• Nie Znaleziono Wyników

Electrostatic instability of micro-plates subjected to differential pressure

N/A
N/A
Protected

Academic year: 2021

Share "Electrostatic instability of micro-plates subjected to differential pressure"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

Electrostatic instability of micro-plates subjected to differential pressure

A semi-analytical approach

Sajadi, Banafsheh; Goosen, Hans; van Keulen, Fred

DOI

10.1016/j.ijmecsci.2018.02.007

Publication date

2018

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Sajadi, B., Goosen, H., & van Keulen, F. (2018). Electrostatic instability of micro-plates subjected to

differential pressure: A semi-analytical approach. International Journal of Mechanical Sciences, 138-139,

210-218. https://doi.org/10.1016/j.ijmecsci.2018.02.007

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Electrostatic

instability

of

micro-plates

subjected

to

differential

pressure:

A

semi-analytical

approach

Banafsheh

Sajadi

,

Hans

Goosen

,

Fred

van

Keulen

Department of Precision and Microsystem Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Pull-in Electrostatic instability Bi-stability Micro-plate Snap-through Nonlocal elasticity

a

b

s

t

r

a

c

t

ElectrostaticinstabilityisoneofthemainfeaturesofmanyelectrostaticMEMSandNEMSdevices.Inthispaper, weinvestigatehowtheelectrostaticinstabilityofaplate-likeelectrodecanbeaffectedbyadifferentialpressure. Theresultsofthisstudyindicatethatthepresenceofdifferentialpressurecanhaveasignificantinfluenceonthe equilibriumpath,thenumberandlocationofunstablepoints,andthepost-instabilitybehavior.Asaresult,while thesystemisloadedandunloadedelectrically,theelectrostaticinstabilitymightleadtoasnappingbehavior. Thenoticedsnappingbehaviorofaflatplatemakesitveryappealingforsensingandactuatingapplications. Thisstudyisbasedonbothasemi-analyticalframeworkandfiniteelementsimulations.Theproposedanalytical solutionisshowntobeaccurateenoughtobeusedasaneffectivetoolfordesign.

© 2018TheAuthors.PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Electrostaticinstability(andbi-stability)isanimportantfeatureof manyelectrostaticMEMSdevices,sensorsandactuators[1–3].Asolid understandingoftheelectrostaticinstabilityisessentialtoimprovethe performancesuchMEMS/NEMSdevicesandtoobtainnewdesignsfor newapplications.

ElectrostaticMEMSdevicesessentiallyconsistofasimpleparallel platecapacitorwithatleast oneflexibleelectrode.Whenanelectric potentialisappliedtothecapacitor,anattractiveelectrostaticloadis inducedbetweenitselectrodes.Thisloaddependsontheapplied elec-tricpotential,thelocaldistancebetweentheelectrodes,andthe dielec-tricconstantofthemediumseparatingthem[4].Theelectrostaticload leadstodeformationoftheflexibleelectrode(s)tomaintainthebalance betweenelectrostaticandelasticpotentials.Thus,anysmallchangein theelectricpotentialcangeneratemechanicalmovementoftheflexible plate,whichcanbeusedforactuation[5].

InstabilityofanelectrostaticMEMSdeviceoccursmainlyduetothe nonlinearityintheelectrostaticpotential[6].Whenthesystembecomes unstable,anyperturbationcouldleadtofailureorpull-inoftheflexible electrode.Thisstabilityphenomenonappearsasafoldoralimitpoint intheequilibriumcurveofthesystem[7,8].

IncertainelectrostaticMEMSdevices,e.g.microphonesand pres-suresensorsoractuators,itisessentialtoavoidpull-ineffects,sincethe contactbetweenthetwoelectrodesinducesfailures,includingshort

cir-∗Correspondingauthor.

E-mailaddress:b.sajadi@tudelft.nl(B.Sajadi).

cuit,stick,wear,dielectricchanging,andbreakdown[6,9].Ontheother hand,pull-inisafeatureofMEMS/NEMSdevices[2]whichcan also provideinformationonthemechanicalandphysicalcharacteristicsof thesystem.Therefore,ithasbeenintroducedasarobustmechanismfor measuringthemechanicalpropertiesofnano-structures[10],orsensing theadsorbatestiffnessinnano-mechanicalresonators[11].

Inordertoavoidoremploythepull-ineffect,anin-depthknowledge ofthestabilitybehaviorandanaccuratedeterminationofthepull-in voltageof thestructure iscriticallyrequired.Inengineering applica-tions,toapproximatethecriticaldeformationoftheelectrodeandto predictthepull-involtage,asimple1-Dspring-massmodeliscommonly used(seeFig.1).Insuchamodel,theinstabilityoccurswhendueto thedeformationoftheflexibleelectrode,thegapbetweenthetwo elec-trodesbecomestwothirdsoftheinitialgap[7,12,13].Thissimplified modeliscommonlyreferredtoasthe‘1/3airgaprule’.Inpractice, how-ever,amembrane/platestructureisdifferentfromasimplespringmass model.Itisa2DstructurewhichincorporatesPoissonratioeffects,and membranestiffeningeffects.Inaddition,iftheplate-likeelectrode de-forms,theelectrostaticloadisnolongeruniform.The1/3airgapmodel inherentlydoesnotaccountforanyoftheseeffects.However,the criti-calgapbeingequaltotwo-thirdsoftheinitialgapsize,isshowntobe themostconservativecriticalgapinMEMScapacitors[12].

Thepull-inofcircularclampedplate-likeelectrodeshasbeen investi-gatedandformulatedinmanystudies[9,12,14].Thesestudiesarebased onsimplifyingassumptions,suchassmallandone-dimensional

defor-https://doi.org/10.1016/j.ijmecsci.2018.02.007

Received 12 June 2017; Received in revised form 3 January 2018; Accepted 3 February 2018 Available online 6 February 2018

(3)

B. Sajadi et al. International Journal of Mechanical Sciences 138–139 (2018) 210–218

Fig.1. Simple1-Dmodeltypicallyusedtoapproximatethecriticaldeformation oftheelectrodeinordertopredictthepull-involtage.

mationoftheplate,oruniformityoftheelectrostaticload.Ultimately, finite-differenceandfinite-elementmethodshavebeenappliedtosolve theresultedequations[9,15,16].Differentvaluesforcritical deforma-tionwereproposedforcircularclampedelectrodes,from41.5%[9]or 41.6–45.6%[15]to72–75%[16]dependingon thethicknessof the plateandsimplifyingassumptions.However,acomprehensiveanalytical

solutionforpull-involtageofacircularclampedplate,while consider-ingthenonlinearmembraneeffectsandnon-uniformityofelectrostatic load,ismissingintheliterature.

Thepull-involtageandcriticaldeflection ofcantilever-,beam-or plate-likeelectrodesdependonthestiffnessoftheflexiblecomponent, aswellastheinitialdistancebetweentheelectrodes.Amechanicalload appliedtothecomponentcandirectlyaffectbothparameters,and con-sequently,influencestheelectrostaticinstabilityofthesystem.The sen-sitivityofelectrostaticinstabilitytoamechanicalloadistheconcept behindusingpull-ininstabilityasamechanismforsensing,for exam-ple,temperature[17],surface-stress[4],orresidualstressesinclamped structures[7].Furthermore,MEMSsensorsandactuatorsarefrequently designedtooperateunderamechanicalload,suchasincapacitive pres-suresensors.Sometimes,theadditionalmechanicalloadinthese de-vicesisundesired,butalsoinevitable,suchasthermalloadsorresidual stressesinclampedstructures.Therefore,anin-depthknowledgeabout theeffectofthesemechanicalloadsonthestabilityofthemicro me-chanicalcomponentisparamount.

Thedependencyofthepull-involtageofMEMSdevicestoexternal mechanicalloads,suchasauniformtransverse,or,in-planeload,has beeninvestigatedintheliterature[7,13,18–22].Particularly,theeffect ofauniformdifferentialpressureontheelectrostaticinstabilityofa cir-cularmicroplatehasbeenstudiedaswell[23].Thelater,usinga numer-icalcontinuationscheme,calculatedthecombinationofpressureand voltagewhichcanleadtotheinstabilityofthesystem.Thisstudy consid-ersthedifferentialandtheelectrostaticpressuretobeinthesame direc-tionanditshowsthatthedifferentialpressurealwayscausesthesystem tobemorepronetoinstability.Itshouldbenoticedthattheproposed numericalmethod,evenifhighlyaccurate,isanexpensivetools,and,for eachnewsetofdesignparameters(radiusorthickness)thesimulation hastobe repeated.Anaccurateanalyticalmodel–ifavailable– could provideaclosedformsolutionforapproximatingthepull-involtageand thecriticaldeformationalmostwithoutanytimecost.Inaddition,it pro-videsmoreinsighttotheproblemwhichisfavoredfordesignpurposes. Inthispaper,weproposeananalyticalapproximatemethodology tostudythestabilityandpull-inbehaviorofacircularflexible elec-trode,while,loadedwithelectrostaticanddifferentialpressure.Inthis analysis,thedirectionofthepressureis notpredefined.Instead,itis consideredtobeadifferentialpressurepositivewhenopposingthe elec-trostaticload,andnegativeotherwise.Thenon-linearstretchingofthe thinplateandthenon-uniformityofelectrostaticloadduetodeflection oftheflexibleplate,areincorporatedinthissolution.Theaccuracyof theproposedanalyticalapproximationisevaluatedwithacomparison tothefiniteelementsimulations[24].

Usingtheproposedsolutions,first,theinstabilityandpull-in behav-ioroftheelectrodeanditsdependencyontheelectrode’sthicknessand radiusarediscussed.Next,weexplorehowadifferentialpressureand itsdirectionwouldaffectequilibrium,stability,andthecriticalvoltages anddeflections.Inaddition,thepost-instabilitybehaviorofthesystem

Fig.2. Schematicofthecrosssectionofthecapacitorwithoneflexibleelectrode ina)undeformedconfiguration,and,b)deformedundercombinedelectrostatic anddifferentialpressure.

andpossiblesnappingbehaviorwillbeaddressed.Wewillshowthat thepresenceofadifferentialpressurecantriggerbi-stabilityinthe sys-tem.Therequiredcriteriatoattaintheadditionalstablesolutionand thesnappingbehavior,whichcanbeofgreatinterestforsensingand actuationpurposes,willbethoroughlydiscussed.

Finally,weshallremindthattheeffectiveelasticpropertiesof struc-tures at nano andsometimeseven at microscalesareknown tobe stronglysize-dependent[25–29].Theclassicalcontinuumtheoryis in-herentlysizein-dependentandhence,itcannotprovideagood predic-tionwhenthethicknessoftheplateisverysmall.Forsmalllengthscales, size-dependentcontinuumtheoriesthataccountforthesescaleeffects should be utilized[30–36]. These theories,embed amaterial length scale(e0a) whichmakes itpossible toqualifythesizeof astructure aslarge” orsmall” relativetoitsmateriallengthscale.Ifthesizeofthe structureisrelativelylarge,thenthenonlocalorhigher-ordergradient theoriesconvergetoclassicalelasticitytheoryandtherefore,employing theclassicaltheorywillleadtosimilarresults.Onceplasticityplaysa role,anotherlengthscaleshouldbeconsidered[37].Inthispaper,using astrongnonlocalelasticitytheory[35,38],thepossibilityofcapturing thescalingeffectsintheproposedformulationisbrieflyinvestigated, andthesize-dependenceofstabilityofamicro-platewhilesubjectedto electrostaticanddifferentialpressureisaddressed.

2. Analyticalformulation

Theanalyticalmodelproposedhereisbasedonaparallelplate ca-pacitorwithathin,circular,fullyclampedplateasoneelectrode,while theotherisfixedandrigid.Theshapeofthecapacitorischosentobe cir-cular,sincetheMEMSdeviceswithacircularplategenerallyyieldbetter structuralflexibilityascomparedtorectangularplates.Inaddition,they havenocornersorsharpedgeswhichmayinducehighresidualstresses duringfabricationprocess[15].Theschematicoftheassumedmodelis showninFig.2.

Theradiusof theflexible electrodeisRandits thicknessis h.It ismodeled withalinearelastic,homogeneousandisotropicmaterial model.TheYoungsmodulusandPoissonratiooftheplatearedenotedE

and𝜈,respectively.Theplateissuspendedoverthegroundedelectrode withsimilarradiusandtheinitialgapbetweentheelectrodesisd.The plateisloadedwithadifferentialpressureP,andanelectricpotentialV

isappliedtotheelectrodes.

TheplateismodeledwithvonKárḿansplatetheory,whichaccounts for finitedeflection butmoderaterotations andis adequatefor thin plates[39].Theloadsareconservative,whichimpliesthatfirst,to es-timatethedeflectionintheequilibriumstate,approximationsbasedon minimizingthetotalpotentialenergycanbeapplied,andsecond,no dy-namicconsiderationisrequiredtoassessstabilityofequilibriums. Mini-mizingthetotalpotentialenergyisavariationalproblemanditssolution can beestimatedusingRitz’smethod.Inthismethodaparametrized displacementfieldsatisfyingtheclampingboundaryconditionis con-sidered,whereastheunknownparametersarecalculatedbyrequiring thetotalpotentialenergytobestationary.

(4)

Duetotheaxisymmetricconditionintheproblemathand,theonly appearingdisplacementcomponentsaretheradial(u)andtransverse (w)components.Although,thenonlinearitymightcausethesymmetry tobreakup,weconsiderthesymmetrytomaintainduringdeformation. Thisassumptionhasbeenverifiedusingafiniteelementmodelwhich willbedescribedinthenextsection.Theclampingboundarycondition forcesthedisplacementcomponentsandalsothefirstderivativeofthe transversedisplacementwithrespecttotheradialcoordinatetobeequal tozeroattheboundaries.WeadoptTimoshenko’ssimpleapproximate displacementfieldforuniformlyloadedcircularplates[40],to approx-imatetheradial(u)andtransverse(w)displacements:

𝑤=𝐶1𝑑(1𝜌2)2,

𝑢=𝑅𝜌(1𝜌)(𝐶2+𝐶3𝜌), (1)

where𝜌 =𝑅𝑟 isthenon-dimensionalradialcoordinateand,Ci,(i=1–3,)

aretheparameterstobecalculated.Next,theassociatedtotalpotential energyisevaluated.Thetotalpotentialenergyconsistsof fourterms namely,theelectrostaticpotential(Ue),thepotentialsassociatedwith

elasticdeformationduetothebending(Ub)andthestretching(Us)of

theplate,andthepotentialassociatedwiththemechanicalpressure(W):

𝑈=𝑈𝑒+𝑈𝑏+𝑈𝑠𝑊. (2)

Assumingtheparallel-platecapacitortheory,theelectrostaticpotential followsas[2,41]: 𝑈𝑒=−𝜋𝜖𝑉2𝑅2 ∫ 1 0 𝜌𝑑𝜌 𝑑+𝑤, (3)

where𝜖 istheelectricpermittivityofthedielectricbetweenthe elec-trodes.Noticethat thelocaldistance betweentheelectrodes (𝑑+𝑤) is employed to calculate the electrostatic potential. Thus, the non-uniformityoftheelectrostaticloadduetothedeflectionoftheflexible electrodeisincorporated.

Provided that themicro-plate is isotropic andhomogeneous, the bending-extensioncouplingstiffnessequalstozero.Therefore,the po-tentialsassociated withelasticdeformationcan be decoupled tothe bendingenergy(Ub)andthestretchingenergy(Us)[39]:

𝑈𝑏 = 𝜋𝐷𝑅2 ∫ 1 0 (( 𝜕2𝑤 𝜕𝜌2 )2 + ( 1 𝜌𝜕𝑤𝜕𝜌 )2 + ( 2𝜈 𝜌 𝜕𝑤𝜕𝜌𝜕 2𝑤 𝜕𝜌2 )) 𝜌𝑑𝜌, (4a) 𝑈𝑠 = (1𝜋𝐸ℎ𝜈2)∫ 1 0 (( 𝑢 𝜌 )2 + ( 𝜕𝑢 𝜕𝜌+ 1 2𝑅 ( 𝜕𝑤 𝜕𝜌 )2)2 +2𝜈𝑢 𝜌 ( 𝜕𝑢 𝜕𝜌+ 1 2𝑅 ( 𝜕𝑤 𝜕𝜌 )2)) 𝜌𝑑𝜌, (4b) where𝐷= 𝐸ℎ3

12(1−𝜈2)isthebendingstiffnessoftheflexibleplate.Notice thatnonlinearmembraneeffectshavebeenincorporatedintheelastic potential.

Astherotationsintheplateduetomechanicalandelectrostaticloads aresmall,thepressureisassumedtobealwaysperpendiculartothe un-deformedsurface.Therefore,thepotentialassociatedwiththepressure canbecalculatedas:

𝑊 =2𝜋𝑃𝑅2 ∫

1

0 𝑤𝜌𝑑𝜌.

(5) BysubstitutingEq.(1)intoEqs.(3)–(5),anapproximationforthetotal potentialenergycanbederivedanalytically.Sincetheanalytical expres-sionoftheintegralinEq.(3),dependsonthesignoftheparameterC1, weshallcalculatethetotalpotentialenergyandsolvetheproblemfor

C1<0andC1>0,separately: 𝑈 =−𝜖𝑉2𝜋𝑅 2 2𝑑 ( ϝ(𝐶1) ) −𝑃𝜋𝑅 2𝑑 3 𝐶1 + 32𝜋𝑑 2 3𝑅2 𝐷𝐶 2 1+𝐸ℎ𝑅 2𝜋 (1−𝜈2) ( 𝛼1𝐶22 +𝛼2𝐶32+𝛼3𝐶2𝐶3−𝛼4𝐶12𝐶2𝑑 2 𝑅2 +𝛼5𝐶3𝐶12 𝑑2 𝑅2+𝛼6𝐶 4 1 𝑑4 𝑅4 ) , (6)

where, 𝛼i is introduced for compactness, with 𝛼1=0.250, 𝛼2=0.117 𝛼3=0.300,𝛼4=0.068,𝛼5=0.055,𝛼6=0.305.Theseparametersare de-terminedbytheselectedbasis-functions,andrepresentthelinearand nonlinearstretchingstiffnesscomponentsinthestrainenergy. More-over, ϝ(𝐶1)= atanh√−𝐶1 √ −𝐶1 if𝐶1<0, (7a) ϝ(𝐶1)=1 if𝐶1=0, (7b) ϝ(𝐶1)= atan√𝐶1 √ 𝐶1 if𝐶1>0. (7c)

Noticethatϝ(x)isacontinuousandsmoothfunctionaroundzero. Next,thestationarypointsoftotalpotentialenergy(U)canbefoundby equatingitsderivativetotheunknownparameters(Ci)tozero,

𝜕𝑈 𝜕𝐶1 = 𝜕𝑈 𝜕𝐶2 = 𝜕𝑈 𝜕𝐶3 =0. (8)

SolvingEq.(8)forparametersC2andC3,leadstoarelationbetween thestretchingoftheelectrodeanditstransversedeflection,independent of theappliedloads,VandP.Asamatteroffact,C2andC3 canbe calculatedasafunctionofC1andsubstitutedintoEq.(6).Hence,the degreesoffreedomcanbereducedtoC1only,whileincorporatingthe in-planedeformation,aswell.Then,equilibriumrequires:

𝜕𝑈 𝜕𝐶1

=0, (9)

whichleadsto: −𝜖𝑉2𝜋𝑅 2 2𝑑 ( 1 2𝐶1(1+𝐶1) −ϝ(𝐶1) 2𝐶1 ) +64𝜋 3 ( 𝑑 𝑅) 2 𝐷 ( 𝐶1+0.488(𝑑) 2 𝐶3 1 ) −𝑃𝜋𝑅 3 3 𝑑 𝑅=0. (10)

ItisworthtonotethatinEq.(10),twosourcesofnonlinearityare in-corporated:(1)thecubictermduetothegeometricalnonlinearityand, (2)thenonlinearityofelectrostaticload.Duetothepresenceof non-linearity,multipleequilibriumstatesmightbefoundforoneloadcase (PandV).Therefore,theequilibriumpathmightexhibitoneoreven morebifurcations,atwhichsolutionbranchesmeet.Thestabilityofthe solutioncanbedefinedbythesignofthesecondderivativeofthetotal potentialenergywithrespecttotheonlydegreeoffreedomleft(C1). Infact,thesystemisstable,whenthesecondderivativeispositive,and unstable,ifitisnegative.

Thecriticalpoint(s)canbecalculatedbyequatingthesecond deriva-tiveofthetotalpotentialenergywithrespecttotheonlydegreeof free-domtozero.This,fromaphysicspointofview,meansthatthesystem wouldhavenostiffnessinthedirectionofthesubjecteddegreeof free-dom.Therefore,thesecondderivativeofthetotalpotentialenergyat thecriticalpointscanbecalculatedas:

𝜕2𝑈 𝜕𝐶12 =−𝜖𝑉2𝜋𝑅 2 2𝑑 ( − 5𝐶1+3 4(𝐶1+1)2𝐶12 +3ϝ(𝐶1) 4𝐶12 ) +64𝜋𝑑 2 3𝑅2 𝐷 ( 1+𝛼7( 𝑑 )2 𝐶12 ) =0. (11)

(5)

B. Sajadi et al. International Journal of Mechanical Sciences 138–139 (2018) 210–218

where𝛼7=1.464.

Recallthatatthecriticalpoints,thesystemisstillinequilibrium. Thus,Eqs.(10)and(11)shouldbesolvedsimultaneouslyinorderto calculatethecriticaldeflection(s)andvoltage(s).Thecriticalvalueof voltageanddeflectionaredenotedwithsuperscribecr.Withsuchan analyticalsolution,onecanaccuratelyapproximatethevoltagelevel(s) atwhichinstabilityoccursasafunctionofthematerialproperties,the geometricalparameters,andtheapplieddifferentialpressure.Itisworth notingthatsinceEqs.(10)and(11)arebothhighlynonlinearinC1, solvingtheseequationsnumericallyisrelativelydifficult.Therefore,as analternative,onecansimplysolvetheseequationsforPandVfora feasiblerangeofcritical𝐶𝑐𝑟

1 (e.g.-0.99to+1).Thisapproachwillresult inobtaining𝐶𝑐𝑟

1 asanumericfunctionofPandV.

3. Finiteelementanalysis

Toverifytheresultsoftheanalyticalestimation,a3Dcircular elec-trodewasmodeledusingfiniteelements(COMSOLMultiphysics[24]). Inthemodel,theelectrodeisconsideredtobeflexible,clampedonthe edgeanditwasdiscretizedwithsolidelementsusingfreetetrahedral meshing.Thematerialpropertiesandspecificationsofthemodel,that areusedfor thetestcasefor thissolution, are:𝐸=80GPa,𝜈 =0.2,

𝜖 =8.854× 10−12m−3kg−1s4A2and𝑑=2μm.Tostudytheeffectofthe dimensionsoftheelectrode,differentcombinationsofthicknessand ra-diushavebeenstudied.

The electrostatic anddifferential pressures have been applied as boundaryloadstotheplate,asPand𝜖𝑉2

2(𝑑+𝑤)2,wherewisthetransverse displacementfieldofthemicro-plateandVisavariablerepresentingthe voltage.Inthesolidmechanicsmodule,aglobalequationisintroduced todefinethevoltage(V)asafunctionoftheaveragedeflectionofthe plate.Hence,therequiredelectricpotentialtomaintaintheequilibrium oftheplateforaspecifiedaveragedeflection(w0)canbecalculated.

Thiscalculationisrepeatedoverarangeofaveragedeflectionsand asaresult,theequilibriumpathofthesystemisachieved.Itshouldbe noticedthatinthefiniteelementmodel,thesymmetryofthe displace-mentfieldisnotimposedtothesystem.However,thedisplacementfield appearstobeaxi-symmetricforboththeresultingstableandunstable solutionbranches.Theresults fromthismodelis comparedwiththe proposedanalyticalsolutioninthe“Resultsanddiscussion”.

4. Scalingeffects

InordertousetheformulationproposedinSection2fordesign pur-poses,oneshouldconsiderathicknessrangeatwhichtheelastic coeffi-cientsforbulkmaterialscanstillbeemployed.Otherwise,apropersize dependenttheoryshallbeemployedtocapturethescaleeffectsinthe formulation.

Here,webrieflydiscussthescalingeffectsontheobtained formu-lationusingastrongnonlocalplateformulation[38,42,43].Assuming thattheradiusoftheplateismuchlargerthanitsthickness,andthe stressderivativesinradialdirectionaresmall,wecanneglectthe non-localeffectsinin-planedirection.Therefore,thescalingmodification factorprovidedbyRef.[35]can beadoptedforimposingthescaling effectsonthebendingandstretchingrigiditiesoftheplateasafunction ofitsthickness: 𝜆 = 1 𝜂𝜋 ( exp(−𝜂2)−1)+erf(𝜂), (12) and, 𝛽 =erf(𝜂)1 𝜋 ( 2 𝜂exp(−𝜂2)+(3𝜂−1−2𝜂−3)(1−exp(−𝜂2)) ) . (13) whereerfistheerrorfunction,𝜂 = 𝑒

0𝑎ase0aisthemateriallengthscale, andtheobtained𝜆 and𝛽 arethemodificationfactorsforstretchingand bendingrigidities,respectively.Thesefactorsareobtainedbyusinga threedimensionalstrongnonlocalformulationandaGaussiannonlocal

kernelforaplateofwhichtheradiusismuchlargerthanthethickness. MoredetailsofthederivationofthesefactorscanbefoundinRef.[35]. As a consequenceof employing these factors, thestretching and bendingenergytermsinEqs.(4b)and(4a)canbemodified. Follow-ingtheprocedureasdiscussedinSection2resultsinequilibriumand instabilityconditions: 𝜕𝑈 𝜕𝐶1 =−𝜖𝑉2𝜋𝑅 2 2𝑑 ( 1 2𝐶1(1+𝐶1) −ϝ(𝐶1) 2𝐶1 ) + 64𝜋 3 ( 𝑑 𝑅 )2 𝐷 ( 𝜆𝐶1+0.488𝛽( 𝑑 )2 𝐶3 1 ) −𝑃𝜋𝑅 3 3 𝑑 𝑅=0. (14) 𝜕2𝑈 𝜕𝐶12 =−𝜖𝑉2𝜋𝑅 2 2𝑑 ( − 5𝐶1+3 4(𝐶1+1)2𝐶12 +3ϝ(𝐶1) 4𝐶12 ) +64𝜋𝑑 2 3𝑅2 𝐷 ( 𝜆 +𝛼7𝛽( 𝑑 )2 𝐶12 ) =0. (15)

In orderto obtainthesizedependent criticaldeflection(s) and volt-age(s),Eqs.(14)and(15)shouldbesolvedsimultaneously.Inthenext section,wewillbrieflydiscusstheeffectsofusingtheproposed formu-lation,andcapturingthescalingeffects,onthestabilityassessmentofa micro-platewhilesubjectedtodifferentialandelectrostaticpressures. 5. Resultsanddiscussion

Inthissection,theinfluenceofauniformpressureonthecritical de-flectionandvoltageofaparallelplatecapacitorwithacircularflexible electrode,willbestudied.Theresultsoftheproposedanalytical approx-imationwillbediscussedandcomparedwithfiniteelementsimulations. Forthispurpose,normalizedloadparametersareintroducedas:

normalizedvoltage:𝑉=𝑉 √ 12𝜖𝑅4(1𝜈2) 𝑑6𝐸 , normalizedpressure:𝑃=𝑃1−𝜈2 𝐸 . (16)

Inaddition,themaximumdeflectionoftheplateisnormalizedwiththe initialgapsized.

First,considerthecasewithnopressure(𝑃=0).Thecorresponding deflectiondeformationismodeledasexpressedbyEq.(1).The maxi-mumdeflectionoccursatthemidpoint(𝜌 =0),andisequaltoC1d.

Fig.3showsthechangeofthemidpointdeflectionasafunctionof theappliedvoltage.Thepresentedcurvesaredeterminedanalytically fordifferentthicknessesoftheflexibleelectrode.Theresultsofthe fi-niteelementsimulationsarealsoshowninthisfigure,andascanbe observed,theyconfirmtheaccuracyoftheapproximateanalytical so-lution.Theerrorbetweenthesetwosolutionsinworstcase(𝑑=0.1) occursatthelimitpointandislessthan8%.Infact,theaccuracyofthe analyticalsolutionisbetterforthickerelectrodes.

AsFig.3indicates,thedeflectionofthemidpointoftheflexible elec-trodeincreasesmonotonicallywiththeappliedvoltageuntilthesystem reachesalimitpointorsaddle-nodebifurcation.Atthiscriticalpoint, thesystembecomesunstable,andifthevoltageisincreased,itleadsto pull-in.

Itcan beobservedfromFig.3thatthecriticaldefectiondepends onthethicknessofthestructure.Infact,solvingEqs.(10)and(11)for

𝑃 =0,resultsinacriticaldeflection(𝑤𝑐𝑟

𝑑 =𝐶𝑐𝑟1)whichisonlyafunction ofh/d.ThisfunctionisshowninFig.4.Thecriticaldeflectioncalculated withtheproposedmethodvariesbetween51–71%oftheinitialgap be-tweentheelectrodesandisalwayshigherthan1/3oftheinitialgap whichiscalculatedwithasimple1Dspringmodel.This,asmentioned before,is becausemodelingtheelasticrestoringforceswith alinear springdoesnotaccountforthenon-uniformelectrostaticforceonthe 213

(6)

Fig.3.Theequilibriumpathofthemidpointofthecircularflexibleelectrode fordifferentthicknesses,andradius𝑅=100μm.—— stableequilibrium,--- -unstableequilibrium,and finiteelementsimulations(COMSOL Multi-physics).

Fig.4. Thenormalizedcriticaldeflectionatthemidpointofacircularplate withradius𝑅=100μm,asafunctionofitsnormalizedthicknessh/d.

plateafterdeflection,and,thenonlinearstiffeningeffectof the flexi-bleelectrode.Thelattereffectismorepronouncedforthinnerplates, causing𝑤𝑐𝑟

𝑑 tobelarger.

Thecriticalvoltageofthesystem,dependsonthematerial proper-tiesandthedimensionsofthecapacitor.SolvingEqs.(10)and(11)for

𝑃=0showsthatthepull-involtageisproportionalto1/R2,whichis inagreementwiththeexperimentalresultspresentedby[44].The nor-malizedcriticalvoltageasdefinedusingEq.(16),onlydependsonthe normalizedthickness,seeFig.5.Forcomparison,thefiniteelement re-sultsandtheresultsofasimplesolutionbasedon1/3-air-gaptheory withuniformelectrostaticload(asexplainedin[12]),arealsoshown. Itisworthtonotethattheresultspresentedinthisgraphareclosely sim-ilar(5%different)totheclassicallimitprovidedbyAnsarietal.[20]. Inthelatter,theauthorshaveemployedcouplestressandstrain gradi-entelasticitytheorytoobtainthesizedependentpull-incharacteristics foramicro-platewith𝑑=0.83.However,sincethegeometric nonlin-earityisnotconsideredinthementionedarticle,theobtainedcritical deflectionsaresignificantlydifferent.

Forthinnerplateswherethenonlinearstiffeningeffectismore sig-nificant,thesimple1Dlinearspringmodel(1/3-air-gaprule)predicts asignificantlylowercriticalvoltageascomparedtothefiniteelement solution;while,theapproximateanalyticalsolutionpresentedherecan

Fig.5. Thenormalizedpull-involtageofacircularplatewithradius𝑅=100 μm,asafunctionofitsnormalizedthicknessh/dcalculatedwithdifferent meth-ods.

Fig.6. Themidpointdeflectionofthecircularflexibleelectrodewiththickness

=0.2μmandradius𝑅=100μmasafunctionofappliedvoltage,for differ-entialpressuresindifferentdirections.—— stableequilibrium,----unstable equilibrium.

predictverypreciseresults.However,althoughthecriticalvoltage cal-culatedwiththe1Dlinearspringmodelisinaccurateforthecircular membranes,itprovidesamoreconservativeapproximationforthe crit-icaldeflection.

Next,considerthecasewhereadifferentialpressure,positivein op-posingdirectionoftheelectrostaticload,isapplied(P′≠ 0).Thistime, twoloadparameters,i.e.pressureandelectrostaticloadareinvolved inthestabilityanalysis.Inordertocalculatethelimitvoltage,we pre-servedthepressureandconsiderthevoltageasthevaryingload param-eter.Themidpointdeflectionoftheelectrodeasafunctionofapplied voltageisshownforthreedifferentdifferentialpressuresinFig.6.

Infact,pressurizingtheflexibleelectrodecansignificantlyaffectthe shapeoftheequilibriumpath:firstofall,amechanicalpressureleads toaninitialdeflectionintheplatewhen𝑉=0.Thisinitialdeflection dependsontheamountanddirectionoftheappliedpressure.Second, adifferentialpressuremightinfluencethepositionand/ornumberof limitpoints.

AsFig.6shows,whenanegative(downwardinFig.2)pressureis applied,thepull-involtagedropsandthecriticaldeflectionslightly in-creases.Thisisbecauseanegativedifferentialpressuredecreasesthe av-erageinitialdistancebetweentheelectrodes.Though,theoverallshape oftheequilibriumpathremainsthesame.

(7)

B. Sajadi et al. International Journal of Mechanical Sciences 138–139 (2018) 210–218

Fig.7.Themidpointdeflectionofthecircularflexibleelectrodewiththickness

=0.2μmandradius𝑅=100μmasafunctionofappliedvoltage,when𝑃=

2× 10−9.

Forpositivepressures,however,theshapeoftheequilibriumpath mightdiffersignificantly(see𝑃=2× 10−9inFig.6).Insuchacase,the systemexhibitsoneorthreesaddle-nodebifurcationsinitsequilibrium path[39].Onelimitpoint(PointCinFig.6)isclosetothelimitpointin anunloadedsystem,i.e.𝑃=0.Only,duetotheinitialdeflectionofthe plateandtheassociatedadditionalgeometricalstiffness,thislimitpoint occursataslightly differentvoltageanddeflection.Werefertothis criticalpointasthe“ultimate” limitpoint.Anotherlimitpointoccurs earlierwhenthedeflectionoftheplateisstillinthepositivedirection (PointAinFig.6).Weshallrefertothispointasthe“primary” limit point.Theotherlimitpointisalocalminimumintheappliedvoltage (PointB).Ifwerampupthevoltageontheupperstablebrancharound PointA,or,rampdownthevoltageonthelowerstablebrancharound PointB,thesystemmightjump fromonestableconfigurationtothe other.

Similarbi-stabilitybehaviorhasbeenobservedforshallowarched structures[45].Thesestructuresmayexhibittwodifferentstable con-figurationsunderthesameappliedelectrostaticloadandtheycansnap fromonetotheother.Fortheproblemathand,thepressureiscausing theinitiallyflatflexibleelectrodetobehavelikeanarchedstructure.

Inordertoverifytheanalyticalapproximate,theequilibriumpath calculatedbythefiniteelementmodelisprovidedinFig.7.Theresults ofthenumericalsolutionconfirmtheaccuracyoftheapproximate an-alyticalsolution.Theerrorbetweenthesetwosolutionsappearstobe themostattheultimatelimitpoint(approximately4%).Similartothe caseofnopressure,theaccuracyoftheanalyticalsolutionisbetterfor thickerelectrodes.

Afterthesystempassestheprimarylimitpoint,thepost-instability behaviorstronglydependsontheappliedpressure.Fig.8showsthe mid-pointdeflectionasafunctionofappliedvoltage,fordifferentpositive pressures.Itcanbeobservedthattheprimarylimitpointcanonlybe noticedifthepressureishigherthanacertainthreshold.Iftheapplied pressureistoosmall(see𝑃=0.6× 10−9inFig.8),then,theshapeof theequilibriumpathchangesslightly,andtheprimaryinstabilityisnot observed.Forhigherpressure,though,theprimarylimitpointexists.

Formoderatepressures,theprimarylimitvoltageislowerthanthe ultimatelimitvoltage.Therefore,theinstabilityleadstothesnapping behaviordiscussedbefore(see𝑃=2.4× 10−9inFig.8).Forlarger pres-sures,theprimarycriticalvoltageexceedstheultimatepull-involtage andthus,asmallperturbationmayleadtopull-inoftheflexible elec-trode(see𝑃=4.8× 10−9).Forlargerpressures,theso-calledsecondary andultimatelimitpointstotallyvanish.

Fig.8. Themidpointdeflectionofthecircularflexibleelectrodewiththickness

=0.2μmandradius𝑅=100μmasafunctionofappliedvoltage,fordifferent positivepressures.—— stableequilibrium,----unstableequilibrium.

Fig.9. Thecriticalvoltage(s)foratestcasewiththickness=0.2μmandradius

𝑅=100μm,asafunctionoftheappliedmechanicalpressure.

Ifduringtheelectrostaticloading,asnap-troughoccursfromthe up-perstablebranchtothelowerbranch(e.g.for𝑃=2.4× 10−9inFig.8), theunloadingofthesystemcanalsoleadtoasnap-backfromthelower stablebranchtotheupperone.However,thesnapbackoccursatalower voltageatthesecondarylimitpoint.Thislimitpointisonlyobserved forthepressurerangethatbothprimaryandultimatelimitpointsare present.

Clearly,thecriticalvoltage(s)andlimitdeflection(s)dependonthe appliedmechanicalpressure.Thevariationofthelimitvoltage(s)versus theappliedmechanicalpressureisshowninFig.9.Ascanbeseen,the resultsofanalyticalandfiniteelementsimulationsareingood agree-ment,whichagaindemonstratestheaccuracyoftheapproximate solu-tion.

InFig.9,fornegativepressures,only onelimitpointisobserved whichisassociatedwiththeultimatelimitpointorthepull-inofthe flexibleelectrode.Inthisregion(P<0),thereisanear-linearrelation betweenthepull-involtageandtheappliedpressure.Thepull-involtage monotonicallydecreaseswithincreasingtheamplitudeofthepressure innegative(downward)direction.

Forpositivepressures,threedifferentregionscanbeobserved.First, forverysmallpressures,onlytheultimatelimitpointisobserved.This is associatedwiththelimitpointfor 𝑃=0.6× 10−9 inFig.8. Then, thereisaregioninwhichthesystemexhibitsallthreelimitpoints.The 215

(8)

Fig.10. Thecriticaldeflection(s)ofthetestcasewiththickness=0.2μmand radius𝑅=100μm,asafunctionoftheappliedmechanicalpressure.

examplesof𝑃=2.4× 10−9,4.8× 10−9and7.2× 10−9inFig.8belongto thisregion.Dependingonthevalueoftheappliedpressure,theprimary limitvoltagemightbelessormorethantheultimatelimitvoltage.This definesthepost-instabilitybehaviorofthesystem.Thefinalregionin

Fig.9isthepressurerangeatwhichagainthesystemexhibitsonlyone limitpoint,whichisassociatedwiththeso-calledprimarylimitpoint. Theexampleof𝑃=9.6× 10−9inFig.8belongstothisregion.

Fig.10showshowthecriticaldeflectionsvarywiththeapplied me-chanicalpressure.Itcanbeobservedthattheprimarycriticaldeflection variesbetween0–50%oftheinitialgapsizeinthepositivedirection.At theultimatepull-inpoint,thedeflectionoftheplateis65–73%ofthe initialgapsize.

Thesnappingoftheflatflexibleelectrode,whensweepingthe ap-pliedvoltageupanddown,isaninterestingphenomenonthatcouldbe usedinelectrostaticallydrivenswitches,sensorsandactuators. How-ever,asexplained,onlyacertainrangeofpressureallowsforexistence ofthisbehavior.Therangeofpressuresallowingforsnappingmainly dependsonthemechanicalpropertiesoftheflexibleelectrodeandits dimensions(thicknessandradius).

Itshould be noticed thatsnap-through is adynamic processand whentheflexibleplateissnappingfromanunstabletoastablestate,it hasnonzerovelocity.However,sincetheloadsystemisconservative,no dynamicconsiderationisrequiredtoassessstability.Instead,thetotal potentialenergyisagoodcriteriatoensurethatthedynamicprocess doesordoesnotleadtofailure:Ifthetotalpotentialenergyattheprimary limitpointexceedsthepotentialattheultimatelimit point,theexceeding energyappearsaskineticenergycausinganovershoottooccur.

Fig.11illustratestherequiredcombinationofdifferentialpressure andthicknessoftheplate,inordertoobservethesnap-through phenom-ena.ThisgraphisdeterminedusingbothanalyticalandFEMsolutions forthetestcaseat hand.Thegoodagreementbetweenthesolutions againdemonstratestheaccuracyoftheanalyticalapproximate.

AsFig.11shows,ifthepressureistoolow,theprimarylimitpoint isnotobserved;andifthepressureistoohigh,thentheprimarylimit voltageexceedstheultimatelimit voltageandthesystemwouldfail afterreachingthefirstinstability.

Ifthe pressure is highenough, the ultimate andsecondary limit pointsvanishandsnap-backbehaviorwillnotbeobservedeither. How-ever,onecanconcludefromFigs.8and9thatthepressurerangefor havingsnap-throughinloadingisasubsetoftherangeforhavingthe snap-backinunloading.Infact,ifthesnappinginloadingisobserved, theoccurrenceofsnap-backinunloadingiscertain.

Fig.12showstheadmissiblecombinationsoftheappliedpressure andthicknessforexistenceofsnapping,fordifferentradiiofthe

elec-Fig.11. Thepressurerangeinordertotriggertheprimarylimitpointandthe snap-through,asafunctionofthicknessoftheflexibleelectrode,with𝑅=100 μm.

Fig.12. Thepressurerangeinordertotriggertheprimarylimitpointandthe snap-through,asafunctionofthicknessoftheflexibleelectrode,fordifferent radii.

trode.Ascanbeobservedforsmallerradiioftheelectrode(forexample,

𝑅𝑑=40inFig.12) awiderangeof pressuresmightresultin snap-throughbehavior.However,forlargerelectrodestherangeof admissi-blepressuresdrops.Itisinterestingthattherequiredthickness,resulting insnap-through,isalwayslessthan33%ofthegapsize.Forathicker electrode,theprimaryinstability,ifobserved,leadstodirectpull-in.

Althoughthesnap-through hasbeen illustratedforconstant pres-suresandavaryingvoltage,asimilarbehaviorwillbeobservedifthe voltageispreservedandthepressureisvaried.Themidpointdeflection oftheelectrodeasafunctionoftheappliedpressure,fordifferent volt-ages,isprovidedinFig.13.ItcanbeobservedfromFig.13thatforany voltagelargerthanzero,atleastonelimitpointexistsinthe equilib-riumpath(e.g.PointAforV’=0.45).However,forlargervoltages,two otherlimitpointsmightappear.Forexample,inFig.13,inthecurve correspondingtoV’=0.45,ifwevarythepressurearoundPointBorC, thesystemsnapsfromapositivetoanegativedeflection,orviceversa. Forverylargevoltages,ontheotherhand,varyingthepressureoverthe limitpointsleadstopull-inofthesystem.

(9)

B. Sajadi et al. International Journal of Mechanical Sciences 138–139 (2018) 210–218

Fig.13. Themidpointdeflectionofthecircularflexibleelectrodewiththickness

=0.2μmandradius𝑅=100μmasafunctionoftheappliedpressure.—— stableequilibrium,----unstableequilibrium.

Fig.14. Themidpointdeflectionofthecircularflexibleelectrodeobtainedby nonlocalcontinuumtheorywithdifferentmateriallengthscalesasafunctionof appliedvoltage,for=0.2μm,𝑅=100μm,and𝑃=2× 10−9.

Itisworthtopointoutthatthecomplianceofthesystemtoa differ-entialpressureisminimumincasenovoltageisappliedtothecapacitor. Withavoltageincreasethestiffnessofthesystemdrops,andfinallyat acriticalvoltage,thesystemallowsforsnap-throughbehavior.When snap-throughoccurs,thesystemhaszerostiffness.Thesnap-through andbi-stablebehaviornoticedforpressurizedclampedelectrodes,can beemployedinsensingandactuationapplications.Thisphenomenon canbenefitfromhighsensitivityduetolowcompliance,androbustness andsimplicityofpull-involtagemeasurements.

Finally,itshouldbenotedthatthehypotheticalpropertiesthatwere utilizedforillustratingtheresultsareclosetothoseofgoldoraluminum thinfilms.Forthesetwomaterials,scaleeffectsarenotsignificantatthe thicknessesusedinthepresentstudy[26–29].Therefore,providedthat werestrictthematerialtoaluminumandgoldorothersimilarly be-havingmaterials,theclassicalcontinuumtheorycan beemployedat thediscussedlengthscales.However,forsmallerlengthscales,a size-dependentcontinuumtheoryshallbeutilized.Here,webrieflyshowthe resultsofusinganonlocalplatetheorytogetherwiththeproposed for-mulationtocapturetheeffectsofscalingonassessmentofthestability ofthemicro-plate.Fig.14showshowthepredictedsizedependent de-flectionvarieswiththeappliedvoltage.Forcomparisontheresultsfor differentmateriallengthscalesfromclassicallimit(𝑒0𝑎=0)tothe

limitof applicationof thenonlocaltheory(𝑒0𝑎=1)areillustrated inthisgraph.Itcanbeobservedthatthethreelimitpoints(primary, secondaryandultimatelimitpoints)stillexistintheequilibriumpath ofthemicro-plateobtainedbynon-localtheory.Thisfigureshowsthat whenthethicknessofthemicro-plategetscomparabletothematerial lengthscale,(i)theinitialdeflectionincreases,(ii)thecriticalvoltages decrease,and(iii)thecriticaldeflectionsslightlyincrease.Itis note-worthythattheseresultsarequalitativelyinagreementwiththeresults providedbyRef.[30]whichinvestigatesthesize-dependentdynamic pull-inanalysisofmicro-platesusingmodifiedcouplestresstheory. 6. Conclusions

Inthispaper,ananalyticalmodelwasproposedforacircularflexible electrodeinaparallelplatecapacitor,whileitisloadedwitha differen-tialpressure.Usingthisapproximatesolution,astabilityanalysiswas performedontheeffectofpressureonthecriticalvoltageand deflec-tion.Intheproposedmodel,thegeometricalnon-linearityoftheflexible electrodewastakenintoaccount.

Theresultssuggestthatapressurecantriggeradditionallimitpoints andanunstablesolutionbranchtooccur.Thepost-instabilitybehavior afterreachingthefirstlimitpoint,dependsonloadparameters, thick-nessandradiusoftheelectrodeandtheairgap.Aftertheprimarylimit point,thesystemmightsnaptoanewstableconfiguration,or,exhibit pull-in.

Itisworthtomentionherethatwhensnap-throughoccurs,the sys-temhasverysmallstiffness,andismechanicallyverycompliant.This conditionmakes thesystemverysuitable forsensingapplications. In particular,thesensitivityofthelimitvoltages tothepressurecanbe employedtomeasurethepressure.However,westressherethateven withoutobservationofinstability,thecombinationofpositivepressure andelectrostaticloadontheflexibleelectroderesultsinahigh compli-anceofthesystem,whichmaybeveryappealingforsensing applica-tions.

Moreover,tocapturethesizedependencyofstabilityofamicro-plate whileloadedwithelectrostaticanddifferentialpressures,aformulation inframeworkofnonlocalcontinuumtheoryhasbeensuggested.This formulationincludesthescalingeffectsofthethicknessofthe micro-plateandhence,itissuitableforbeingusedforsmallerlengthscales wheretheapplicationofclassicalcontinuumtheoryislimited.The re-sultsofthesize-dependentmodelexhibitsimilaraspectsofthe mechan-icalbehavioroftheplatesuchastheadditionallimitpointsand snap-throughbehavior.Consequently,thedemonstratedbehaviorcouldserve asabasisfornovelmicroaswellasnanoelectromechanicalsystems. Usingtheprimaryinstabilityofpressurizedelectrodesinsensingor actu-ationcanbenefitfromtherobustnessandsimplicityofpull-in measure-ments,andinaddition,itcanbenefitfromthesnap-throughbehavior whichpreventsthesystemfromfailure.

Acknowledgment

ThisworkissupportedbyNanoNextNL,amicroandnanotechnology consortiumoftheGovernmentoftheNetherlandsand130partners. References

[1] Krylov S, Ilic BR, Schreiber D, Seretensky S, Craighead H. J Micromech Microeng 2008;18(5):055026. doi: 10.1088/0960-1317/18/5/055026 .

[2] Zhang W-M, Yan H, Peng Z-K, Meng G. Sens Actuat A 2014;214:187–218. doi: 10.1016/j.sna.2014.04.025 .

[3] Vogl GW, Nayfeh AH. A reduced-order model for electrically actuated clamped cir- cular plates. In: ASME 2003 international design engineering technical conferences and computers and information in engineering conference. American Society of Me- chanical Engineers; 2003. p. 1867–74. doi: 10.1088/0960-1317/15/4/002 .

[4] Khater M . Use of instabilities in electrostatic micro-electro-mechanical systems for actuation and sensing; 2011. Thesis .

[5] Smyth KM. Design and modeling of a PZT thin film based piezoelec- tric micromachined ultrasonic transducer (pmut); 2012. Thesis . URL:

http://hdl.handle.net/1721.1/74942 . 217

(10)

[6] Chuang W-C, Lee H-L, Chang P-Z, Hu Y-C. Sensors 2010;10(6):6149–71. doi: 10.3390/s100606149 .

[7] Elata D, Abu-Salih S. J Micromech Microeng 2005;15(5):921. doi: 10.1088/0960-1317/15/5/004 .

[8] Sajadi B., Alijani F., Goosen H., van Keulen F.. Static and dynamic pull-in of electri- cally actuated circular micro-membranes. In: ASME 2016 international mechanical engineering congress and exposition. American Society of Mechanical Engineers; p. V04AT05A030–V04AT05A030. 10.1115/IMECE2016-67336

[9] Liao L-D, Chao PC, Huang C-W, Chiu C-W. J Micromech Microeng 2010;20(2):025013. doi: 10.1088/0960-1317/20/2/025013 .

[10] Sadeghian H, Yang C-K, Goosen H, Van Der Drift PJF, Bossche A, French PJF, et al. Appl Phys Lett 2009;94(22):221903–221903–3. doi: 10.1063/1.3148774 .

[11] Sadeghian H, Goosen H, Bossche A, van Keulen F. Thin Solid Films 2010;518(17):5018–21. doi: 10.1016/j.tsf.2010.03.036 .

[12] Lardiès J, Berthillier M, Bellaredj ML. Analytical investigation of the pull-in voltage in capacitive mechanical sensors. SPIE microtechnologies. International Society for Optics and Photonics; 2011. doi: 10.1117/12.887460 . 80661N–80661N–10. [13] Sharma A, George PJ. Sens Actuat A 2008;141(2):376–82.

doi: 10.1016/j.sna.2007.10.036 .

[14] Osterberg PM, Senturia SD. M-Test: a test chip for mems material property mea- surement using electrostatically actuated test structures. Microelectromech Syst J 1997;6(2):107–18. doi: 10.1109/84.585788 .

[15] Cheng J, Zhe J, Wu X, Farmer KR, Modi V, Frechette L. Analytical and fem simulation pull-in study on deformable electrostatic micro actuators. In: Technical proc. of the international conf on modeling and simulation of microsystems, MSM; 2002. p. 298– 301 . ISBN 0-9708275-7-1, URL: http://www.nsti.org/procs/MSM2002/5/W51.21 . [16] Duan G, Wan K-t. Int J Mech Sci 2010;52(9):1158–66.

doi: 10.1016/j.ijmecsci.2010.04.005 .

[17] Sadeghian H, Yang C-K, Goosen H, Bossche A, French PJF, Van Keulen F. Sens Actuat A 2010;162(2):220–4. doi: 10.1016/j.sna.2010.01.012 .

[18] Sharma J, Dasgupta A. J Micromech Microeng 2009;19(11):115021. doi: 10.1088/0960-1317/19/11/115021 .

[19] Krylov S, Seretensky S. J Micromech Microeng 2006;16(7):1382. doi: 10.1088/0960-1317/16/7/036 .

[20] Ansari R, Gholami R, Mohammadi V, Shojaei MF. J Comput Nonlinear Dyn 2013;8(2):021015. doi: 10.1115/1.4007358 .

[21] Sajadi B, Goosen J, van Keulen F. Appl Phys Lett 2017;111(12):124101–1–5. doi: 10.1063/1.5003223 .

[22] Sajadi B , Alijani F , Goosen H , van Keulen F . Nonlinear Dyn 2017:1–14 .

[23] Nabian A, Rezazadeh G, Haddad-derafshi M, Tahmasebi A. Microsyst Technol 2008;14(2):235–40. doi: 10.1007/s00542-007-0425-y .

[24] Comsol multiphysics user guide (version 4.3 a). 2012. URL: www.comsol.nl .

[25] Sadeghian H, Goosen H, Bossche A, Thijsse B, van Keulen F. On the size- dependent elasticity of silicon nanocantilevers: impact of defects. J Phys D Appl Phys 2011;44(7):072001. doi: 10.1088/0022-3727/44/7/072001 .

[26] Espinosa H , Prorok B . J Mater Sci 2003;38(20):4125–8 .

[27] Oh H-J, Kawase S, Hanasaki I, Isono Y. Jpn J Appl Phys 2014;53(2):027201. doi: 10.7567/JJAP.53.027201 .

[28] Haque M , Saif M . Proc Natl Acad Sci USA 2004;101(17):6335–40 .

[29] Haque M, Saif MA. Scr Mater 2002;47(12):863–7. doi: 10.1016/S1359-6462(02)00306-8 .

[30] Askari AR , Tahani M . Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Physica E 2017;86:262–74 .

[31] Asghari M. Int J Eng Sci 2012;51:292–309. doi: 10.1016/j.ijengsci.2011.08.013 .

[32] Rahaeifard M , Kahrobaiyan M , Asghari M , Ahmadian M . Sens Actuat A 2011;171(2):370–4 .

[33] Asghari M, Kahrobaiyan M, Ahmadian M. Int J Eng Sci 2010;48(12):1749–61. doi: 10.1016/j.ijengsci.2010.09.025 .

[34] Asghari M, Rahaeifard M, Kahrobaiyan M, Ahmadian M. Mater Des 2011;32(3):1435–43. doi: 10.1016/j.matdes.2010.08.046 .

[35] Sajadi B, Goosen H, van Keulen F. Int J Solids Struct 2017. doi: 10.1016/j.ijsolstr.2017.03.010 .

[36] Asghari M, Ahmadian M, Kahrobaiyan M, Rahaeifard M. Mater Des 2010;31(5):2324–9. doi: 10.1016/j.matdes.2009.12.006 .

[37] Zhao M , Slaughter WS , Li M , Mao SX . Acta Mater 2003;51(15):4461–9 .

[38] Eringen AC. Nonlocal continuum field theories. Springer; 2002. doi: 10.1007/b97697 . ISBN 0387952756

[39] Amabili M. Nonlinear vibrations and stability of shells and plates. Cambridge Uni- versity Press; 2008. doi: 10.1017/CBO9780511619694 . ISBN 1139469029 [40] Timoshenko S, Woinowsky-Krieger S, Woinowsky S. Theory

of plates and shells, 2. McGraw-hill New York; 1959 . URL:

https://books.google.nl/books?id = rTQFAAAAMAAJ .

[41] Sajadi B , Alijani F , Davidovikj D , Steeneken PG , Goosen H , van Keulen F . J Appl Phys 2017;in press .

[42] Lu P, Zhang P, Lee H, Wang C, Reddy J. Proc R Soc A 2007;463(2088):3225–40. doi: 10.1098/rspa.2007.1903 .

[43] Eringen AC. J Appl Phys 1983;54(9):4703–10. doi: 10.1063/1.332803 .

[44] Osterberg PM. Electrostatically actuated microelectromechanical test structures for material property measurement; 1995. Thesis . URL:

http://hdl.handle.net/1721.1/11097 .

[45] Das K, Batra RC. Smart Mater Struct 2009;18(11):115008. doi: 10.1088/0964-1726/18/11/115008 . URL: http://iopscience.iop.org/0964- 1726/18/11/115008 .

Cytaty

Powiązane dokumenty

To characterize sequence- and function-dependent failure behav- iors existing in many real-life systems, Dugan et al [5, 6] introduced several new dynamic gates, such as

Integrated vehicle dynamics control us- ing active brake, steering and suspension systems, Interna- tional Journal of Vehicle Design 36(1): 1–12..

Though we have (13) for all but finitely many k by Mahler’s result, it seems difficult to prove effective bounds approaching the above in strength (see Baker and Coates [1] for the

The essential part of the paper is Section 3 in which we give a formula allowing to compute the scalar part of a given Clifford number.. As an application of this formula, we are

Following the spectacular result of Drury (“the union of two Sidon sets is a Sidon set”), a lot of improvements were achieved in the 70’s about such sets Λ.. Rider, in

(5 points) In a group of 25 high school students, 14 students like maths and 9 students like physics.. The number of students who like both subjects is half the number of students

Актуальной является разработка метода прогнозирования усталостной долговечности элементов конструкций с учетом предварительного обжатия материала в

W tym miejscu pojawia sie˛ jednak koniecznos´c´ udzielenia odpowiedzi na pytanie, czy obraz nasciturusa utrwalony na monitorze komputera widziany przez lekarza w obrazie USG