• Nie Znaleziono Wyników

C5/C6 isomerisatie

N/A
N/A
Protected

Academic year: 2021

Share "C5/C6 isomerisatie"

Copied!
81
0
0

Pełen tekst

(1)

o

o

o

·

ó

0

'

< ,,\

ó

;

o

·

, Q . :j ..

o

/

o

/

..

~. ~

t

rec..'

e

~

..

e",,~

... ,u ..

-~/""

~ 1.&~t4

•••

(t..,

Cs.,...~

• • ", •

Laboratorium voor Chemische Technologie

Verslag behorende bij het fabrieksvoorontwerp

van D.J. Sinke en H.R. Tijsseling onderwerp:

.

c

je isomerisatie .. : ... 5 ... 6 ... .

Nr:

2552

.

,

adres: Julianastraat 42, Rijswijk

Van Speykstraat 2, Delft .

opdrachtdatum : 31-01-1983

verslagdatum: .30-~3-1983

~._.'.

i • • r

(2)

I1

I

'

,I

1

~.

I

1

. ii

1

WATERSTOF/STIKSTOF

..

C5/C6 N/ ISO-ALKANEN SUPPLETIE

~

H2 16

/

OPSLAG I

I

,

,

:

I

Hll I H11 I I

,

I I I AFGAS

15~

i

I i I PC i

I

H17 \ \ I I

I

I

I

I I

I

AFGAS

PRODUKTIE C5/C6 ISO-ALKANEN T

.

B.V. OKTAANGETALVERBETERING VAN BENZINE

o

Sl:.roomnummer

c==J

Temperatuur in oC

o

Absolute druk in bar D.J. Sinke H.R. TIJssel ing Fabrieksvooronl:.werp No: 2552 Apr I I 1983 P 1 C5/C6 N/ISO-ALK. H F VOEDINGPOMP 2 WARMTEWISSELAAR VOEDING/EINDPROD. 3 FORNUIS T.B.V. VOEDING ISOSIV V 4 N-ALKAAN ADSORPTIEVAT C 5 H 2/N2 SUPPLETIE COMPRESSOR V 6 N-ALKAAN DESORPTIEVAT P 7 VAKUUMPOMP T.B.V . H V N-ALKANEN 8 HATERKOELER T.B.V.N-ALKANEN 9 BUFFERVAT VOOR N-ALKANEN P 10 N-ALKAAN RECYCLE-POMP H 11 \'JARMTEWISSELAAR REACTORVOED./PROD. F 12 FORNUIS T.B.V. REACTORVOEDING C 13 H 2/N2 /ALKAANRECY-CLEGASCOMPRESSOR R 14 ISOMERISATIE-REACTOR H 15 LUCHTKOELER T.B.V. REACTORPRODUKT V 16 VLOEISTOF-GASAF-SCHEIDER T.B.V. REACTORPRODUKT H 17 WATERKOELER T.B.V. EINDPRODUKT V 18 VLOEISTOF-GASAF-SCHEIDER T.B.V. EINDPRODUKT

(3)

- - - ----~---v I I "' 1'-./ I I I I I

I

L I

I

I D.J. Sinke Julianastraat 42 2282 RP Rijswijk tel. 070-992141 Opdrachtdatum: 31 januari 1983 Verslagdatum:

30

maart

1983

H.R. Tijsseling Van Speykstraat 2 2628 RG Delft tel. 015-567793

(4)

I '-" 1 -..)

I~

1'--' I I!

I

\.... I I \...J I

I~

-Voorwoord

Langs deze weg willen wij onze dank betuigen aan hen, die het tot stand komen van dit ontwerp mede mogelijk hebben gemaakt.

In het bijzonder: prof.ir. A.G. Montfoort drs. F.A. Meijer

dr. ir.

c.

van Leeuwen

dr. ir. Th.W. de Loos A. van den Ham

J.B. Vergouwe

voor waardevolle adviezen en begeleiding. Verder: André van der Wulp

Rini de Pree Roald Perbal Vincent Dert Obbo Heeres

T.G. bestuur 1982-1983

voor morele steun, innovatieve ideeën en gezelschap tijdens de koffiepauzes.

D.J. Sinke

(5)

o I

()

I \. ...

INHOUDSOPGAVE

Samenvatting van de technologische uitvoering van het proces

Conclusies

1 Inleiding

2 Uitgangspunten voor het ontwerp 3 Beschrijving van het proces 4 Procescondities

5 Apparaatkeuze, motivatie en berekening 6 Massa- en warmtebalans

7 Overzicht specificatie apparatuur 8 Kosten- en investeringsaspecten 9 Symbolenlijst

10 Literatuurlijst 11 Bijlagen

1- Isomerisatie-unit

2- Keuze van een thermosysteem

3- Adviezen t.b.v. het werken met PROCESS

blz. 1 3 5 9 13 15 20 29 35 40 43 45 47 52 54

4- Simulatie met behulp van de computer 55

5- Reactordimensionering 63

6- Kosten- en investeringsberekeningen 70

7- Berekening van de adiabatische temperatuur- 75

(6)

I '

I

~

IJ

, .... .' I , I

i

I

IV

- 1

-Samenvatting van de technologische uitvoering van het proces.

Uitgaande van het in de literatuur door van Zijll Lang-hout en Kouwenhoven (lit. 1) beschreven basisproces,is de mogelijkheid onderzocht dit proces door te rekenen m.b.v. het commerciële flowsheetingprogramma PROCESS. Na enige aanloopmoeilijkheden bleek dit goed te

verweze~ijken.

Vervolgens werd getracht de rudimentaire vorm van het proces wat reëler te maken door te werken met meerdere componenten en door een normaal-isomeren scheidingsunit aan te brengen, waardoor het mogelijk is om niet omgezette alkanen te

recyclen naar de reactor.

De optredende isomerisatiereacties vinden plaats in de gas-fase,waarbij gebruik gemaakt wordt van een zgn.'dual function' Pt-op-zeoliet katalysator. Een gepakt bed reactor is dan ook voor de hand liggend.

Bij de keuze van de scheidingsunit viel de destillatieve schei-ding vanwege de kosten af. De scheischei-ding met een mol-zeef is bovendien eenvoudiger te realiseren,kan vrijwel continu bedre-ven worden en vindt ook bij in gebruik zijnde commerciële isomerisatieinstallaties veelvuldig toepassing.

Aangezien het met PROCESS alleen mogelijk is geheel continue systemen te beschrijven, is de Isosiv-unit in de PROCESS-invoer vervangen door de zgn. component separator. Het probleem is dus opgelost door gebruik te maken van een zo reëel mogelijke black box beschrijving.

De reacties in de reactor vinden plaats bij 2500C en 30 bar. Afhankelijk van de plaats in het systeem bedraagt de plaat-selijke druk tussen de 31 en 25 bar.

Adsorptie vindt plaats bij 3000C en 26 bar. Tijdens de desorp-tie daalt de druk van 2 tot 0,07 bar,terwijl de temperatuur tot 2550C daalt.

Gezien het feit dat de PROCESS reactor minder reacties kan verwerken dan er in het systeem optreden, is er in het

hexaan-isomerisatieschema een vereenvoudiging aangebracht. Dat deze vereenvoudiging geoorloofd is, wordt aangetoond in het vervolg van dit verslag zie bijlage 1 ).

De capaciteit van de isomerisatieplant bedraagt 240 ton pro-duct per dag. Uitgegaan wordt van een jaarlijkse belasting

(7)

1'-' I

- - _ .

-- 2

-van 8000 uur.

De kwaliteiten van de plant kunnen het beste als volgt worden aangegeven: De voeding van de plant heeft een octaangetal van 72,4 (RON). De produktstroom heeft een octaangetal van 89,3

(RON), een octaangetalverhoging van 17 eenheden,welke

over-eenstemt met de in de literatuur (lit. 2) gevonden waarden.

Een recente methode om octaangetallen te verhogen zonder gebruikmaking van TEL (tetra-ethyl-lood) is het toevoegen

van HTBE (methyl-tertiary-butyl-ether) of TAME

(tertiary-amyl-methyl-ether) ( lito 3.)

Een kostenvergelijking van het in dit verslag beschreven

isomerisatieproces met o.a. de MTBE/TAME methode is in

(8)

I

!

1'-I

I

J

10 I - 3 -Conclusies.

Wanneer de aandacht gericht wordt op het eerste deel van de opdracht,het doorrekenen van een eenvoudig systeem,is te concluderen dat PROCESS zich hiervoor goed leent. Wel is het zo, dat er veel tijd voorbij gaat voordat de gebruiker op enigs-zins vlotte wanier van PROCESS gebruik kan maken. De handlei-ding, bestaande uit een groot aantal manuals, is weliswaar

uitgebreid, maar is op essentiele punten vaak niet duidelijk,

soms zelfs uitgesproken vaag.

Een groot voordeel is de beschikbaarheid van een zeer uitge-breide componenten bibliotheek en de aanwezigheid van verschei-dene thermodatageneratoren. Dit levert een enorme tijdsbespa-ring op aangezien dagenlang zoekwerk in de bibliotheek over-bodig wordt.

In schril contrast hiermee staat de beperktheid van de PROCESS reactor. Voor meerdere onafhankelijke reacties is de door ons

gebruikte oplossing acceptabel. Wanneer men echter te maken

krijgt met een complex reactiesysteem, is een uitbreiding van het reactorgedeelte van PROCESS noodzakelijk. Dit is eenvou-diger gezegd dan gedaan :

- aangezien PROCESS een commercieel programma is, is er geen listing van de inhoud verkrijgbaar. De gebruiker kan

slechts raden naar de gebruikte methode voor de reactor-berekening. Het is tengevolge daarvan dan ook niet

moge-lijk te zeggen in welk gedeelte van de berekening

wij-zigingen aangebracht moeten worden om de reactor alge-meen toepasbaar te maken.

- de manual betreffende de User Added Subroutines munt eveneens niet uit door duidelijkheid,terwijl hiermee

binnen de groep van van Leeuwen nog geen enkele

erva-ring bestaat.

Onze suggestie is dan ook het reactorgedeelte nader te laten bestuderen en verbeteren c.q. uitbreiden door één of meerdere researchpracticanten of door dit onderdeel te integreren in een afstudeeropdracht.

Nadrukkelijk dient gesteld te worden dat deze

reactorverbete-ring een ingewikkelde zaak is was dit niet het geval geweest

(9)

0 '

v

,...)

I

- 4

-ingebouwd,getuige o.m. het feit,dat zelfs ingewikkelde

destillatieprogramma's stand~ard zijn.

Betreffende de ideeën om in de toekomst alle fabrieksvooront-werpen met behulp van PROCESS te laten uitwerken,dient het volgende gesteld te worden : Als gevolg van het gemak waarmee alle unit operations uitgerekend worden bestaat het gevaar,dat het voor het opdoen van 'fingerspitzengefühl' t.a.v. unit

operationsberekeningen juist zo leerzame"met de hand doorre-kenen" verdwijnt. Daarbij komt nog dat men vanwege het'black box'systeem maar beperkt inzicht verkrijgt in de rekenmetho-dieken van PROCESS.

De in dit verslag beschreven en doorgerekende isomerisatieplant kenmerkt zich door het realiseren van een aanzienlijke octaan-getalverhoging,eenvoudige bedrijfsvoering en een acceptabele kostprijs per RONbarrel.

De gebruikte n-alkaan-iso-alkaan scheiding verdient uit

kosten-oogpunt en uit kosten-oogpunt van bedrijfsvoering duidelijk de

voor-keur boven een destillatieve scheiding.

De simulatie van de Isosiv-unit is alleen mogelijk m.b.v. een black-box systeem.

De in de toekomst steeds scherper wordende eisen m.b.t. het milieu zullen het tetra-ethyl-lood uiteindelijk uit de benzine doen verdwijnen. Voor isomerisatieprocessen en MTBE/TAME-toe-voeging al of niet in combinatie met elkaar lijkt dan ook een behoorlijke markt open te liggen.

(10)

' J

- 5

-1. Inleiding.

In het kader van het 4ejaars project 'fabrieksvoorontwerp'

werd de opdracht gegeven een isomerisatieplant zoals deze in de literatuur beschreven is (lit. 1) m.b.v. een chemical engineering programma door te rekenen.

Dit programma,genaa@d PROCESS, is vrij recent ter beschikking van de afdeling der Scheikundige Technologie gekomen,zodat het momenteel gewenst is meer ervaring ermee op te doen. Ervaringen van studenten met het programma waren tot nu toe doorgaans teleurstellend,zodat het zinvol is om bij dit ontwerp de bruikbaarheid van het programma nog eens na te gaan.

Kort samengevat luidde de opdracht als volgt

- reken de isomerisatieplant in z'n meest eenvoudige vorm (o.m. slechts pentaan als voeding) door m.b.v. PROCESSi m.a.w.test de bruikbaarheid van PROCESS.

tracht vervolgens de plant op een meer reële manier te

simuleren o.a. door de voeding meer conform de

werke-lijkheid te doen zijn en door het bij schakelen van meer-dere zinvolle unit operations.

Uitgegaan is van het Shell Hysomer Process (lit. 1) dat een aanzienlijke octaangetalverhoging t.o.v. de voeding realiseert t.g.v. isomerisatie van normaal-alkanen tot iso-alkanen.

Allereerst wordt stilgestaan bij de vraag waarom het gewenst

is isomerisatie toe te passen om octaangetalverhoging te

bewerkstelligen.

De benzinecomponenten,die resulteren uit het kraakproces, hebben in het algemeen een te laag octaangetal om bruikbaar te zijn voor automotoren werkend volgens het Otto-principe. Voor Europese landen geldt dit in sterkere mate daar motoren van Europese fabrikanten i.h.a. een hogere compressieverhou-ding hebben dan motoren van fabrikanten uit de Verenigde Sta-ten van Amerika, en als gevolg daarvan een brandstof met hoger octaangetal nodig hebben.

Nu is het zo dat een aanzienlijke octaangetal verhoging

ver-kregen kan worden door aan de brandstof enkele cm3 TEL

(tetra-ethyl-lood) per gallon toe te voegen. Dit is dan ook de werk-wijze,die men jarenlang toegepast heeft.

(11)

..J I

I

I

:J

1'-'

!

- 6

-gaat van een vermindering,mogelijkerwijs zelfs een geheel

weglaten,van TEL uit benzines,o.m. met het oog op de beperking van schadelijke invloeden op het milieu.

Om toch de noodzakelijke octaangetal verhoging te bewerkstelli-gen,bleek het toepassen van de reeds genoemde isomerisatie geschikt.

Een zeer recente ontwikkeling is het toevoegen van MTBE (methyl-tertiair-butyl-ether) aan de benzine om het octaan-getal te verhogen (lit. 3 ). Dit proces schijnt economisch aantrekkelijker te zijn dan de isomerisatieprocessen ten gevolge van lagere investerings- en bedrijfskosten en ten gevolge van een lager energie verbruik.

Kort samengevat zijn de volgende isomerisatieprocessen op de markt :

- Shell Hysomer proces (lit. 1); in de praktijk vaak gekoppeld

aan een Isosiv scheidingsunit,resulterend in een zgn.

TIP-systeem(!otal !somerization ~rocess)

Een vereenvoudigd flowsheet,zoals dat in de literatuur

(lit. l)gepresenteerd wordt, is weergegeven in figuur 1.1

H2 recycle gas + norm als (~Feed = .

J

make-up- -H 2 ( " " \ . Alternate ~ feed ~I \ isomerate LPG totat isomerate

figuur 1.1 Shell Hysomer isomerisatieproces.

- Penex proces (UOP) ; opgebouwd uit vrijwel dezelfde units als het Hysomer proces,alleen is er sprake van een iets gewijzigde configuratie (lit. 5).

(12)

t ,-,I

I

v

...)

I

- 7

-Schematisch is het één en ander in figuur 1.2 weergegeven

r - - - Isomerization RON-0: 79-82 r---160" endpoint r- (once -through) fraction hysomer RON-O: 68-72 iL

r

I

b N Complete N '" RON-0: 88-92 Cl)

Eg

.c as ~ ~ isomerization .s - Cl) ~ 0

r--

.ct:: tip CD ;;; 0.:'= as I~ ca a. C) ~u Z '" U - "Isomer" RON-0:"'-'80 ~~ ca as

I

.c -_ u C7's and heavier te .c 0 g.-5 catalytic reformer

-c ~ Normal paraffins '" m N-paraffin (95-96% pure)

-e'''' .> ~ adsorption ë 1: isosiv '" Ol ä. ::::; '" .s ë Ö ' - - - ~

figuur 1.2 Verschillende methoden voor octaangetalverho-ging (lit. 7).

In deze figuur is het octaangetal weergegeven met het zgn. Research Octane Number (RON) .Het octaangetal kan eveneens

weergegeven worden m.b.v. het Motor Octane Number (MON).

De huidige marktsituatie voor het gasfase hydroisomerisatie-proces is in de tabellen 1.1 en 1.2 weergegeven (lit. 7).

Tabel 1.1 Bestaande TIP-units. Location Japan Switzerland Germany USA Italy On stream date 1975 1976 1976 1981 1982 capacity BPSD feed 6000 4200 4000 8000 5000 27200 feedstock LSR LSR LSR,It. cat. reformate LSR,nat. gasoline LSR

(13)

.

.

u ....) -J I v I-v 8

-Tabel 1.2 Bestaande Hysomer-units

Location Italy Belgium Germany On stream date 1970 1974 1977 capacity feedstock RPSD feed 4000 LSR 3000 LSR 8500 LSR, It. cat.reformate comments reformer section integrated with cat. reformer converted cat. reformer

grass roots Hy-somer with

recy-+ It.pyrolysis cle of n-C 5 Sweden 1979 4000 Australia 1980 10000 Singapore 1980 3000 32500

LSR = light straight run naphta BPSD= barrels per stream day

LSR converted hydro-desulfurizer LSR converted cat . reformer LSR converted hydro-treater-cat. reformer

(14)

0--.J

I

I~

- 9

-2. Uitgangspunten voor het ontwerp.

Uitgegaan is van een productie van 10 ton per uur,wat bij een jaarlijks aantal bedrijfsuren van 8000 overeenkomt met 80000 ton per jaar.

Voor de samenstelling van spui,afvalstromen en de betreffende hoeveelheden wordt verwezen naar hoofdstuk 6.

De voeding voor de isomerisatieplant is gelijk genomen aan de voeding zoals van Zijll Langhout en Kouwenhoven die presen-teren in hun artikel (lit. 1). Deze voeding is in tabel 2.1 nog eens weergegeven.

Tabel 2.1 Voeding isomerisatieplant.

component i-butaan n-butaan i-pentaan n-pentaan 2,2-dimethylbutaan cyclopentaan 2,3-dimethylpentaan 2-methylpentaan 3-methylpentaan n-hexaan methylcyclopentaan cyclohexaan benzeen hoeveelheid (gew.%) 0,2 0,5 29,3 44,6 0,6 2,2 1,8 9,3 4,6 6,7 0,2 100,0 Voor de H

2 in het systeem wordt gebruik gemaakt van H2

af-komstig uit een katalytische reformer. Combinatie van een TIP-unit met een katalytische reformer levert voor het TIP-gedeelte in het algemeen een investeringsbesparing op van 20-40 %(lit. 8) zodat steeds meer van deze mogelijkheid gebruik wordt gemaakt. Bij het stoken van de fornuizen wordt gebruik gemaakt van stook-olie met een stookwaarde van 40000 kJ/kg.

De voor de unit operations-berekeningen benodigde gegevens zijn alle afkomstig uit de PROCESS-bibliotheek. De aanwezigheid van een componentenbibliotheek van meer dan 600 componenten levert een aanzienlijke besparing op zoekwerk in de afdelingsbiblio-theek op. Een listing per component van een gedeelte van de bibliotheek is weergegeven in de bij dit verslag behorende PROCESS-uitvoer (los bijgevoegd).

(15)

I

,.) , " , '-' .,.) . ..)

v

'-...) 1-...1 ( - 10

-Uit de literatuur (lit. 9 en lito 10) blijkt dat de organische componenten,H

2 en N2 geen merkbare corrosie veroorzaken, zodat

er geen bijzondere maatregelen in de constructie genomen be-hoeven te worden.

In tabel 2.2 zijn voor enkele componenten vlampunt,explosie-grenzen en ontstekingstemperatuur weergegeven,ontleend aan Ullmann (lit. 11).

Tabel 2.2 Vlampunt,explosiegrenzen en ontstekingstemperatuur voor enkele organische componenten.

component n-butaan 2-methylpropaan n-pentaan 2-methylbutaan 2,2-dimethylpropaan n-hexaan i-hexaan 2,2-dimethylbutaan 2,3-dimethylbutaan n-heptaan i-heptaan 2,3-dimethylpentaan 2,2,3-trimethyl-butaan 2,3-eimethylhexaan vlampunt

°c

<-20 <-20 <-20 <-20 <-20 <-20

-

4 <- 4 < 0 < 0 < 12 explosiegrenzen,vol% onder boven 1,9 8,4 1,8 8,5 1,4 7,8 1,3 7 ,6 1 ,4 7 ,5 1,2 7,4 1 7 ,4 1 ,2 7,0 1,2 7,0 1,1 6,7 1 7,0 1 ,1 6 , 7 0,9 6,5 ontstekings-o temp. C 365 460 285 420 450 240 260 435 415 215 220 330 450 210

---N.B. 1 Explosiegrenzen in lucht bij 20oC.

N.B. 2 Explosiegrenzen dient men altijd met enige voorzichtig-heid te interpreteren,zo ook de gegevens in bovenstaande tabel.

De giftigheid van de gebruikte organische cOlliponenten is gering, wat in eerste instantie al aangetoond door de MAC-waarden die vrij hoog liggen.In tabel 2.3 zijn enige waarden weergegeven, ontleend aan Ullmann (lit. 11).

(16)

---_.

--- 11

-Tabel 2.3 MAC-waarden van enkele organische componenten.

,

o (MAC= maximaal aanvaarde concentratie)

0 ' 0 component MAC (ppm) propaan 1000 butaan 1000 pentaan 1000 hexaan 500 heptaan 500 octaan 500

In het onderstaande worden van enkele relevante stoffen

eigenschappen betreffende veiligheid,mens en milieu vermeld.

(lit. 12).

n-butaan } i-butaan

n-pentaan } i-pentaan

ontsteking t.g.v.warme oppervlakken,vonken of open vlammen ilost nauwelijks op in water

nauwelijks giftig(10000 ppm over periode 10 min.) tengevolge van snelle verdamping verdringt het gas in hoge concentraties zuurstof uit de lucht.

contact met vloeistof veroorzaakt bevriezingen. symptomen zijn: slaperigheid,misselijkheid, spierzwakte,bewusteloosheid,witkleuring van be-vroren lichaamsdelen.

kleurloze,bijna reukloze vloeistof.

ontsteking t.g.v.warme oppervlakken,vonken of open vlammen. inademen van de damp werkt benauwend en kan storingen van het hartritme veroorzaken. contact met de vloeistof veroorzaakt prikkeling van ogen en huid.

symptomen: slaperigheid,hoofdpijn,bewusteloosheid, ademstilstand,ineenstorting en duizeligheid.

(17)

I

I

:J

I

I

I

IV

1"--' IV n-hexaan } i-hexaan cyclopen taan - 12

-kleurloze,niet geheel reukloze vloeistof. ontsteking door warme oppervlakken,vonken of open vlammen, nauwelijks oplosbaar in water. dampen veroorzaken lichte prikkeling van ogen, ademwegen en huid. inademen van hogere concen-tratisch werkt narcotisch en veroorzaakt storing-en van het hartritme. contact met vloeistof

veroorzaakt prikkeling van ogen en huid.

symptomen : ademstilstand,hoofdpijn,slaperigheid duizeligheid,bewusteloosheid en zwakte.

gering remmende werking op algen. kleurloze lucht,benzineachtige lucht.

ontsteking door warme oppervlakken,vonken of open vlammen. dampen prikkelen ogen en ademwegen.

hogere concentraties hebben narcotische uitwer-king. storingen van het hartritme.

contact met vloeistof veroorzaakt prikkeling van ogen en huid.

symptomen : brandend gevoel ogen,neus en slijm- vlies,hoofdpijn,duizeligheid,krampen,ineenstor-ting en braakneigingen.

m-cyclopentaan kleurloze vloeistof,licht aromatische reuk.

ontsteking door warme oppervlakken,vonken of open vlammen. nauwelijks oplosbaar in water. werkt prikkelend op slijmvlies en huid.

inademen van damp veroorzaakt gevoel van duizè-ligheid,misselijkheid,hoesten,braken,lichte

temperatuurverhoging. hogere concentraties leiden tot bewusteloosheid en ineenstorting.

(18)

, '-' I

I

I IV 1'-' - - - -- 13 -3. Beschrijving van het proces

Het te gebruiken TIP proces (Total Isomerization Process) is een combinatie van het Hysomer isomerisatieproces en het 1so-siv-n/iso scheidingsproces.

De voeding die 53% n-alkanen bevat wordt eerst gesplitst in normaal- en iso-alkanen. De voeding,stroom 1 ,wordt met pomp Plop 27 bar gebrachten gaat samen met het vloeibare reactie-produktmengsel, stroom 24, naar warmtewisselaar H2 waar warmte wordt gewisseld met het gasvormige produkt dat de adsorber V4 verlaat. Vervolgens wordt stroom 5 in fornuis F3 verder opge-warmd tot 300 oe. De eigenlijke n/iso scheiding vindt plaats in V4, het adsorptievat. De vaten V4 en V6 worden door cyclisch verwisselen afwisselend als adsorptie- en als desorptievat ge-bruikt. De niet geadsorbeerde iso-alkanenstroom 16 gaat via warmtewisselaar H2 en koeler H17 naar flashvat V18, waarin bij

o

25 e de druk verlaagd wordt tot 4 bar en het ontstane gas van de vloeistof wordt afgescheiden. De vloeistof, stroom 28, is het eindprodukt, en het gas, stroom 27, wordt gebruikt als fuel gas. De geadsorbeerde n-alkanen in V6 worden gedesorbeerd door drukverlaging m.b.v. vakuümpomp P7, gecondenseerd en gekoeld

o

tot 25 e met koeler H8 en met pomp PlO op 31 bar gebracht. Deze stroom gaat samen met de recyclegasstroom uit V16 en wat suppletie H

2 naar warmtewisselaar HIl, waar warmte wordt ge-wisseld met de warme gasstroom uit de reactor. Vervolgens wordt

o

stroom 15 in fornuis F12 verder opgewarmd tot 231 C en de re-actor ingevoerd, waar de isomerisatie plaatsvindt. De gasstroom uit de reactor gaat na warmtewisselaar HII naar luchtkoeler Hl5 waarin gekoeld wordt tot 40 oe. Het vloeistof-gasmengsel gaat naar vloeistof-gasafscheider V16, de temperatuur en druk daarin zijn resp. 39 oe en 27 bar. De vloeistofstroom 24 gaat naar warm-tewisselaar H2 van de isosiv unit en de gasstroom die voorname-lijk H

2 en N2 bevat gaat naar Hl1 van de isomerisatie unit. Het reactiveren van het adsorptiemiddel, molzeef 5A, dient één keer per jaar te gebeuren. Het berust op het afbranden van de kool die zich op de molzeef heeft afgezet. Om te voorkomen dat de temperatuur van het bed tijdens het afbranden tot boven de 540 oe stijgt, wordt een gasmengsel toegevoerd dat maar 0.5 tot 1.0% zuurstof bevat. Het afbranden duurt ongeveer 42 uur. Met

(19)

o

I I I o ' " ' 1 0 \ I J I J o IV IJ - 14

-opwarmen en afkoelen en controles wordt de totale reactive-ringstijd geschat op 72 uur. (lit. 13)

De reactivatie van de isomerisatiekatalysator kan om de twee jaar 'in situ' plaatsvinden. Over de manier waarop de regene-ratie plaatsvindt is niets gevonden in de literatuur. Waar-schijnlijk gebeurt het op eenzelfde manier als de reactivatie van het adsorptiemiddel.

Bij de inbedrijfstelling moet rekening gehouden worden met het feit dat beide fornuizen een grotere temperatuursverhoging moeten bewerkstelligen dan bij stationair bedrijf. Dat kan alleen als het debiet van de voeding langzaam wordt opgevoerd. Als de reactor op temperatuur gekomen is, kan de voeding waar-voor de fabriek ontworpen is, worden verwerkt. Via een tempe-ratuursmeting aan de uitgang van de reactor en een regeling van de stookolievoeding naar het fornuis kan een stationaire situatie bereikt worden.

Voor de flexibiliteit van het proces is het van belang dat zo-wel de isosiv unit als de isomerisatie unit afzonderlijk bedre-ven kunnen worden. Daartoe is er na buffervat V9 een aftakking naar opslag gemaakt. Het gehele proces is ontworpen voor een capaciteit van 240 ton per dag. Als op een lager productieni-veau wordt gewerkt zal in de warmtewisselaars H2 en Hll een betere warmteuitwisseling plaatsvinden, zodat de fornuizen F3 en F12 zowel absoluut als relatief minder warmte moeten toe-voeren. Het is zinvol de voedingsstromen van beide fornuizen te voorzien van een flow-control, zodat wanneer de voeding

(20)

-\

( .J C (

c

<-

c

( C' C CJ ( . I { I , P 1 CS/C6 N/ISO-ALK.

~ATERSTOF/STIKSTOF SUPPLETIE AFGAS VOEDINGPOMP

H 2 WARMTEWISSELAAR VOEDING/EINDPROD. F 3 FORNUIS T.B.V. ~ ~ VOEDING ISOSIV

I

V 4 N-ALKAAN ADSORPTIEVAT

,

C 5 H2/N2 SUPPLETIE COMPRESSOR I V 6 N-ALKAAN r DESORPTIEVAT V4 V6

,

P 7 VAKUUMPOMP T.B.V. N-ALKANEN

~

H 8 HATERKOELER 42 T.B.V.N-ALKANEN 31

i

V 9 BUFFERVAT VOOR 19 N-ALKANEN

I

r

P 10 N-ALKAAN

RECYCLE-,

POMP

I

Hll IHll H 11 \'JARMTEWISSELAAR REACTORVOED./PROD.

,

F 12 FORNUIS T.B.V. I REACTORVOEDING I I I C 13 H 2/N2/ALK AANRECY-CLEGASCOMPRESSOR R 14 ISOMERISATIE-REACTOR H 15 LUCHTKOELER T.B.V. REACTORPRODUKT V 16 VLOEISTOF-GAS AF -SCHEIDER T.B.V. F12 REACTORPRODUKT F3 H 17 WATERKOELER T.B.V. EINDPRODUKT OPSLAG

V 18 VLOEISTOF-GAS

AF-PRODUKTIE

C5/ C6

ISO-ALKANEN T.B.V. OKTAANGETALVERBETERING

VAN

BENZINE

SCHEIDER T.B.V.

0

Slroomnummer

D

Temperaluur in oC

0

Abso I ule druk In bar D.J. Sinke Fabrieksvooronlwerp No, 2552 EINDPRODUKT

(21)

- - - ~. --~---I....)

I

I

I~

I

1 1-jV IV - 15 -4. Procescondities

De isomerisatiereactie wordt uitgevoerd in de gasfase. Als katalysator fungeert een 'dual function catalyst', die be-staat uit een fijn gedispergeerd edelmetaal, goed verdeeld over een geactiveerde zure zeoliet met een laag natriumge-halte. De verschillende isomerisatiereacties die optreden zijn zwak exotherm. De reactor wordt uitgevoerd als een adia-batische gepakt bed reactor. Er is weinig kinetiek bekend van de optredende reacties; evenwichtsrelaties worden ge-bruikt om de conversie te bepalen. De reactor wordt bedreven

onder waterstofdruk bij een totaaldruk van 30 bar en een

tem-peratuur van 250 °C. De molaire verhouding

waterstof/koolwa-terstoffen is ongeveer 2.5; in de reactor treden de volgende

evenwichten op:

c-c-c-c

-~C-C-C " l) I C

c-c-c-c-c

...

_-~

c-c-c-c

"~

C

4 y;C-C-C-C-C

Y

'

C-C-C-C-C-C

~

C-C-C-C-C'-

C '-:3T I ~ C C ~~ 5 C-C-C-C --~ C-ç-C-C

CC

'OT

c

De daarbij behorende reactieenthalpieën en evenwichtsconstan-ten zijn verzameld in tabel 4.1. (lit. 14)

De evenwichtsconstanten zijn een functie van de temperatuur:

ln K

=

A + B/T (4. l)

Uit de evenwichtsconstanten bij de verschillende temperaturen zijn de constanten A en B bepaald. Deze waarden zijn verzameld in tabel 4.2 evenals de correlatiecoëfficient r en de K-waarde bij 523 K. (de reactortemperatuur)

(22)

I J I v I, ) IV i \ U 1'1 IV I I V I V - 16

-Tabel 4.1: Reactieenthalpiën en evenwichtsconstanten van de optredende isomerisatiereacties. 1 2 3 4 5 6 3+5+6 t.H log K llH log K t.H log K I

I

llH log K t.H log K llH log K llH log K

1

-I temperatuur, K

_

~O~

_f_400

~

-~~~-_-_~~~_-_-7~O-_-_~~~_

-6.89 1-7.01 I -6.93 -6.89 -6.85 -6.76 + 0 . 6481 + 0 . 28 4[ + 0 . 065 - 0 . 073 - 0 . 1 7 1 - 0 . 2 4 9 I I -8.06 -8.19 ! -8.06 -7.85 -7.69 -7.48

i

+1.115 +0.75~ +0.546 +0.412 +0.315 +0.243

I

-7.14 -7.35 -7.14 -7.22 -7.011-7.01 -0.830 -0.51 -0.337 -0.215 -0,1411 1 ' -0.093 -2.73 -2.98 -3.11 -3.49 -3.36 -3.82 I -0.502 -0.38 -0.324 -0.280 -0.25~ -0.254 -3.44 , -3.36 I -0.1751-0.33 -7.85 1-7.77 -3.36 -3.28 -3.07 1-2.69 -0.429 -0.492 -0.547 1 -0.601 I -7.90 -7.77 -7.56

i

-7.27 +1.013 +0.667 +0.459 +0.335 +0.2841 +0.188 ! i -18.44 18.48 -18.40 17.85 -17.64 f 16.97 _ +

~

. : 6 8 + 0 . 85 +

~

.

~

6: : 0 .

~

5

~

=

0

~

1

~

21

=

0

~

3

~

0 _ t.H is de reactieenthalpie in 106 J/kmol K is de evenwichtscanstante

Tabel 4.2: De constanten A en B uit vgl. 4.1.

reactie 1 2 3 4 5 6 3+5+6 A B (K) -1.826 999.4 -0.677 976.2 -0.872 835.1 -0.194 -283.8 -1.920 460.2 -0.697 900.5 -3.702 2306.4 r 0.996 0.996 0.999 0.995 1. 089 3.286 2.066 0.479 0.997 0.354 0.998 2.786 0.991 2.030

(23)

I~,

I

IV

- 17

-Uitgaande van een 'space veloci ty' in de reactor van 1 g/g.hr

(lit. 1) mag aangenomen worden dat het produktgasmengsel in evenwicht is. Daarmee zal in het vervolg steeds gerekend wor-den.

Over het reactiemechanisme is het volgende te zeggen: de dra-ger van de 'dual function catalyst' gedraagt zich als een zuur van het Friedel Crafts type. De metaalfunctie verlaagt de ini-tiële activiteit maar stabiliseert de conversie. De

selectivi-teit voor isopentaan bedraagt bijna 100, uitgaande van

n-pen-taan. Het mechanisme voor de isomerisatie van pentaan is als volgt weer te geven:

-H + \, . C + +H n CS' ' n Cs '

:1

1

5

:

'i Cs +H -H +H+ -H + +H

!

I -H 111 n C = i C = AI S 'I ' S -H +H2

-H2

1

l

+H

2 2

,

n Cs i Cs

De metaalfunctie zorgt voor de hydrogenerings-/dehydrogenerings-stap en de zure site voor de olefine isomerisatie. De hoeveel-heid olefine die aanwezig is in de gas fase is zeer klein van-wege de grote overmaat waterstof in het proces, de vrij lage temperatuur en de hoge druk. Een te grote olefineconcentratie in de gasfase kan leiden tot de vorming van een allylisch ge-stabiliseerd ion, b.v.: R+ + CH3-CH=CH-CH2-CH3----~>CH -CH=CH-CH-CH + RH 3

'

I

+

3

t

.

CH 3-CH-CH=CH-CH3 +

De snelheidsbepalende stap is de isomerisatie van de geadsor-beerde olefine, terwijl de olefine in de gasfase in evenwicht

(24)

I~ I \J 1"-' I

I

I

I~

- 18

-is met de verzadigde koolwaterstof en waterstof.

Reeds een minieme hoeveelheid metaal (25 10-6mol/l00g zeoliet) stabiliseert de conversie, aangenomen dat het metaal goed is gedispergeerd. Voor toepassingen op grote schaal bevat de ka-talysator een paar tiende gewichtsprocent edelmetaal. Als drager wordt zeoliet gebruikt; zeolieten zijn kristallijne aluminosilicaten met de algemene formule:

2

Me.

n

.A1

203.n Si02.p H20 met n=waardigheid van het metaal Enkele typen zijn:

Si02/A120

3 2 3 (zeoliet X) 6 (zeoliet Y) Voor de isomerisatie van C

4- C6 n-alkanen wordt vooral Pt op zeoliet Y toegepast.

Weisz (lit. 15) gaat nader in op de katalytische werking van molzeven.

Bij de heersende temperatuur en druk in de reactor treden nauwelijks nevenreacties op. De enigste nevenreactie die op kan treden is het hydrokraken van de koolwaterstoffen, maar aangezien de reactortemperatuur niet erg hoog is(250 °C),

treedt dit nauwelijks op. (lit. 16)

De druk heeft geen invloed op de ligging van het isomerisa-tieevenwicht, omdat het aantal moleculen tijdens de reactie constant blijft.

Voor het TIP proces gelden de volgende condities: zie tabel 4.3.

Tabel 4.3: Procescondities voor TIP.

lemper:t:u:

-i Reäctor R14 !,Ads.vat I ....

-I j J I I 250

~4

J

D~S~v~t~6=

1255-300 10.07-2 Druk Ispace velocity(g/g.hr) ~2/KW ratio (-) I IVulling, soort

L

___

~e~e~s~u~r~j~

! ,

i

I

I

-

1

-30 1 2.5

I

Pt op zeol. molzeef SA molzeef 5AI ;

_

~-:o

____ la _ _ _ la __

J

De n/iso scheiding van de voeding en het reactieprodukt ge-beurt met een molzeef, type 5A, in de gasfase. Het mechanisme

(25)

- - - -1-.)

o

I L - 19

-van de adsorptie in de molzeef wordt beschreven door Riekert. (lit. 18) Een andere mogelijkheid voor n/iso scheiding is su-perfractionering. Omdat zowel de investerings- als bedrijfs-kosten voor het isosiv proces beduidend lager liggen(lit. 17) dan voor superfractionering, wordt gekozen voor het isosiv proces. De gas fase adsorptie wordt gekozen om het nadeel van een grote verblijf tijd bij vloeistoffase adsorptie te omzei-len. Ook is voor de gasfase de omschakeling tussen adsorptie en desorptie gemakkelijker. De poriediameter van de molzeef is juist groot genoeg om de normaal-alkanen erin op te nemen en de iso- en cyclo-alkanen niet. De adsorber wordt zolang in bedrijf gehouden totdat het adsorptie front een bepaalde hoogte in het bed bereikt heeft. Desorptie vindt plaats door druk-verlaging. Door gebruik te maken van twee vaten, een vat waar-in wordt geadsorbeerd en een vat waarwaar-in wordt gedesorbeerd, kan door steeds omwisselen van de vaten een nagenoeg continue n/iso scheiding bedreven worden, omdat het omwisselen relatief weinig tijd vereist.

Bij hoge partiaaldrukken kan het adsorbens 8 gew % n-alkanen

bevatten, bij lage partiaaldrukken 1 gew %. Doordat bij vrij

o

hoge temperatuur wordt gewerkt (300-330 e), treedt

koolaf-zetting op het adsorbens op, wat tot geringedeactivering leidt. Regeneratie vindt 'in situ' plaats door afbranden.

De temperatuur van het te scheiden gasmengsel dat het adsorp-tievat binnenkomt bedraagt 300 oe. Tengevolge van de

vrijko-mende adsorptiewarmte stijgt de temperatuur in het vat tot circa 330 oe, afhankelijk van de molfractie n-alkanen. Tijdens de

(26)

'0 I

10

I ...J

L

- 20

-5. Apparaatkeuze, motivatie en berekening Pompen en compressoren PI, voedingpomp P7, vakuümpomp PlO, n-alkaanrecyclepompi CS, suppletiewaterstofcompressor C13, recyclegascompressor

Voor de te gebruiken pompen en compressoren, behalve P7, zijn de relevante procescondities, uitvoeringsvorm, rendement en vermogen verzameld in tabel 5.1.

De berekening van deze apparatuur is uitgevoerd m.b.v. het computerprogramma PROCESS. De keuze van het pomptype en het schatten van de rendementen is gedaan m.b.v. lito 19

Compressor CS wordt gekoeld om de temperatuur van het gas niet te hoog te laten worden. Zonder koeling zou de temperatuur te hoog oplopen, waardoor corrosie in de hand gewerkt wordt. De

o

temperatuur van het gasmengsel wordt op 60 C gehouden door te koelen met koelwater. De af te voeren warmtestroom bedraagt

o 0

40 kW. Als het koelwater opgewarmd wordt van 20 C naar 40 C, is het benodi gde koelwaterdebiet 1700 kg/hr.

Vakuümpomp P7 kan niet berekend worden m.b.v. PROCESS vanwege de discontinue bedrijfsvoering. Met deze pomp wordt de druk in het desorptievat verlaagd, zodat de n-alkanen desorberen. Het debiet dat deze pomp te verwerken krijgt varieert met de tijd. Het gemiddelde debiet bedraagt 1.87 kg/s. Voor de berekening van het vermogen wordt gebruik gemaakt van de volgende for-mule: P = met <I> v lP = v p = (p -p pz) volumedebiet persdruk (m3/s) (N/m2) p Pz= zuigdruk (N/m2) (W) (5 • 1 )

P bedraagt 2.0 bar, p minimaal 0.07 bar. De gemiddelde

p z 3

dichtheid van het gas wordt geschat op 1 kg/m (p=0.6 bar). Het meeste gas desorbeert bij een druk tussen 0.1 en 1.0 bar. Invullen van de gegevens in 5.1 levert: P = 360 kW .

(27)

(' ( ( (

c

c

c

c

c)

<- (

Tabel 5.1: Overzicht van de te gebruiken pompen en compressoren met de belangrijkste gegevens.

-

-

-App. no.: 4> m, in I <IJ v,ln • Tln . kgls

m

3

Is

oe

-

-

-PI 2.78 0.005 20 PlO 1. 87 0.003 41

cs

0.01 0.028 1 20 I C13 1. 25

_0~0~6

J

_4~

J

- -

-

,

-

-P in 3

I

ÖP kglm fbar

- - - -

I ! 581 i 26 i ! type

i

Tui t i P uit

~

o= _

1

_k~/~3

_______ _

, I

I

22

i

584

I

I

I

centrifugaal met radiale waaier 552 28 143 557 idem 0.35130 13.1 1 4 60 52 I L _ 9.4 14.3 heen en weer- , gaande verdrin~ ger

I

centrifugaal

I

Vermogen : rendement Vermogen

(theor.) · (reëel) kW % kW 13 77 16 10 77 13 16 40 40 34

_ L

65 52 ( N f-'

(28)

,-,' ',--, ,--,,' 1 ' - ' - 22 -Vaten en reactoren V4/V6, adsorptie-/desorptievat V9, buffervat V16, vloeistof-gasafscheider reactieprodukt V18, flasvat voor eindprodukt

R14, isomerisatiereactor

De vaten V4/V6, gevuld met molzeef type SA, dienen voor de n/iso scheiding. Beide vaten worden uitgevoerd als een ge-pakt bed, ze zijn identiek en worden afwisselend voor adsorp-tie en desorpadsorp-tie gebruikt. De grootte van de vaten wordt be-paald door de volgende factoren:

- de te adsorberen massastroom gas

- de toename van de belading van het adsorbens bij adsorptie - de stortdichtheid van het adsorbens

- de cycletijd van het proces De procesgegevens zijn als volgt:

- te adsorberen massastroom is 1.87 kg/s - de toename van de belading is 7 gew %

- de stortdichtheid van de molzeef is 700 kg/m3 (lit. 20) - voor de cycletijd wordt 10 min. gekozen(lit. 21)

De benodigde adsorbensmassa: 1.87/0.07

=

26.7 kg/s adsorbensvolume: 26.7/700

=

0.038 m3/s

Gedurende de helft van de cycletijd wordt geadsorbeerd, dus er is nodig aan adsorbensvolume: 5x60xO.038

=

11.5 m3

Neem een veiligheidsmarge van 20 %, dan wordt het volume 1.20xll.S

=

14 m3

Buffervat V9 dient om fluctuaties in de desorberende n-alkaan-stroom op te vangen om te voorkomen dat de n-alkaanpomp PlO tijdelijk zonder voeding komt. De gemiddelde massastroom door dit vat bedraagt 1.87 kg/s, de dichtheid van de vloeistof is 568 kg/m3 zodat de volumestroom 0.003 m3/s wordt. Indien voor de tijd die beschikbaar is om bij een storing maatregelen te treffen S min. wordt gekozen, mag in die tijd het vat noch overlopen, noch leeglopen. Onder normale bedrijfscondities is het vat halfvol. Het benodingde volume van het buffervat

3 bedraagt dan: 5x60xO.003x2

=

2 m .

(29)

, '-" I ~ U I ',J .~, u I - .23

-In vat Vl6 vindt scheiding plaats van het vloeistof-gasmeng-sel dat uit warmtewisvloeistof-gasmeng-selaar HlS komt. De gas fase bestaat voornamelijk uit H

2 en N2, de vloeistoffase is een alkaan-o

mengsel. De temperatuur in het vat is 40 C, de druk wordt

zo hoog mogelijk gehouden, op 27 bar, om zo weinig mogelijk iso-alkanen in de gasfase te krijgen.

In V18 wordt de druk van de eindproduktstroom verlaagd tot

4 bar, bij 25

°C.

Door deze drukverlaging ontstaat een

gas-vloeistofmengsel dat gescheiden moet worden. Deze scheiding vindt plaats in V18.

In R14 vindt de isomerisatie plaats. Aangezien de isomerisa-tie in de gasfase wordt uitgevoerd en er gewerkt wordt met een vaste katalysator ligt het voor de hand een gepakt bed reactor in het proces te gebruiken, zoals dat ook door

Kouwenhoven(lit. 1) wordt voorgesteld.

Bij de dimensionering van de reactor moet rekening gehouden worden met eisen als propstrooffi, een lage drukval en een re-delijk handelbare katalysator (voor wat betreft deeltjesgroot-te) .

Op grond van de procesberekening en de gegeven stortdichtheid

van de katalysator(500 kg/m3) komen we tot de volgende

reac-torinhoud:

reactor in: 10898 kg/hr

space velocity: 1 gig kat.hr(lit. 1,22)

de reactor moet 10898 kg katalysator bevatten wat met een

stortdichtheid van 500 kg/m3 resulteert in een volume van

3

22 m •

Volgens van den Berg en de Jong(lit. 23) zijn de voorwaarden

voor propstroming als volgt samen te vatten:

L/d > 100 p Re > 10 p D/d > 10 p

Lengte en diameter van de reactor en de deeltjesgrootte zijn nu zowel van invloed op het propstroomgedrag als op de druk-val over de reactor. Voor de berekening van de drukdruk-val over de reactor wordt gebruik gemaakt van de formule van Ergun voor gepakte bedden:

(30)

Ir"" V

I

, u '..J llP. E 3

=

170 H a (l-E:) pu 2 36 - 24 -(l-E:)a n u p + 1. 75 6 (5.2)

Om het oppervlak per volumeeenheid deeltje (a) te berekenen, moet een aanname gemaakt worden over de vorm van het

kata-lysatordeeltje. Aangezien hierover in de literatuur geen na-dere aanwijzingen werden gevonden, wordt de bolvorm aange-nomen.

De vrije ruimte E wordt gelijk gesteld aan 0.4; op grond van

het bovenstaande wordt een programma geschreven, dat uitgaande van de eisen voor propstroom, bij een gegeven deeltjesgrootte, de beddimensies berekent en de daarbij behorende drukval(Pa). In de bijlage is het programma inclusief beschrijving en re-sultaten opgenomen(bijlage 5). Ook is daarin een grafische weergave van de resultaten opgenomen (fig. B 5.1). De drukval is logarithrnisch uitgezet tegen de diameter van de katalysator-deeltjes. In de grafiek zijn zgn. isodiametercurven getekend. Omdat het programma waarmee de punten berekend zijn de prop-stroomcondities in de berekening verwerkt, voldoen alle in de tweedimensionale ruimte weergegeven punten aan deze eis.Nu rest ons nog uit al deze mogelijkheden een zinnige keuze te maken:

- lage drukval; we nemen aan dat een drukval van 1000 Pa en lager verwaarloosd kan worden en streven dan ook naar een druk-val in die orde van grootte of lager.

- katalysatordeeltjes; liefst een middelmaat, enerzijds niet te klein omdat kleine deeltjes gemakkelijk door de gas-stroom meegesleurd kunnen worden, anderzijds niet te groot vanwege 'diffusierernming'.

- i.v.m. de constructie van de reactor liefst geen extreem grote of kleine lengte/diameter verhouding.

Op grond van bovenstaande overwegingen komen we tot een reac-tor die als volgt gedimensioneerd is:

Dbed 2.6 m

= 4.2 m

= 152 Pa

Ruim 22 is gevuld met katalysator. Onder het gepakte bed

. 3 .. d ( k

wordt een vriJe ruimte van ongeveer 1 m gecreeer . geen a-talysator, dus ook geen drukval) Boven het bed wordt ook

(31)

I

10

I '--' I I I . V )0 - 25

-enige ruimte opengelaten, enerzijds met het oog op een wat grotere flexibiliteit, anderzijds om het gas goed over het totale bedoppervlak te verdelen. Een extra volume van 3 m3 wordt gedacht reëel te zijn. (over dit volume eveneens geen

3 drukval) Het resulterende apparaatvolume bedraagt 26 m . Uitgaande van D

=

2.6 m levert dit een totale reactorlengte op van 4.9 m, zodat uiteindelijk resulteert:

D reactor

=

L reactor

=

D bed = 2.6 m 4.9 m L bed = 4.2 m

bPreactor= bPbed = 152 Pa (in berekening

verwaarloosbaar) Warmtewisselaars en fornuizen H2, warmtewisselaar H8, waterkoeler Hll, warmtewisselaar HlS, luchtkoeler H17, waterkoeler F3, fornuis F12, fornuis

De berekening van de hoeveelheid over te dragen warmte in de warmtewisselaars, koelers en fornuizen is uitgevoerd m.b.v. PROCESS. Voor de berekening van het warmtewisselend oppervlak moet hetvolgende ingevoerd worden:

- een schatting van de overall-warmteoverdrachtscoëfficient U - de configuratie van de warmtewisselaar

Voor het schatten van de overall-warmteoverdrachtscoëfficient U wordt gebruik gemaakt van lito 24 .

Bij een gekozen configuratie van de warmtewisselaar wordt de zgn. f-factor, een correctiefactor voor het warmtewisselend oppervlak, m.b.v. PROCESS berekend. In de praktijk worden al-leen die configuraties gebruikt waarvoor de bijbehorende f-fac-tor groter is dan 0.75.

In warmtewisselaar H2 wordt stroom 4, de voeding van de isosiv scheidingsunit, opgewarmd en geheel verdampt m.b.v. stroom 16,

(32)

I (j I I, ... , --..) I I

la

I I I

:J

I

o

- 26

-die geheel condenseert en afkoelt tot 39 °C. Omdat zowel condensatie

coëfficient

als verdamping optreedt is de

warmteoverdrachts-U hoog. De waarde wordt geschat op 860 w/m2K

(3100 kJ/hr m 2 K) .

In warmtewisselaar H8 wordt stroom 8 gekoeld en geheel ge-condenseerd m.b.v. koelwater. De warme stroom koelt af tot 25 °c, terwijl het koelwater wordt opgewarmd van 20 °c naar

40 °C. De warmteoverdrachtscoëfficient U bedraagt 700 w/m2K

(2500 kJ/hr m2K) .

In Hll vindt warmteuitwisseling plaats tussen de warme stroom 18 die uit de isomerisatiereactor komt en stroom 13, de reac-torvoeding. Stroom 13 wordt opgewarmd en geheel verdampt, ter-wijl stroom 18 afkoelt en gedeeltelijk condenseert. De

warmte-overdrachtscoëfficient is 860 w/m2K.

Koeler HlS dient om stroom 19 die uit warmtewisselaar Hll

o

komt verder af te koelen tot 40 C, alvorens

vloeistof-gas-scheiding plaatsvindt in V16. Het koelmedium is lucht van 25 oe die opgewarmd wordt tot 40 oe. De

warmteoverdrachts-coëfficient is laag en wordt geschat op 110 w/m2K.

(410 kJ/hr m2K)

Koeler H17 wordt gebruikt om stroom 25, die uit H2 komt, ver-der af te koelen tot 25 oe voordat deze produktstroom van druk gelaten wordt en vloeistof-gas scheiding plaatsvindt in

o 0

V18. Het koelwater wordt opgewarmd van 20 C tot 40 C. De

warmteoverdrachtscoëfficient is 625 w/m2K. (2250 kJ/hr m2K)

Een overzicht van de te gebruiken warmtewisselaars met de relevante gegevens en berekeningsresultaten wordt gegeven in tabel 5.2.

De fornuizen F3 en F12 worden door PROCESS gesimuleerd met een warmtewisselaar die werkt met verzadigde stoom van 683 K. De over te dragen warmte wordt weer berekend. De fornuizen worden gestookt met stookolie met een verbrandingswaarde van

4

4 10 kJ/kg. Voor het rendement wordt 85 % genomen. De

be-nodigde hoeveelheid stookolie wordt als volgt berekend: Q

=

(5 .3)

m

verBrandingswaarde x rendement

(33)

- - - -) , ..;

J

-.J I - 27 -met <I> m

=

massastroom stookolie (kg/hr)

Q

=

over te dragen warmte (kJ/hr)

Met fornuis F3 wordt stroom 5 verwarmd tot 300 oe. Daarvoor

is 5.84 106 kJ/hr (1620 kW) nodig die geleverd wordt door

172 kg/hr stookolie.

Fornuis F12 dient om de reactorvoeding op te warmen tot

231 oe. Daarvoor is nodig: 2.10 106 kJ/hr (600 kW) die

gele-verd wordt door 64 kg/hr stookolie.

De totaal benodigde hoeveelheid stookolie bedraagt 236 kg/hr, dat is 5.7 ton/dag.

(34)

c

c

( (

u

G

u

G G 1...., "--I v

Tabel 5.2: Overzicht van de te gebruiken warmtewisselaars met de relevante gegevens en berekenings-resultaten.

- - - - ï - - - - - ,- - - - - - -

-

-

-

-

-

-

- -

- -

-

-

-

-I

App. no.1 shell tube f-facto:rl ..6Tln U Q A ; i koelmedium

I

I

t-I

passes: passes

i

i

soort debiet

I

, I

- - - - J - - -

oe Vv/m 2 K kW

i

2 i I m ; ton/hr

-

-

- _I i _ - - - ! -

-

-

- - -

- -

-

i

- -

-

-

-I

i i

,

I I I H2 I 3 6 0.68 i 40.66 860 2730 78

I

I J , tv 0:> H8 3 6 0.97 54.14 700 1630 43 koelwater 70

i

Hll 3 6 0.91 60.69 860 1510 29

I

I

i

! I

I

~ HlS 1 2 4 0.96 26.90 110 770 251 lucht I 181 'I , 1 I 1

I

I

I

i

H17

I

3 6 0.55 2.73 625 130 I i 76 koelwater

1

6 I I _ _ 1 _ _ _ _ _ - _ _ _ I 1

- - - -

-

-

-

-

-

-

-

-! !

J

~.

.,

(35)

-IN

Voor-waarts

-

29

-6 .

Massa

-en

Retour

UIT

Warmtebal ans

tv1

Q

tv1

,

Q

M

tv1

Q

Q

2.778 110.28 voeding ~ 4.657 - , I....J 265.31 2.788 L b 1.1/

H

2

~ 4.657 1.879 2994.50 .J 155.03 1623.61

F

rool<;.9o. ssen

,

,

17

,-3

L~ 2. 788 , . ~990.96 4.657 -4618.11 , I ,

o

V

I

,tl

I

I

L~ Lj , , , I , .-~ _ .... , ;" -) ,

,:

,

.

, , I , I , IV

V

I

I

,

5

I

, I I I , , CGmpres 87.15

sor war ht_e .. i

-, ,

.

-I i , ...•... I -, , , ; , , ......... _, ! J j ,- - -

.

'- I •

,

, , I 1. 869 " ,. -1714.30

.

-

-1628.05 --koe\~d:r

H

, , f i I ., Koel wu..ter \

8

o o. 1 ~ ... ~ .. - ,

,

;

~.J , I

;

i ' ( .-~ ;

1

J

.

! 1\.869 ~ '.I . I

-1

1

i 861 25. I .c. I l ; I I I ! : !

,

-l

î

j I I ! I

1

'

, I ! , !

.

:

I .1 j

'

''

1

-_ot '~

l-

~

I

r

i i Î ~ , ' i 8(,rll . F

l

-

i. I

,

I ! !. C j 11

,

-1

-'

-1

:

_

~

J

_

_ .

L

.

j

j ~ \.

L

G

i ')

-

i

i

i

IU. ..

- - - -

- - -

(36)

-u

I ;) pompwarm "- 12.61 te - -

-

-

-

-1.869 98.86 0.010 1.80 ,:) 3.130 424.28 3.130 1191.83

0

3.130 1932.78 :J 599.87 I

0

1 3.130

I

2532.65 I I 0 1 , i reactie-167.67 warmte I :J I :J _. I

I

'. ..

.

.

3.130

v

I

. . 427.39 , compress )r 52.35. I warm:te ~ ; , I , --" -0; - "'J I" i ~ ; " "1

I

i ("" -, ,

J

L • U /, J' ,

i

il 1

. t

i

j .

!

'

~r-{<: ~: .. ,

.

J

I: -'" -- . 'I

t

__

[ r

I

.

I

H~~

t

-_.

1-~

1

i

Ji

.J:

J.O

1

,

t

I

k

1

"

o

-v

.

·

-_. S u.pple FI C - - t * - - - , . · · .~ , J

--.

H

I I

-F

r ook-qû.SSCh I

2.

IY

KoelllAc.hl

15

~ •

·

i r

~

--;::;"~~ _ t; '! ;1 î ::-r-:--rl",;-' ~ I 3.131 L/UU.JJ ~ I 764.44 I (I, I i o o • I 1. 251 271.25 ~ ~

.

- i ~

,

~ ~ jj M • L. 8(j'9 .

.i

'

,

,--l

d

i i

I

---...;,., ... ~

f

55:;.! 113

1

'

,

\ \, i.

i

. ~. ! J r ~I ,

-

-

- i --. t ~--

~

..

l

t

1

t

~

I

1))

0(0)

J

! : 1

(37)

.2.788 r I i . _

I

[

~.

'.,

',: !

I

~

.

/

,

--.) I-l - - ... I .- 31 -2.788

1

261.77

....L.

kOf:\WC~Jq 128.91

~

KoelwQ~er

1'1

2.788 . "r -132.86

,-L

V

{ u. el -" r 0.021 5.78

18

T

pï;Jd cLkt r 2.767 127.08 r ! . . . -,

.

r

--

, , ; r e -: , .. . -.. • I , i. ,

-

.

,

26.55~3l .' ~

Totaal

~ 2-.79·3; 2655.37 i ..

Massa in kg/s

Warmte in kW

.

\

.

;c

i

n

~

:

~

I . - .' /, l i

,

~

;:

.

F-.a

tJri

!

eks voor

ontwenp

L

~

:~: \, (

..

No:

2552

..

_ . . -._--.-._- _ ._---'-_.

(38)

. 7\;'~';::"7!T;1 I ' C : .. -'--4..-,. :'I. ·4-",1I.J ...... -' I L '.- . r . - " - , . • -,

~

~af;{lQ~

str oom

.

• w.I C T ' .,...~ • ..,. '·.. ~~e: ·.. orn

,

p

'

on

enten

.' - ' . ~~.:::u

$..a to

f , ., ,~~:j:k.:'", J ~P<P," 4i ; '--puta'an~'-' , '~/-. ." ';J';',.. .. . "Ä -k~~}JJ*~~~

.

c

M

., " 0.014 0.006 .• ' i pë'~~äfi~"':'

'. ...

-

. ' 1.239 '.~'- ~ti an

"',

.

o .

814. 1 I ~~,:';:'" •• , _ : . . . : , . ' ·-h·ex-a-all'·- .. .. .. -. '- O. 186· . : ~3 '.~ :~~.': • () : :~di.methylbutaa .. 0.01:'; • ~) , .;#.! l ; --~-mèt-h vk pen taan 0.258 ~.'

I,.

"

f .·co •

:-

-:r-

.

m-e-'t·lil.v'iaentaarr 0.128-i'~*'::~';-"'_' , ..

.

0.116 ~ w~~ ~~.~ ~_., - , ._. , Cl Cl Cl lJ G ~-v l. \.J 2 3 4 I 5

Q

M

D-

M

Q.

M

D-

M

Q 0.002 0.001 0.001 0.008 0.008 0.008 0.014 0.031 0.031 0.006 0.021 0.021 1.239 1.632 1. 632 0.814 1. 989 1.989 0.186 0.277 0.277 0.017 0.191 0.191 0.258 0.261 0.261 0.128 0.129

o

129 0.116 0.117 0.117 I I

"

';-'

'.'

T

. 0

t

a al:

2.778 93.972 2.778 110.277 0.010 0.500 4.657 265.333 4.657 2995.63~ . ' • ,_ J .. ===::'~:::::::_=:-.;.:.;=. ._-'.:J, • l'

-::

-."

.. ;;;:::"~ ~. ;,' ~

.

r\J~t>:è'rb~tst

r

OOTl1 6 7 8 9 10

:

#~~~~

ertten

2.

M

.

Q

M

Q

M

Q

M

Q

M

Q

'

.

--

wa'fëfslb.f

, .

~~ . O . 001 0 . 002

:

stik

:-

stbf

..

0.008 0.008 \",,::-~tA,äpi:i~:',,· 0.031 0.029 0.029 0.029 ,;~uta'an 0.021 " . .. ~).-penta,an 1.632 1.550 1.550 1.550 . ":1' 1;"':i . -~GpeR?aan 1.989 0.020 0.020 0.020

hi:i'g

~

~

(~~

~

.

.

.

O.~77

0.263 0.263 0.263 .. :~~~ft_hylbutaa 0.191 0.002 0.002 0.002 ;Ä-tá.~~thM~'P- .w:. w . • entaan •• • . . . . _ 0.261 _ _ _w.. _ _ . __ 0.003 0.003 0.003

~

'

ï

*~

1)

~

v

'

l

:

pentaan

o.lig

0.001 0.001 0.001

.

~~~t

~~

,0.'117 0.001 0.001 0.001

:

.:~

fm~

~

lJ:L:

..

.

_._~

:

4

~

•. 65::'l·. '46.18.098 1.869 1627.131 1.869 1714.301 1.869 86.250 0.010 1.806 .- - .---f- -.•. ' ~

~li:

.

K

Q

~

~

-

:

c

. f1=fM"~,\,yt", .. "

"

Stroom /Componenten staat

\ - _- - " ' . -_ ' _ _ " " " ' " , r '-O- . . . . .... ! .;;;:: - '). _. ~ . .

\ ... /

W N

(39)

\..1 \..) ~ \... --~,-_. -~ . , ( , '-' (

c

c

( ~

,

Apparaa

tstr

oom

11 12 13 14 I 15 ~'fçomponenten

M

Q

M

Cl.

M

Cl

M

Cl

M

Q :_ft!.êi te r ~ t;o f _. 0.142 0.142 0.140 0.142 stikstof 0.682 0.683 0.674 0.683 -butaan 0.010 0.029 0.039 0.010 0.039 . i~o~llt-aq.n -. 0.013 0.013 0.013 0.013 ~p~~'táàn

.

-,. .' 0.080 1.550 1.630 0.080 1.630 '_j !J .. ,1·t--" ~;~ ~. . - .~ - .s;Cipeo taan .' 0.304 0.020 0.324 0.304 0.324 l-i~~idaan 0.006 0.263 0.269 0.006 0.269 .~~aimethylbutaan 0.023 0.002 0.025 0.023 0.025 ,," 1 - " , .2 methylpentaan 0.003 0.003 0.003 ..:3."rnethylpentaan 0.001 0.001 0.001 ·rest --- 0.001 0.001 0.002 0.001 0.002

.

.

-. T=o~t a

-

al:

1. 261 325.361 1. 869 98.8Gl 3.131 424.278 1.251 323.555 3.131 1932.778 , ,~;:.; .. c ... _. - _

I~

_

ppqr:aatstrooml

16 17 18 19 20

I~

::.:.

f-e

:

om

·

p: 0

n e n

te

n

!.~.~t.~r;Ett9f -s'tik~s'fof ' hu ~9,a.n. ~. iSobutaan LP.~D.'t _êi?.n. .. I . .. . :isóoentaan heX'a'an

2~~q}:r!l}:f.t-l)y lbu tqan

2j_~:mèit$j1.p_en taan

[j~:':hleth:Y lpen ta~n

b:~i:;,t'·~~,~~ .. r ' ...., w _ _ ' •• _, . , - ;'1.'. :~T'(ft

a al:

- • '--C"

'

7

-

--M

·

IO ~Kg

'

s

.

U

' .

.

ln

.

.

\ . -k~~.' W, :

M

Q

M

Q

M

a.

M

Cl

M

Cl

0.001 0.142 I 0.142 I 0.142 10.140 0.007 0.683 I 0.683 I 0.683 10.674 0.002 0.039 I 0.025 I 0.025 10.010 0.\)21 0.013 I 0.027 1 0.027 10.013 0.082 1.630 I 0.473 I 0.473 10.080 1.969 0.324 1.481 1.481 0.304 O.Oltt 0.269 0.097 0.097 0.006 0.189 0.025 1 0.197 I 0.197 10.023 0.258 0.003 1 0.003 1 0.003 0.128 0.001 I 0.001 1 0.001 . '

.

0.11/ 0.002 1 0.002 1 0.002 0.001 2. 788- 2 9 9 0.9 6 41 3. 1 3 1 1 2 7 3 3 . 0 4 81 3. 1 3 1 I 2 7 0 0 • 3 2 6 1 3. 1 3 1 1194.8861 1.251 271.249

Stroom/Componenten staat

(40)

e

i

"

~L

c

c

v

l L L

"

Apparaa fstroom

21 22 23 ~,tóm

p

'

O

n enten

M

Q

M

Q

M

Cl

M

.. w.aterstof 0.142 .. 0.141 0.001 0.001 stikstof 0.683 0.677 0.003 0.008 butaan 0.025 0.010 0.017 isob\ltêl.an

.

0.027 0.013 0.016 . , . pentaan 0.473 0.080 0.393 ,

.

::.:.isopentaan • ··Y 1.481 0.306 0.001 1.175 :-Jlexaan 0.097 0.006 0.091 . ~2~i~~thylbutpan 0.197 0.023 0.174 2methylpentaan 0.003 0.003 3 'methylpentaan 0.001 0.001 rest ... 0.002 0.001

-

Totaal:

3.131 427.38E 1.257 272.333 0.005 1.111 1. 879 - --- ---- . -~

A.QQQfootstroom

26 27 28

:~

•.

·

c

.

ó~

~

~

'o

n ent en

M

Q

M

0.

M

Q

M

1"':W'oQ,t.eJ;$t.of 0.001 . 0.001 stikstof 0.007 0.005 0.002 l:;>utaan 0.002 0.002 I.,;.isobutaan 0.021 0.021 pentaan 0.082 0.082 isopentaan 1 1.969 0.011

I

11.958

,I

he}{aan 1 0.014 0.014 22dimeth~lbutaanl 0.189 0.001 0.188 2 .metlfylpenta?ln 1 0.258 0.258 3~meEhylpentaan 1 0.128 0.128 :"tëst 0.117 0.003 0.115

'

Tot

a al:

2.788 1 32 . 8 611

o.

0 2 1 5.77812.768 127.083

'

M

in

.

kg/s

Q

in

kW

Stroom

/Componenten staat

u

l 24 , Q 155.027 - - - --_ .. _--0.

M

0.001 0.007 0.002 0.021 0.082 1.969 0.014 0.189 0.258 0.128 0.117 2.788 - ---

----M

\. 25 Q 261.805 Q l ' w ~

(41)

-~~~~

-- 35

-7. Overzicht specificatie apparatuur

I '

1'--'

Apparaat No: Pl P7 PlO C5 C13

voedingpomp vakuurnpomp recyclepomp zuigercom-

centrifu-Benaming, centrifugaa.l centrigugaa pressor gaal

com-type met radiale met radiale pressor

waaier waaier

te verpompen CS/C6 C5/C6 C5/C6 H2/N2 H2/N2/alkaa

alkanen n-alkanen

I ( )

medium n-alkanen mengsel mengsel

Capaciteit in kg/s kg/s kg/s kg/s kg/s

t/d of kg/s.K 2.78 1. 87 1.87 0.01 1.25

Dichtheid

kg/m3 581 1 552 0.35 13.1

in

Zuig-/persdruk Pabs Pabs P abs P abs Pabs

in bar(abs.of 1.0/27.25 0.07/2.0 1.5/31.0 1.0/31.0 27.25/31.0 eff. *) temp. in

°c

/ uit 20/22 255 41/43 20/60 40/52 in Vermogen in kW theor./ prakt. 13/16 360 10/13 16/40 34/52 i Speciaal te ge bruiken mat.

o

I I aantal 1 1 1 1 1 serie/parallel

*

aan0even wat bedoeld wordt

(42)

I

I

IJ

I

I J

I

I~ I - 36

-Apparatenlijst voor reaktoren, kolommen, vaten

---Apparaat No: R14 V4 V6 V9

Isomerisati ~- Adsorptie Desorptie- Buffervat

Benaming, reactor vat vat

type gepakt bed gepakt be< gepakt bed

Abs.of eff •3( . Pabs Pabs P abs P abs

druk in bar 30.0 26.25 0.07-2.0 1.5 temp. in oe 250 300-330 255-300 25 , Inhoud in m3 26 14 14 2 Diam. in m 2.6 1 / h in m 4.9 Vulling: 3{ schotels-aant. vaste pakking katalysator- Pt op type zeoliet

-

, ,

-

vorm bolletjes

• ad.sOl;l;.l~;} s .. molzeef 5A molzeef 5A

"

..

" " " " "

....

"

..

"

...

"

.

" Speciaal te ge-bruiken mat. aantal 1 1 1 1 serie/parallel 3{

aangeven wat bedoeld wordt

V16 Horizontale vloeistof-gasscheider Pabs 27.25 39 1 i

(43)

I J

u

I v I I V Apparaat No: Benaming, type Abs.of eff. J( druk in bar

-°c

temp. in Inhoud in m3 Diam. in m 1

/

h in m - --Vulling:

*

schotels-aant. vaste pakking katalysator-type

-

,

, -

vorm

...

..

..

.

. .

.. ..

. .

.

.

.

.

. . . .

.

.

..

.

.

.

..

.

.

Speciaal te ge-bruiken mat. aantal serie/parallel - 37 -Vl8 Horizontale vloeistof-gas scheider P abs

4.0

25

-I -J(

Cytaty

Powiązane dokumenty

Skupia się także na autokorelacji przestrzennej poczucia bezpieczeń- stwa uwzględniając jednocześnie różnice pomiędzy brakiem poczucia bezpieczeń- stwa, spowodowanym realnym

(5) and (11) for liquid medium and the pipe’s wall material elasticity condi- tions form a set of real fluid unsteady flow equations in a pipe of a lengthwise line- arly

Badania doświadczalne zużycia główki endoprotezy stawu biodrowego ze stopu kobalt-chrom oraz z tlenku l;lluminium

2 Nie ulega też wątpliwości, że jednostki fundowane na leksemie słyszeć odnoszą się także do percepcji mowy.. Należy zatem sprawdzić, czy są to te same

The design exercise builds upon an established airfoil optimization framework with a proven track record in the conventional wind turbine industry [2,3,4,5]. The method is known

Centrum śmierci we wspomnieniach świadków sytuuje się w miejscu pracy członków Sonderkommanda, stamtąd rozchodzi się ona we wszystkich kierun‑ kach i dociera w końcu

“Perepiska Sigizmunda Krzhizha� , Sigizmund, Bovshek, Anna.. “Perepiska Sigizmunda Krzhizha� Sigizmund,

Poprzez zmianę parametrów modelowych: typu rusztu, kąta nachylenia, prędkości i długości rusztu oraz własności materiałów odpadowych, (odpady drzewne, tworzywa