• Nie Znaleziono Wyników

More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster

N/A
N/A
Protected

Academic year: 2022

Share "More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster"

Copied!
12
0
0

Pełen tekst

(1)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0177 8 2 7 Ma y23,2017 1/12

RESEARCHARTICLE

Moreoxygenduringdevelopmentenhancedflig htperformancebutnotthermaltoleranceofDros ophilamelanogaster

ShayanShiehzadegan1,JacquelineLeVinhThuy1,NataliaSzabla2,MichaelJ.Angilletta,Jr.1,J ohnM.VandenBrooks3*

1SchoolofLifeScience,ArizonaStateUniversity,Tempe,Arizona,UnitedStatesofAmerica,2InstituteofEnviron mentalStudies,JagiellonianUniversity,Krako

´w,Poland,3DepartmentofPhysiology,MidwesternUniversity,Glendale,Arizona,UnitedStatesofAmerica

*jvande n brooks@ m idwestern. e du

Abstract

Hightemperaturescanstressanimalsbyraisingtheoxygendemandabovetheoxygensup- ply.Consequently,animalsunderhypoxiacouldbemoresensitivetoheatingthanthose OPENACCESS

Citation:ShiehzadeganS,LeVinhThuyJ,Szabla N,AngillettaMJ,Jr.,VandenBrooksJM(2017)More oxygenduringdevelopmentenhancedflightperfor mancebutnotthermaltoleranceofDrosophilamela nogaster.PLoSONE12(5):e0177827.https:// d oi.o rg/10.1371/ j ournal. pone.01778 2 7

Editor:MichaelSears,ClemsonUniversity,UNITEDST ATES

Received:February9,2017 Accepted:May3,2017 Published:May23,2017

Copyright:©2017Shiehzadeganetal.Thisisano penaccessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichper mitsunrestricteduse,distribution,and

exposedtonormoxia.Althoughsupportforthismodelhasbeenlimitedtoaquaticanimals,oxygen supplymightlimittheheattoleranceofterrestrialanimalsduringenergeticallydemandingactivitie s.Weevaluatedthismodelbystudyingtheflightperformanceandheattoleranceofflies(Drosophil amelanogaster)acclimatedandtestedatdifferentconcentra-

tionsofoxygen(12%,21%,and31%).Weexpectedthatfliesraisedathypoxiawoulddevelopintoa dultsthatweremorelikelytoflyunderhypoxiathanwouldfliesraisedatnor-

moxiaorhyperoxia.Wealsoexpectedfliestobenefitfromgreateroxygensupplyduringtesting.Th eseeffectsshouldhavebeenmostpronouncedathightemperatures,whichimpairlocomotorperf ormance.Contrarytoourexpectations,wefoundlittleevidencethatfliesraisedathypoxiaflewbett erwhentestedathypoxiaortoleratedextremeheatbetterthandidfliesraisedatnormoxiaorhyper oxia.Instead,fliesraisedathigheroxygenlevelsperformedbetteratallbodytemperaturesandoxy genconcentrations.Moreover,oxygensupplyduringtestinghadthegreatesteffectonflightperfor manceatlowtemperature,ratherthanhightemperature.Ourresultspoorlysupportthehypothesi sthatoxygensupplylimitsperformanceathightemperatures,butdosupporttheideathathyperoxi aduringdevelop-mentimprovesperformanceofflieslaterinlife.

reproductioninanymedium,providedtheoriginal

authorandsourcearecredited.

DataAvailabilityStatement:Datacanbeaccessedthr oughOpenScienceFrameworkathttps://osf. i o/ fvw7g/

withaDOIof10.17605 / OSF.IO/FVW7G .

Funding:ThisresearchwasfundedbytheSchoolof LifeSciences,theBarrettHonorsCollegeatArizona StateUniversity,andMidwesternUniversity.N.Sza blawassupportedbyprojectco-

foundedfromEUresourcesundertheEuropeanSoc ialFund(POKL04.01.01-00-053/09).The fundershadnoroleinstudydesign,datacollection

Introduction

Despitedecadesofresearch,thequestionofwhatcausesanimalstodieathightemperaturesremainsu nresolved.Severalmechanismshavebeenproposed,includingthedestabilizationofproteinsormem branesandthefailureofcellsignaling[1–

4].Acriticalflawintheseproposalsisthatanimalsexposedtothermalstressoftendieattemperaturesw ellbelowthosepredictedbythesemechanisms[5].Toaddressthisproblem,Po¨rtnerproposedamode linwhich

(2)

Oxygensupplyandflightperformance

andanalysis,decisiontopublish,orpreparationofth emanuscript.

Competinginterests:Theauthorshavedeclaredth atnocompetinginterestsexist.

animalsfailathightemperaturesbecauseoxygendemandexceedsthesupply[5–

7].Thismodelassumesthathightemperaturesrequireanimalstorelyonanaerobicmetabolism,whic hprovidesinsufficientenergyandthusimpairsthefunctionofnervesandmyocytes.IfPo¨rtner’smodel iscorrect,ananimal’ssusceptibilitytohypoxiaanditsabilitytoacquireoxy-

genshoulddetermineitsheattolerance[8,9].Withoutacompensatorychangeintherespira-

toryandcardiovascularsystem,adecreasingsupplyofoxygeninanenvironmentshouldultimatelyma keananimalmoresusceptibletooverheating.

Studiesofaquaticanimalstendtosupporttheoxygen-limitationhypothesis[9–

12],butstudiesofterrestrialanimalshaveyieldedlesssupport.Recently,lizardswerefoundtopref erlowertemperatures[13]orlosemobilityatlowertemperatureswhenexposedtohypoxiacom- paredtonormoxia.However,mostterrestrialanimals,includinglizards,willneverexperiencethee xtremelylowlevelsofoxygenusedintheseexperiments.Moreover,thevastmajorityofanimalsarei nsects,whichpossessasophisticatednetworkoftracheaeandtracheolesthatdeliveroxygendirectlyt omitochondria[14].Obviously,anyunifyingmodelofhowoxygensupplylimitsthermaltolerancew ouldneedtoconsiderthephysiologyofinsectsunderrealisticlevelsofoxygen.Asoxygensupplydecr eases,insectscanopentheirspiraclesmorefrequently,ventilatetheirtrachealsystemmorerapidly,a ndmodulatetheirfluidstoenhancediffusion[15].Athightemperatures,suchresponsesmustenable someinsectstomeetthegreaterdemandforoxygen,becausehypoxiadidnotreduceheattolerance sofdragonflies,cock-

roaches,orfliesinpreviousexperiments[8,16,17].Eveninspeciesthattoleratedheatworseunder hypoxia,hyperoxiafailedtoenhanceheattolerance,asonemightexpect[reviewedby9].Sofar,ox ygensupplyseemstolimitheattolerancesofterrestrialanimalsonlyduringtheembryonicstage[1 8,19],whentherespiratorysystemisstilldevelopingandoxygendeliverydependsondiffusionacro ssaneggshell[20].

Despitetheseresults,thegeneralityofPo¨rtner’smodelmighthavebeenunderestimatedbecauser esearchershavetesteditspredictionsmainlybystudyinganimalsatrest.Restingani-

malsconsumefarlessenergythandoactiveanimals.Thecombinedstressofheatandhypoxiashouldc hallengeanimalsmostduringstrenuousactivities,suchasrunningorflying.Duringflight,themusclesof insectsdemandmoreoxygenthanjustaboutanytissue[21,22].Inprevi-

ousexperiments,hypoxiareducedthemaximalaerobicmetabolismofinsects[15],andhyper- oxiaincreasedaerobicmetabolismandflightperformance[23].Thus,thethermaltoleranceofinsectflig htisalogicalsubjectforevaluatingthegeneralityofPo¨rtner’soxygenlimitationhypothesis.

Wetestedtheoxygenlimitationhypothesisbyquantifyingchronicandacuteeffectsofoxy-

gensupplyontheflightperformanceandthermaltoleranceofflies(Drosophilamelanogaster).Oneofth eadvantagesofworkingwithinsectsisthatithasbeenshownthattheirrespiratorysystemcanbemanipu latedduringdevelopmentbyalteringoxygensupply.Developmentalplasticityinthenumberandsizeof tracheaehasbeenobservedinavarietyofinsects[24,25],includingD.melanogaster[26,27].Thisplasti citycouldpotentiallyenhancetheheattoleranceofanadultinsectinahypoxicenvironment.Ifthisreaso ningholds,exposuretohypoxiadur-

inglarvaldevelopmentshouldenhancetoleranceofhypoxiaandheatingasanadult.There-

fore,wepredictedthatdevelopmentathypoxiawouldleadtogreatertoleranceofhypoxiaandheatdurin gadulthood.Theseeffectsshouldbestrongerunderenergeticallydemandingactivi-

ties,suchasflight,thanatrest.Asatradeoff,however,amoreelaboratenetworkoftracheaecouldleave aninsectmoresusceptibletooxidativedamageorwaterlossinanormoxicorhyperoxicenvironment[15 ].Additionally,atradeoffbetweeninvestingintrachealsystemsandothertissues,suchasflightmuscles andrelatedtissues,wouldincreasetheflightperfor-manceofinsectsrearedunderhyperoxia[15,28].

(3)

Materialsandmethods

Originandmaintenanceofisofemalelines

WestudiedtheacclimationoffliesfromanaturalpopulationofD.melanogastercollectedinDanvil le,Indiana,USA.Isofemalelinesderivedfromthispopulationwereraisedat20.5˚Candnormoxiaf orfivegenerationsbeforeourfirstexperiment.Duringthistime,linesweremaintainedin25x90m mvials(GeneseeScientific,SanDiego,USA)on~3–4cmoftheBloomingtonStandardcornmeal- cornsyrupdiet.Adultsfromeachlineweretransferredtofreshvialsevery3–

4weekstominimizeoverlapbetweengenerations.Priortoeachexperi-

ment,wecontrolledthedensityofeachisofemalelinefortwogenerationsbytransferringonlytwoa dultsofeachsexintonewvialstoreproducefor48h.

Atthebeginningofeachexperiment,pairsofadultfliesfromeachisofemalelineweretransferredton ewvialskeptatcertainlevelsofoxygen(seedetailsofeachexperimentbelow).Oxygenconcentrations weremaintainedbyacommercialoxygencontroller(ROXY-

8;SableSystemsInternational,LasVegas,Nevada,USA).Temperaturewasmaintainedat20.5˚Cbya programmableincubator(DR-

36VL;PercivalScientific,Perry,Iowa,USA).Adultsthatemergedundertheseconditionswereusedino urstudiesofflightperformanceandheattolerance.

Acclimationofflightperformance

Weraisedfliesfromsixisofemalelinesateachofthreeconcentrationsofoxygen(12%,21%,and31%)a ndstudiedtheirflightperformanceasadults.Seventotendaysaftereclosion,fliesweretestedatallcom binationsofthreeairtemperatures(37˚C,39˚C,and41˚C)andthreeoxygenconcentrations(12%,21

%,and31%).Additionally,wetestedasubsetofflies,raisedundernormoxia,at25˚Ctotestwhetherperf ormanceswerelesssensitivetooxygensupplyatabenigntemperature.Twenty-

fourhoursbeforetesting,femaleswereanesthetizedwithCO2,transferredtonewvials,andreturnedto anincubatorsetat20.5˚C.Topreventeffectsofanes-

thesiaonflight[29],eachflywastransferredwithoutanesthesiatoanemptyvialjustbeforetesting.

Wequantifiedflightperformancesinacustomchamber[30].Theflightchamber(30.5x

30.5 x30.5cm)wasconstructedfromclearacrylic,withacircularopeningatthetop.Thisope ningwastemporarilysealedbyamovableplate.Asavialwithaflywasinvertedontopofthisplate,ho lesintheplateenabledthetemperatureandoxygenconcentrationofthevialtoequilibratewithlevel sinthechamber.Afaninsidetheboxcirculatedairfromacommercialoxygencontroller(ROXY- 1,SableSystemsInternational,LasVegas,Nevada,USA).Prelimi-

narytestsshowedthattemperatureandoxygenconcentrationofthevialmatchedthoseofchambe rwithin3.5min.Afterthisperiod,theplatewasslidasideandtheflywastappedintothechamber.Flie seitherfelluncontrollablyorflewtoasurface.Toensureobjectivity,afallwasscoredwhenaflyland edonthefloorwithin10cmofthepointbelowthevial.Theorderoftestingateachtemperatureandox ygenconcentrationwasrandomizedamongdevelopmen-taltreatmentsandisofemalelines.

Acclimationofheattolerance

Weraisedfliesfromfourisofemalelinesateachofeightconcentrationsofoxygen(10%,12%,15%,18

%,21%,24%,27%,and30%)andmeasuredtheirheattoleranceasadults(N2:30foreachtreatment).H eattolerancewasestimatedasthetimerequiredforaflytolosemotorcon-

trolat39.5˚Cinanormoxicatmosphere(21%),alsoknownasknockdowntime[31].Eachday,newlyem ergedfliesfromeachisofemalelinewereisolatedinnewvials.Between5and9

(4)

daysafteremergence,eachflywastransferredwithoutanesthesiaintoaglassvial(10mL)withastopper .Flieswerekeptinvialsforfewerthan5minbeforeheattolerancewasmeasured.

Wemeasuredknockdowntimeinvialssuspendedinacustomwaterbath.Thebathcon- sistedofaclearacrylicbox(28x4x7.5cm)withasealed,watertightlid.Eightvialsweresus-

pendedfromholesinthelid.Waterflowedintooneendoftheboxandouttheotherend,suchthatvialswer ecompletelysubmergedinwaterwhentheboxwassealed.Thetemperatureofthewaterwascontrolle dat39.5˚C(±0.1˚C)byacommercialcirculator(Model11505,VWR,USA).Thistemperaturewasbase donpreviousstudies[32,33],inwhichfliessuc-

cumbedquicklyenoughtominimizeeffectsofenergyorwaterlossbutslowlyenoughtorecordtheknoc kdowntimesprecisely.Ineachtrial,thetimeuntilaflycollapsedwasrecordedastheknockdowntime.Ti meswererecordedwithbytheJWatchercomputersoftware[34].

Statisticalanalyses

Wemodeleddependentvariablesusingthelme4library[35]oftheRStatisticalPackage[36].Forflight performance,wefitalinearmixedmodelwithbinomialdistributionoferrorandfixedeffectsofoxygend uringdevelopment,oxygenduringtesting,andtemperatureduringtesting.Forknockdowntime,weu sedalinearmixedmodelwithanormaldistributionoferrorandfixedeffectsofsexandoxygenduringde velopment.Ineachanalysis,theeffectofisofemalelinewasmodeledasarandomfactor.

FollowingBurnhamandAnderson[37],weusedmulti-

modelaveragingtoestimatethemostlikelyvaluesofmeans.First,weestimatedthemostlikelyrandom effectsaccordingtoZuurandcolleagues[38].Then,weusedtheMuMInlibrary[39]tofitallpossiblesets offixedeffectstothedata.Finally,wecalculatedtheAkaikeinformationcriterion(AICC)andAkaikeweig htofeachmodel(Tables1and2).Tocalculatethemeanforeachgroup,weusedtheweightedaverageof eachparameter,includingestimatesfromallmodels.Thisapproach

Table 1. Alllikelymodelsincludedaneffectoftemperatureonflightperformance.Thetwomostlikelymodelsalsoincludedaneffectofdevelopmentaltemperatu re.Foreachmodel,weprovidetheAkaikeinformationcriterion(AICc)andtheAkaikeweight,whichequalstheprobabilitythatthemodeldescribesthedatabetterthanot hermodels.Allmodelscontainedaninterceptandanerrortermassociatedwithisofemaleline.

Model Parameters Loglikelihood AICc ΔAICc Akaikeweight

1)sex+dev[O2]+temp 6 -124.0 260.2 0 0.19

2)dev[O2]+temp 5 -125.2 260.6 0.34 0.16

3)sex+temp 4 -126.4 261.0 0.79 0.13

4)temp 3 -127.5 261.1 0.85 0.13

5)dev[O2]+temp+test[O2]+(dev[O2]·test[O2]) 11 -3119.9 262.7 2.46 0.06

6)dev[O2]+temp+test[O2]+(dev[O2]·test[O2])+(temp·test[O2]) 15 -115.8 263.2 3.00 0.04

7)sex+dev[O2]+temp+test[O2]+(dev[O2]·test[O2]) 12 -119.2 263.5 3.27 0.04

8)sex+dev[O2]+temp+test[O2] 8 -123.6 263.8 3.52 0.03

9)dev[O2]+temp+test[O2] 7 -124.8 264.0 3.75 0.03

10)temp+test[O2] 5 -127.1 264.4 4.19 0.02

11)sex+temp+test[O2] 6 -126.1 264.5 4.22 0.02

12)sex+dev[O2]+temp+test[O2]+(dev[O2]·test[O2])+(temp·test[O2]) 16 -115.4 264.6 4.33 0.02

13)dev[O2]+temp+test[O2]+(temp·test[O2]) 11 -120.8 264.6 4.34 0.02

14)sex+dev[O2]+temp+test[O2]+(temp·test[O2]) 12 -119.9 264.8 4.52 0.02

15)temp+test[O2]+(temp·test[O2]) 9 -123.3 265.2 5.00 0.02

16)dev[O2]+temp+(dev[O2]·temp) 9 -123.6 265.7 5.44 0.01

17)sex+temp+test[O2]+(temp·test[O2]) 10 -122.5 265.7 5.44 0.01

https://d o i.org/10.1371/ j ournal.pon e .0177827.t001

(5)

Table 2. Themostlikelymodelofknockdowntimeincludedonlyaneffectofsex.Allothermodelswerepoorlysupported(AICc>6).Foreachmodel,weprovideth eAkaikeweight,whichequalstheprobabilitythatthemodeldescribesthedatabetterthanothermodels.Allmodelscontainedaninterceptandanerrortermassociated withisofemaleline.

Model Parameters Loglikelihood AICc ΔAICc Akaikeweight

1)sex 4 -648.5 1305.2 0 0.95

2)sex+test[O2]+(sex·test[O2]) 18 -636.4 1311.4 6.17 0.04

3)sex+test[O2] 11 -645.7 1314.4 9.20 0.01

https://d o i.org/10.1371/ j ournal.pon e .0177827.t002

focusesonestimatesofeffectsizeandeliminatestheneedforPvalues,becauseallmodels(includingth enullmodel)contributetothemostlikelyvalueofeachmean[37].

Results

Flightwasaffectedmorebytemperaturethanbyoxygenconcentration,duringdevelopmentandd uringtesting(Table3).Alllikelymodels,summingtoanAkaikeweightof1,includedaneffectoftemp erature(seeTable 2 ).Whentheseeffectswereaveragedacrossmodels,theproba-

bilityofflightdecreasedastemperatureincreasedfrom37˚to41˚C.Thiseffectwassostrongthatflie sgenerallyflewwhentestedat37˚Cbutrarelyflewwhentestedat41˚C(Fig1).

Flightdependedmoreonoxygenconcentrationduringdevelopmentthanonoxygencon- centrationduringtesting(Table 3 ).Atalltemperatures,fliesthatdevelopedathigherconcen- trationsofoxygenweremorelikelytofly(Fig1).Aweakbutinterestinginteractionemergedwhenfliesw eretestedat39˚C.Fliesthatdevelopedatnormoxiaorhyperoxiaflewmoreoftenwhentestedathigherc oncentrationsofoxygen.Bycontrast,fliesthatdevelopedathypoxiaweremorelikelytoflywhentested atlowerconcentrationsofoxygen.At37˚C,fliesfromalldevelopmentaltreatmentsflewmostoftenwhe ntestedatnormoxia,althoughtheprobabilityofflightexceeded75%inallgroups.Theseinteractiveeffe ctswereeitherrelativelyunimpor-

tantortoovariabletodetectwithoursamples,asevidencedbythelowlikelihoodofmodelswiththeseint eractions(seeTable 1 ).However,temperaturelikelyinfluencestheresponsetooxygen,becauseamu chstrongereffectofoxygenwasobservedwhenfliesweretestedat25˚C.Atthistemperature,bothhyp oxiaandhyperoxiagreatlyreducedtheprobabilityofflight(Fig2).Infact,fliesat25˚Cperformedabouta swellorbetteratnormoxiaasdidfliestestedat37˚C.

Theheatresistanceofrestingflieswasunrelatedtotheiroxygensupplyduringdevelopment(Table 3 ).

Themostlikelymodelofknockdowntimeincludedonlythefixedeffectofsex(see

Table 3. Theimportanceoffactorsinourmodelsofflightperformanceandknockdowntime.ImportanceequalsthesumofAkaikeweightsformodelsthatincludet hefactor(ortheprobabilitythatthefactorwouldoccurinthebestmodel).Adashindicatesthatafactorwasnotconsideredinthesetofmodels.

Factor Importanceforflightperformance Importanceforknockdowntime

Sex 0.49 1.00

Oxygenconcentrationduringdevelopment 0.67

Oxygenconcentrationduringtesting 0.36 0.05

Sex·testoxygen 0.04

Temperatureduringtesting 1.00

Developmentaloxygen·testoxygen 0.17

Testoxygen·temperature 0.15

Developmentaloxygen·temperature 0.05

Developmentaloxygen·testoxygen ·temperature <0.01

https://d o i.org/10.1371/ j ournal.pon e .0177827.t003

(6)

Fig1.Flightperformancedependedonbodytemperatureandoxygensupply.At37˚C(left)and39˚C(center),fliesperformedbetteriftheyhaddevelope dwithagreatersupplyofoxygen.At41˚C(right),fliesperformedpoorlyoverall.Thecolorofeachbardenotestheoxygenlevelatwhichfliesweretested(lightgra y=12%,darkgray=21%,black=31%).Themostlikelyprobabilityofflightundereachconditionwascomputedbymultimodelaveraging.Thenumberofobserv ationsusedtoestimatethemeanismarkedatthetopofeachbar.

https://d o i.org/10.1371/ j ournal.pon e .0177827.g0 0 1

Table 2 ).Thismodelwas95%likelytobethebestmodelintheset,andwas22timesaslikelyasthesecon d-rankedmodel(ΔAIC=6.2).Althoughfemalestookabout1.5minlongertosuc-

cumbtoheatstressthanmalesdid,meanknockdowntimesforbothsexeswerevirtuallyiden- ticalamonggroupsthatdevelopedindifferentoxygentreatments(Fig3).

Fig2.At25˚C,fliesraisedatnormoxiaperformedbestwhentestedatnormoxia.Themostlikelyprobabilityoffli ghtundereachconditionwascomputedbymultimodelaveraging.Fiftyfliesweretestedateachconcentrationofoxy gen.

https:// d oi.org/10.1371/ j ournal.po n e.0177827.g 0 02

(7)

Fig3.Oxygenduringdevelopmenthadnoeffectonafly’sabilitytoresistknockdownat39.5˚C.Large,solidsymbolsdenotethemostlikelymeansestimated bymultimodelaveraging.Samplessizeswereasfollows:23,16,17,11,21,16,17,and17femalesraisedat10%,12%,15%,18%,21%,24%,

27%,and30%oxygen,respectively;and21,18,16,13,23,16,18,and16malesraisedat10%,12%,15%,18%,21%,24%,27%,and30%oxygen, respectively.

https:// d oi.org/10.137 1 /journal.pone . 0177827.g003

Discussion

Ourresultspoorlysupporttheoxygenlimitationhypothesis.Raisingtheatmosphericconcen- trationofoxygenfrom12%to31%hadweakeffectsonflightperformanceatthestressfultem-

peratureof39˚C(seeFig1).Althoughfliesraisedinnormoxiaandhyperoxiamighthavebenefittedfrom hyperoxia,fliesraisedathypoxiawerelesslikelytoflyathyperoxia.Yet,wehesitatetogeneralizethesep atternsgivenhowlittlevariationwasexplainedbythisinteraction(seeTable 1 ).Furthermore,fliesraise dathypoxiawereunabletoresistknockdownat39.5˚Canylongerthanwerefliesraisedathyperoxia(se eFig3).Thus,wedetectedlittleornoevi-

dencethatheattoleranceacclimatedtooxygensupply,regardlessofwhetherheattolerancewasmeas uredduringactivityoratrest.Thisresultagreeswiththoseofpreviousstudiesinwhichthelethaltemperat ureofrestinginsectswereunrelatedtooxygensupply[8,16,40–42].

Ingeneral,developingatahigherlevelofoxygenconferredamajorbenefittoaerobicpeformancedu ringadulthood,whichhasbeenobservedrarelyininsects[15,43].Atboth37˚and39˚C,fliesraisedathyp eroxiaweremostlikelytoflywhentestedatanyconcentrationofoxygen.Interestingly,thisdevelopment alacclimationtohyperoxiaimposednolossofperfor-

manceathypoxia,whichweexpectedasatradeoff.Thispatternaccordswithrecentevidencethatoxyg endoesnotaffectcriticalpO2ortrachealconductanceofflies[44].Fliesraisedathyperoxiacouldhavere ducedtheirinvestmentinthetrachealsystemtosuchadegreethattheywereunabletodeliversufficient oxygenunderhypoxia;ifso,theseflieswouldhaveper-

formedworsethanotherflieswhentestedathypoxia[24–27,45].Instead,thesefliesper-

formedbetterthanotherfliesatalloxygenconcentrations.Thisgreaterperformancecouldcouldhaveb eenasimplebenefitofenhancedgrowthorreducedstressduringdevelopment.Inpreviousexperiment s,fliesdevelopingathyperoxiareachedalargersizeatmaturitythanthosedevelopingatnormoxiaorhy poxia[24,27,46–

49].Ifflieswerelargerinhyperoxia,theirsizemighthaveimpartedanadvantageduringflight.Alternative ly,orinconjunctionwiththishypothesis,byreducingtheneedtoinvestinanenergeticallycostlytracheal system,theseinsectscouldincreasetheirinvestmentinflightmusclemassandotherrelevanttissues[2 8,

(8)

50].Theseadvantagescouldhaveresultedinagreaterratioofflightmuscletobodysize,whichtendstosca lehypermetrically,enhancingpowerandagility[51–55].

Becausefliesdesiccatemorequicklyathighertemperatures,weshouldconsiderwhether

theknockdowntimesinourexperimentwereinfluencesbyhydricstressmorethanthermalstress.Thek nockdownassaylastedabout11minonaverage(Fig3),duringwhichflieswereinsealedvialswitharelati vehumidityequaltothatoftheroom(50%-

60%).Basedonpreviousexperiments,thisdegreeofhydricstressseemstoobenigntocauseaknockdo wnresponse.IndividualsofD.melanogasterresisteddesiccationat25˚Cand0%humidityforanaverag eof10to80hours[56,57].Morerelevanttoourstudyofheatstress,fliesresisteddesiccationat37˚Cand0

%humidityforanaverageof48–

53minutes[58].Althoughthetemperatureinourexperimentwasslightlyhigher,aknockdowntimeof11 mininanenvironmentwithmuchgreaterhumidityseemslikelytooshorttoattributetodesiccation.There fore,thepatternofknockdowntimereflectsheatstressratherthanhydricstress.

Atlowertemperatures,weoberservedacleardisadvantagetoflyingateitherhypoxiaorhyperoxia.

Weweresurprisedbythisresult,havinghypothesizedthathyperoxiawouldenhanceaerobicmetabolis mduringactivity.Althoughwecanonlyspeculateaboutthecauseofthispattern,fliesathyperoxiamight havesacrificedtheirpotentialforaerobicmetabolismtolimittheproductionofreactiveoxygenspecies.

Duringabriefexposuretohyperoxia,asinourexperiment,aninsectcouldeitherreduceitsexposuretore activeoxygenspeciesorsufferdamagetocells[15,59–

61].Inresponsetohyperoxia,somespeciesofinsectsareknowntoclosetheirspiracles[62–

64].Infact,researchershavearguedthattherespiratorypatternsofinsectsevolvedtoavoidoxidativeda mage[65].Contrarytothishypothesis,theoxygenlevelinthetrachealsystemoflocustsdirectlymatche dthatoftheambientairwhenexposedtohyper-

oxia[66].Althoughthishypothesisremainsunresolved,themechanismthatweproposewouldreducefl ightperformancebylimitingtheoxygensupplytocellsdespitetheabundanceofoxygenintheenvironm ent.Thishypotheticalmechanismhastheadvantageoffittingobser-

vationsathighertemperaturesaswell.Asbodytemperatureincreased,thedemandforATPmighthavei ncreasedtothepointthatonlyatinyfractionofoxygenwasreducedtoformsuperoxideradicalsinsteadof water[67,68].Inlinewiththisreasoning,thedifferencebetweenperformanceatnormoxiaandperforma nceathyperoxiadependedonthetemperature:nor-

moxiaconferredalargeadvantageat25˚C,amildadvantageat37˚C,andaslightdisadvantageat39˚or4 1˚C.Ifourhypothesisholds,ahyperoxicenvironmentwouldimposeacostwhenfliesdemandlessoxyg en.

Wehaveonlybeguntoexploretheinteractionbetweenheatandoxygenstresseswhenanimalse ngageinenergeticallydemandingyetecologicallyrelevantactivities.Additionalexperimentsare neededtosupportorrefutetheideathatoxygencanlimitheattoleranceinterrestrialanimals[9].Alth oughresearchhasfocusedonafewspecies,whichoftenresideinoxygen-

richenvironments,manyanimalsliveinsoilsthatbecomehypoxic[69].Some

insectspassthroughlarvalstagesthatexperienceperiodsofhypoxiainrottingfruit,meat,orfeces[7 0].Otherinsectspassthroughaquaticstagesbeforebecomingterrestrialadults.Thepotentialforoxyg enlevelsduringthesestagestoinfluencetolerancetohypoxiaorheatatlaterstagesremainslargelyu nexplored.Futureresearchshouldfocusonheattolerancedur-

ingaerobicallychallengingactivitiesattheoxygenlevelsencounteredatspecificstagesofthelifecycl e.

Acknowledgments

WethankMarcinCzarnoleskifordiscussionsrelatedtotheideasinthispaper.Thisresearchwasfund edbytheSchoolofLifeSciences,theBarrettHonorsCollegeatArizonaState

(9)

University,andMidwesternUniversity.N.Szablawassupportedbyprojectco-

foundedfromEUresourcesundertheEuropeanSocialFund(POKL04.01.01-00-053/09).

AuthorContributions

Conceptua lization:SSJLVTJMVMJA.Datacuratio n:JMVMJA.

Formalanalysis:JMVMJA.Funding acquisition:JMVMJA.Investigatio n:SSJLVTNS.Methodology:SSJM VMJA.Projectadministration:JMV MJA.Resources:JMVMVA.Supervi sion:JMVMJA.Validation:SSJLVT.

Visualization:JMVMJA.

Writing–originaldraft:SSJMVMJA.

Writing–review&editing:SSJLVTNSJMVMJA.

References

1. SomeroGN.Proteinsandtemperature.AnnualReviewofPhysiology.1995;57:43–

68.https://doi.o r g/ 10.1146 / annurev.ph.57 . 030195.0003 5 5 PMID :77788 7 4 2. FederME.Organismal,ecological,andevolutionaryaspectsofheat-

shockproteinsandthestressresponse:Establishedconclusionsandunresolvedissues.AmericanZoolo gist.1999;39(6):857–64.

3. HulbertAJ.Life,deathandmembranebilayers.JournalofExperimentalBiology.2003;206(14):2303–

11.https://doi . org/10.1242/ j eb.00399

4. LogueJA,DeVriesAL,FodorE,CossinsAR.Lipidcompositionalcorrelatesoftemperature-

adaptiveinterspecificdifferencesinmembranephysicalstructure.JournalofExperimentalBiology.2000;

203(14):2105–15.

5. Po¨rtnerHO.Climatevariationsandthephysiologicalbasisoftemperaturedependentbiogeography:syste mictomolecularhierarchyofthermaltoleranceinanimals.ComparativeBiochemistryandPhysi-

ologyA.2002;132(4):739–61.

6. Po¨rtnerHO.Climatechangeandtemperature-

dependentbiogeography:oxygenlimitationofthermaltoleranceinanimals.Naturwissenschaften.2001;

88(4):137–46.PMID:11480701

7. Po¨rtnerHO.Oxygen-andcapacity-limitationofthermaltolerance:amatrixforintegratingclimate- relatedstressoreffectsinmarineecosystems.JournalofExperimentalBiology.2010;213.

8. KlokCJ,SinclairBJ,ChownSL.Upperthermaltoleranceandoxygenlimitationinterrestrialarthropods.

JournalofExperimentalBiology.2004;207(13):2361–70.

9. VerberkW,OvergaardJ,ErnR,BayleyM,WangT,BoardmanL,etal.Doesoxygenlimitthermaltoler- anceinarthropods?Acriticalreviewofcurrentevidence.ComparativeBiochemistryandPhysiologya- Molecular&IntegrativePhysiology.2016;192:64–

78.https:/ / doi.org/10.1 0 16/j.cbpa. 2 015.10. 0 20 PMID:26506 1 30

10. ErnR,HuongDTT,PhuongNT,MadsenPT,WangT,BayleyM.Somelikeithot:Thermaltoleranceandoxyge nsupplycapacityintwoeurythermalcrustaceans.ScientificReports.2015;5.https://doi.o r g/ 10.1038 / srep10 74

3 PMID :26030 4 12

11. vanDijkPLM,TeschC,HardewigI,PortnerHO.Physiologicaldisturbancesatcriticallyhightempera- tures:AcomparisonbetweenstenothermalAntarcticandeurythermaltemperateeelpouts(Zoarcidae).Jou rnalofExperimentalBiology.1999;202(24):3611–21.

(10)

12. FrederichM,PortnerHO.Oxygenlimitationofthermaltolerancedefinedbycardiacandventilatoryper- formanceinspidercrab,Majasquinado.AmericanJournalofPhysiology.2000;279(5):R1531–

R8.PMID:11049 8 33

13. HeJ,XiuM,TangX,WangN,XinY,LiW,etal.Thermoregulatoryandmetabolicresponsestohypoxiaintheovi parouslizard,Phrynocephalusprzewalskii.ComparativeBiochemistryandPhysiologyPartA:Molecular&I ntegrativePhysiology.2013;165(2):207–13.http://dx. d oi.org/10.10 1 6/j.cbpa.2 0 13.03. 007.

14. WigglesworthVB,LeeWM.Thesupplyofoxygentotheflightmusclesofinsects:ATheoryoftracheolephysiol ogy.TissueandCell.1982;14(3):501–18.http://dx.doi. o rg/10.10 1 6/0040-816 6 (82)9004 3 -

XPMID:71472 2 7

15. HarrisonJF,KaiserA,VandenBrooksJM.Atmosphericoxygenlevelandtheevolutionofinsectbodysize.2 010.https://doi.o r g/10.10 9 8/rspb.2 0 10.000 1 PMID :202197 3 3

16. McCueMD,SantosRD.UpperThermalLimitsofInsectsAreNottheResultofInsufficientOxygenDelivery.P hysiologicalandBiochemicalZoology.2013;86(2):257–

65.https://doi.o r g/10.10 8 6/669932 PMID:23434 7 85

17. MolichAB,ForsterTD,LightonJRB.Hyperthermicoverdrive:Oxygendeliverydoesnotlimitthermaltol- eranceinDrosophilamelanogaster.JournalofInsectScience.2012;12:109.https:/ / doi.org/10.1 6 73/ 031.012 . 1090 1 PMID :23438104

18. WoodsHA,HillRI.Temperature-

dependentoxygenlimitationininsecteggs.JournalofExperimentalBiology.2004;207(13):2267–

76.https://doi. o rg/10.1242/j e b.00991

19. SmithC,TelemecoRS,AngillettaMJ,VandenBrooksJM.Oxygensupplylimitstheheattoleranceofliz- ardembryos.BiologyLetters.2015;11(4):20150113.https://doi.o r g/10.10 9 8/rsbl.2015.01 1 3 PMID: 25926 695

20. WoodsHA.Egg-masssizeandcellsize:effectsoftemperatureonoxygendistribution.AmericanZoolo- gist.1999;39(2):244–52.

21. ChownSL,NicolsonSW.InsectPhysiologyEcology.Oxford:OxfordUniversityPress;2004.

22. SuarezRK.EnergyMetabolismduringInsectFlight:BiochemicalDesignandPhysiologicalPerfor- mance.PhysiologicalandBiochemicalZoology:EcologicalandEvolutionaryApproaches.2000;73(6):

765–71.https://doi . org/10.1086/ 3 1811 2 PMID :11121349

23. HarrisonJF,LightonJRB.Oxygen-sensitiveflightmetabolisminthedragonflyErythemissimplicicollis.

JournalofExperimentalBiology.1998;201(11):1739–44.

24. LoudonC.Trachealhypertrophyinmealworms:designandplasticityinoxygensupplysystems.JournalofEx perimentalBiology.1989;147(1):217–35.

25. VandenBrooksJM,MunozEE,WeedMD,FordCF,HarrisonMA,HarrisonJF.Impactsofpaleo-

oxygenlevelsonthesize,development,reproduction,andtrachealsystemsofBlatellagermanica.EvolBiol.2 012;39(1):83–93.https://doi.o r g/10.1007/ s 11692-011 - 9138-3

26. JareckiJ,JohnsonE,KrasnowMA.OxygenregulationofairwaybranchinginDrosophilaismediatedbybranc hlessFGF.Cell.1999;99(2):211–20.https://doi.o r g/10.1016 / s0092-8674 ( 00)81652 - 9 PMID: 10535739 27. HenryJR,HarrisonJF.Plasticandevolvedresponsesoflarvaltracheaeandmasstovaryingatmo-

sphericoxygencontentinDrosophilamelanogaster.JournalofExperimentalBiology.2004;207(20):35 59–67.

28. KaiserA,KlokCJ,SochaJJ,LeeW-

K,QuinlanMC,HarrisonJF.Increaseintrachealinvestmentwithbeetlesizesupportshypothesisofoxygenl imitationoninsectgigantism.ProceedingsoftheNationalAcademyofSciences.2007;104(32):13198–

203.https:/ / doi.org/10.1 0 73/pnas. 0 61154410 4 PMID: 17666530

29. BartholomewNR,BurdettJM,VandenBrooksJM,QuinlanMC,CallGB.Impairedclimbingandflightbehavi ourinDrosophilamelanogasterfollowingcarbondioxideanaesthesia.ScientificReports.2015;5:15298.htt ps://doi.o r g/10.1038/ s rep1529 8 http://ww w .nature.co m /articles/

srep15298 # suppleme n tary-informati o n .PMID:26477397

30. LeVinhThuyJ,VandenBrooksJM,AngillettaMJ.Developmentalplasticityevolvedaccordingtospe- cialist-

generalisttradeoffsinexperimentalpopulationsofDrosophilamelanogaster.BiologyLetters.2016.

31. HoffmannAA,AndersonA,HallasR.OpposingclinesforhighandlowtemperatureresistanceinDro- sophilamelanogaster.EcologyLetters.2002;5(5):614–8.https:/ / doi.org/10.1 0 46/j.14 6 1- 0248.200 2 . 00367.x

32. CondonC,AcharyaA,AdrianGJ,HurlimanAM,MalekootiD,NguyenP,etal.Indirectselectionofther- maltoleranceduringexperimentalevolutionofDrosophilamelanogaster.EcologyandEvolution.2015;5(9):

1873–80.https:// d oi.org/10.10 0 2/ece3.1 4 7 2 PMID :26140 2 03

(11)

33. HoffmannAA,SørensenJG,LoeschckeV.AdaptationofDrosophilatotemperatureextremes:bringingtoget herquantitativeandmolecularapproaches.JournalofThermalBiology.2003;28(3):175–216.

34. BlumsteinDT,DanielJC.QuantifyingbehaviortheJWatcherway.Sunderland:SinauerAssociates,Inc.;2 007.

35. BatesD,MaechlerM,BolkerB,WalkerS.Fittinglinearmixed- effectsmodelsusinglme4.JournalofStatisticalSoftware.2015;67:1–

48.https://doi.o r g/10.18637 / jss.v067.i01

36. TeamRC.R:Alanguageandenvironmentforstatisticalcomputing.RFoundationforStatisticalCom- puting,Vienna,Austria.URLhttp://ww w .R-project. o rg/ .2014.

37. BurnhamKP,AndersonDR.ModelSelectionandMultimodelInference:APracticalInformation-Theo- reticApproach.NewYork:Springer;2002.

38. ZuurAF,LenoEN,WalkerN,SavelievAA,SmithGM.MixedEffectsModelsandExtensionsinEcologywithR.

NewYork:Springer;2009.

39. BartońK.MuMIn:multi-modelinference,Rpackageversion1.9.13.2013.

40. BoardmanL,TerblancheJS,HetzSK,MaraisE,ChownSL.Reactiveoxygenspeciesproductionanddisconti nuousgasexchangeininsects.ProceedingsoftheRoyalSocietyB:BiologicalSciences.2012;279(1730):8 93–901.https: / /doi.org/10.1 0 98/rspb. 2 011.124 3 PMID :21865257

41. VerberkW,SommerU,DavidsonRL,ViantMR.Anaerobicmetabolismatthermalextremes:ametabo- lomictestoftheoxygenlimitationhypothesisinanaquaticinsect.IntegrativeandComparativeBiology.2013;

53(4):609–19.https://doi.o r g/10.1093 / icb/ict01 5 PMID :23604617

42. VerberkW,BiltonDT.Respiratorycontrolinaquaticinsectsdictatestheirvulnerabilitytoglobalwarm- ing.BiologyLetters.2013;9(5).https://doi . org/10.1098/ r sbl.2013. 0 47 3 PMID :239258 3 4

43. HarrisonJF,KaiserA,VandenBrooksJM.Mysteriesofoxygenandinsectsize.In:MorrisS,VoslooA,editors .MoleculestoMigration:ThePressuresofLife.Bologna:MedimondPublishingCo;2008.p.293–302.

44. KlokCJ,KaiserA,LightonJRB,HarrisonJF.Criticaloxygenpartialpressuresandmaximaltrachealconduct ancesforDrosophilamelanogasterrearedformultiplegenerationsinhypoxiaorhyperoxia.JournalofInsect Physiology.2010;56(5):461–9.https://doi . org/10.1016/ j .jinsphys . 2009.08.00 4 PMID: 19682996 45. CentaninL,GorrTA,WappnerP.Trachealremodellinginresponsetohypoxia.JournalofInsectPhysi-

ology.2010;56(5):447–54.https://doi. o rg/10.1016/j.j i nsphys.20 0 9.05.00 8 PMID :19482 0 33 46. FrazierMR,WoodsHA,HarrisonJF.Interactiveeffectsofrearingtemperatureandoxygenonthedevelop

mentofDrosophilamelanogaster.PhysiologicalandBiochemicalZoology.2001;74(5):641–

50.https://doi . org/10.1086/ 3 2217 2 PMID :11517449

47. PeckLS,MaddrellSHP.LimitationofsizebyhypoxiainthefruitflyDrosophilamelanogaster.JournalofExperi mentalZoologyA.2005;303A(11):968–75.https://doi. o rg/10.1002/j e z.a.21 1 PMID :16217805

48. GreenbergS,ArA.Effectsofchronichypoxia,normoxiaandhyperoxiaonlarvaldevelopmentinthebeetleTe nebriomolitor.JournalofInsectPhysiology.1996;42(11–12):991–6.https:// d oi.org/10.10 1 6/ s0022- 191

0 (96)00071-6

49. KlokCJ,HubbAJ,HarrisonJF.Singleandmultigenerationalresponsesofbodymasstoatmosphericoxygen concentrationsinDrosophilamelanogaster:evidenceforrolesofplasticityandevolution.Jour-

nalofEvolutionaryBiology.2009;22(12):2496–504.https://doi.o r g/10.11 1 1/j.1420- 91

0 1.2009. 0 1866.x PMID :19878 5 02

50. HarrisonJF,KaiserA,VandenBrooksJM.Atmosphericoxygenlevelandtheevolutionofinsectbodysize.

ProceedingsoftheRoyalSocietyB:BiologicalSciences.2010;277(1690):1937–

46.https://doi. org/10.1098 / rspb.2010.000 1 PMID :20219733

51. CoelhoJR,HollidayCW.Effectsofsizeandflightperformanceonintermalematecompetitioninthecicadaki ller,SpheciusspeciosusDrury(Hymenoptera:Sphecidae).JournalofInsectBehavior.2001;14(3):345–

51.https:// d oi.org/10.10 2 3/a:101 1 119312500

52. AlcockJ,KempDJ.ThebehavioralsignificanceofmalebodysizeinthetarantulahawkwaspHemipep- sisustulata(Hymenoptera:Pompilidae).Ethology.2006;112(7):691–8.https://doi.o r g/10.1111 / j.1439- 0310.2006 . 01204.x

53. Serrano-MenesesMA,Cordoba-

AguilarA,MendezV,LayenSJ,SzekelyT.SexualsizedimorphismintheAmericanrubyspot:malebodysize predictsmalecompetitionandmatingsuccess.AnimalBehav-iour.2007;73:987–

97.https://doi.o r g/10.10 1 6/j.anbeha v .2006.08.012 54. MardenJH.Effectsofload-

liftingconstraintsonthematingsystemofadancefly.Ecology.1989;70(2):496–

502.https://d o i.org/10.230 7 /1937553

55. SamejimaY,TsubakiY.Bodytemperatureandbodysizeaffectflightperformanceinadamselfly.

BehavioralEcologyandSociobiology.2010;64(4):685–92.https:/ / doi.org/10.1 0 07/s002 6 5-009-08 8 6-3

(12)

56. GibbsAG,ChippindaleAK,RoseMR.Physiologicalmechanismsofevolveddesiccationresistancein Drosophilamelanogaster.JournalofExperimentalBiology.1997;200(12):1821–32.

57. MatzkinLM,WattsTD,MarkowTA.DesiccationresistanceinfourDrosophilaspecies:sexandpopula- tioneffects.Fly.2007;1(5):268–73.PMID:18836314

58. BubliyOA,KristensenTN,KellermannV,LoeschckeV.Humidityaffectsgeneticarchitectureofheatresist anceinDrosophilamelanogaster.JournalofEvolutionaryBiology.2012;25(6):1180–

8.https:// doi.org/10.1 1 11/j.1420-9 1 01.2012. 0 2506. x PMID :22487 5 29

59. Rasco´nB,HarrisonJF.Lifespanandoxidativestressshowanon-linearresponsetoatmosphericoxy- geninDrosophila.TheJournalofExperimentalBiology.2010;213(20):3441–

8.https://doi.o r g/10.1242/ jeb.04486 7 PMID :20889824

60. VanVoorhiesWA.MetabolicfunctioninDrosophilamelanogasterinresponsetohypoxiaandpureoxy- gen.JournalofExperimentalBiology.2009;212(19):3132–

41.https://doi.o r g/10.1242 / jeb.031179 PMID:19749 1 06

61. HarrisonJF,CeaseAJ,VandenBrooksJM,AlbertT,DavidowitzG.Caterpillarsselectedforlargebodysizean dshortdevelopmenttimearemoresusceptibletooxygen-

relatedstress.EcologyandEvolution.2013;3(5):1305–

16.https://doi.o r g/10.1002 / ece3.55 1 PMID :23762517

62. BurkettBN,SchneidermanHA.RolesofoxygenandcarbondioxideincontrolofspiracularfunctioninCecro piapupae.BiologicalBulletin.1974;147(2):274–93.https://doi.o r g/10.23 0 7/154044 9 PMID: 4441555 63. HeinrichEC,McHenryMJ,BradleyTJ.Coordinatedventilationandspiracleactivityproduceunidirec-

tionalairflowinthehissingcockroach,Gromphadorhinaportentosa.JournalofExperimentalBiology.201 3;216(23):4473–82.https://doi.o r g/10.124 2 /jeb.08845 0 PMID :24031 0 63

64. LightonJRB,SchilmanPE,HolwayDA.Thehyperoxicswitch:assessingrespiratorywaterlossratesintrach eatearthropodswithcontinuousgasexchange.JournalofExperimentalBiology.2004;207(25):4463–

71.https:// d oi.org/10.12 4 2/jeb.01 2 8 4 PMID :15557031

65. HetzSK,BradleyTJ.Insectsbreathediscontinuouslytoavoidoxygentoxicity.Nature.2005;433(702 5):516–9.https:// d oi.org/10.10 3 8/nature03 1 0 6 PMID :15690040

66. MatthewsPGD,SnellingEP,SeymourRS,WhiteCR.Atestoftheoxidativedamagehypothesisfordis- continuousgasexchangeinthelocustLocustamigratoria.BiologyLetters.2012;8(4):682–

4.https:// doi.org/10.1 0 98/rsbl.2012.0 1 3 7 PMID :22491761 67. AliSS,MarcondesM-

CG,BajovaH,DuganLL,ContiB.Metabolicdepressionandincreasedreactiveoxygenspeciesproduction byisolatedmitochondriaatmoderatelylowertemperatures.TheJournalofBiologicalChemistry.2010;285 (42):32522–8.https://doi.o r g/10.10 7 4/jbc.M110. 1 5543 2 PMID:

20716522

68. BarjaG.Mitochondrialoxygenconsumptionandreactiveoxygenspeciesproductionareindependentlymod ulated:implicationsforagingstudies.Rejuvenationresearch.2007;10(2):215–

24.Epub2007/05/26.https://doi . org/10.1089/ r ej.2006.0 5 1 6 PMID :17523876.

69. HillelD.SoilandWater:PhysicalPrinciplesandProcesses.NewYork:AcademicPress;1971.

70. CallierV,HandSC,CampbellJB,BiddulphT,HarrisonJF.Developmentalchangesinhypoxicexpo- sureandresponsestoanoxiainDrosophilamelanogaster.JournalofExperimentalBiology.2015;218(18):

2927–34.

Cytaty

Powiązane dokumenty

While studies using bicycle ergometry have demonstrated normal cardiopulmonary hemodynamics in normal indivi- duals and athletes and abnormal hemodynamics in patients with

E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and

To test hypothesis 1 (metabolic demand and oxygen supply during development induce developmental changes in cell size) and hypothesis 2 (MMI is higher in woodlice

The conducted studies showed that mul1 or park overexpressing strains do not show dopaminergic neuron degeneration after administration of rotenone, the level of

We conducted five sets of experiments (Table 1): (1) ini- tial tests using unselected flies that had not undergone experimental evolution (i.e., immediately after back- crossing,

One night of sleep deprivation impaired psychological well-being and executive function but did not affect simple reaction time, the capacity for arm and leg muscle contraction,

In addition, the results of the present study showed that running promoted higher VO 2 than cycling exercise when performed at the same relative intensity, and it should be

Moreover, CRY has an essential role in circadian plasticity in the lamina: in fact, in cry-null (cry 0 ) mutants the cyclic expression of genes regulating circadian changes