6 8 10

0 1 2 3 4 5

t [s]

u p [V]

c)

0 2 4 6 8 10

-6 -4 -2 0 2 4 6

t [s]

u 0 [V]

a)

0 2 4 6 8 10

0 1 2 3 4 5

t [s]

u [V]

b)

0 2 4 6 8 10

0 1 2 3 4 5

t [s]

u p [V]

c)

(5)

UKŁAD KONDYCJONUJĄCO-PRZETWARZAJĄCY ELEKTROMECHANICZNEGO…

Rys. 6. Napięcia: a) u0, b) u, c) up: chirp

Na rys. 7 zamieszczono przebiegi czasowe u, up oraz i w stanie obciążenia przy wymuszeniu sinusoidalnym o częstotliwości 5.5 Hz. Z wyników widać, że napięcie u osiąga wartość średnią wynoszącą ok. 6 V, co umożliwia załączenie przetwornicy. Można zaobserwować, że przetwornica nie generuje napięcia up o założonej warto- ści oraz, że wahania natężenia prądu i, osiągają 100%

wartości średniej wynoszącej 0.5 A. Takie zachowanie układu wynika ze zbyt dużego obciążenie prądowego elektromechanicznego przetwornika drgań, przy którym nie można osiągnąć stabilnej wartości napięcia na wyj- ściu przetwornicy DC/DC.

Rys. 7. Napięcia: a) u, b) up, oraz natężenie prądu c) i: f=5.5 Hz

4. PODSUMOWANIE

W pracy opisano budowę oraz wyniki badań labora- toryjnych zaprojektowanego i wykonanego układu kondycjonująco-przetwarzającego. Działanie układu sprawdzono w stanie jałowym i obciążenia. W badaniach szczególną uwagę zwrócono na napięcia wejściowe i wyjściowe przetwornicy oraz natężenie prądu obciążenia.

Określono zakres częstotliwości i amplitudy sygnału wyjściowego z przetwornika, przy których uzyskuje się stabilną pracę układu. W stanie jałowym wyznaczono użyteczny zakres częstotliwości sygnału z (z czujnika przemieszczenia), dla którego gwarantowana jest odpo-

0 20 40 60 80

-10 -5 0 5 10

t [s]

u 0 [V]

a)

0 20 40 60 80

0 1 2 3 4 5 6 7

t [s]

u [V]

b)

0 20 40 60 80

0 1 2 3 4 5

t [s]

u p [V]

c)

0 2 4 6 8 10

0 1 2 3 4 5 6 7

t [s]

u [V]

a)

0 2 4 6 8 10

0 0.05 0.1 0.15 0.2 0.25 0.3

t [s]

u p [V]

b)

0 2 4 6 8 10

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

t [s]

i [A]

c)

(6)

Maciej Rosół, Bogdan Sapiński, Jakub Jasiński

nie zakresu natężenia prądu obciążenia, w którym układ pracuje stabilnie.

Wyniki badań wskazały na potrzebę modyfikacji układu polegającej na podwyższeniu napięcia up, wyeli- minowaniu przetwornicy DC/DC oraz jego miniaturyza- cji z uwagi na planowaną integrację układu z przetwor- nikiem i tłumikiem MR (budowę tłumika MR z odzy- skiem energii).

Praca finansowana przez Narodowe Centrum Badań i Rozwoju w ramach projektu NR 03-0046-10.

Literatura

1. Pressman A.I., Billings K., Morey T.: Switching power supply design. The McGraw Hill Companies, 2009. Third Edition.

2. Rosół M., Sapiński B.: Identyfikacja sterowanego układu kondycjonowania sygnału generatora elektromagne- tycznego. „Modelowanie Inżynierskie” 2012, nr 43, t. 10, s. 239–246.

3. Sapiński B.: Vibration power generator for a linear MR damper. “ Smart Materials and Structures” 2010, 19, p. 1050−1062.

4. Sapiński B.: Experimental study of self-powered and sensing MR damper-based vibration control system. “Smart Materials and Structures” 2010, 19, p. 1050−1062.

5. Microchip Technology Inc., PIC18F47J53 Family Data Sheet, 2010.

6. National Semiconductors, LM2623. General Purpose Gated Oscillator Based, DC/DC Boost Converter, Decem- ber 2005.

7. NXP Semiconductors, PMEG3050EP. 5 A low VF MEGA Schottky barrier rectifier, December 2009.

8. Linear Technology, LT1494/LT1495/LT1496 Single, Dual and Quad Over-The-Top Precision Rail-to-Rail Input and Output Op Amps, USA, 1997.

9. http://www.allegromicro.com, Allegro MicroSystems LLC, ACS712 Hall-Effect Current Sensor IC, Technical Information.

Cytaty

Powiązane dokumenty

Warto także zwrócić uwagę, że prawidłowo rozumiana przedsiębiorczość oczywiście musi opierać się na wynikach ekonomicznych, niemniej jednak

Badanie w kierunku przeciwciał klasy IgM Yersinia spp, Chlamydia trachomatis w surowicy 60,00 zł Badanie w kierunku przeciwciał klasy IgG Yersinia spp, Helicobacter

Zjaw isko drgań własnych układu dyskretno-ciągłego (ry s.l) je st opisane sprzężonym układem rów nań różniczkowych.2. układu dyskretno-ciągłego z tłum ieniem

Z podanego opisu wynika, że krążenie wieńcowe jest częścią (małego / dużego) obiegu krwi. b) Regularne ćwiczenia fizyczne są jednym ze sposobów zapobiegania i leczenia

Wyniki badań chemicznych wody surowej, dopływającej do hydrocyklonu (K) oraz próby badawczej (B), którą stanowiła woda przechodząca przez

Układ monitorowania drgań typu HE101 służy do pomiaru i monitorowania drgań bezwzględnych i temperatury łożysk maszyn zgodnie z normą DIN ISO 108168. Ma on

Izolowane PBMC znakowano przeciwciałami anty- -CD4, anty-CD8 i anty-CD14 (w celu odróżnienia dwóch zasadniczych populacji limfocytów T (CD4 + i CD8 + ) oraz monocytów, a

Magnoliowej 1 (w pobliżu baru Mc Donald’s) na konsultacje specjalistyczne z za- kresu diabetologii (prof. Bogna Wierusz-Wysocka), gastrolo- gii (prof. Krzysztof Linke),