• Nie Znaleziono Wyników

On the motions of an ocean car ferry. Part I: Model tests in oblique waves and theoretical calculations

N/A
N/A
Protected

Academic year: 2021

Share "On the motions of an ocean car ferry. Part I: Model tests in oblique waves and theoretical calculations"

Copied!
19
0
0

Pełen tekst

(1)

A47

9 -0)31/11y1tfiE:RitLifFA

(%

1 *R)

EIIIIMRzY

111 I% .L.*

41 A =I*

Zc

a.

'fAac.

On the Motions of an Ocean Car Ferry

(Part I)

Model Tests in Oblique Waves and Theoretical Calculations

By

Akihiro OGAWA, Koji NONAKA,

Masahiko Mom and Toshihiko SARUTA

Summary

Large car ferry boats of a long distance service around Japanese adjacent seas are

rapidly increasing in number, and because of their special ship forms, their performances are needed to be investigated for the purpose of keeping their safety operations.

The paper presents a free running model test result in regular oblique waves at the Mitaka No. 1 Ship Model Experiment Basin in comparison with the calculated result by strip methods, and a towed free roll test at the Mitaka No. 2 Ship Model Experiment

Basin for obtaining the roll damping coefficients, with a 5 m model of "Shiretoko-maru" (in service between Tokyo and Tomakomai, about 1,000 km).

In the free running test, pitch, roll, yaw, yaw rate, rudder angle and bow accelerations

(vertical, transverse and longitudinal) were measured. Theoretical calculations on the above motions and accelerations (except longitudinal one) were carried out by strip me-thods separately with pitch and heave, and with roll, yaw and sway, to compare with

the experiments. The agreement between experiments and calculations were proved to

be good on the whole.

In some special wave conditions in the experiments, when the encouter period was

nearly

half of the natural period of

roll, unstable roll occurred. During the

unsta-ble roll of large amplitude, irregular bow accelerations were observed. From the

analy-sis of the acceleration, it seemed that a big wave impulsive force was given to the hull

in the vicinity of bow.

On pitch and roll amplitudes, the nonlinearity to wave heights were found to be

small.

* 310fIC$ JffsVal-d- A-A491P 6 /-] 28

( 343 )

(2)

-( 344)

2-

VATaxilf xoaa

2.1 Still

2.2 VA oNti

2.3 mx-t-vx

3. A7100410611u)ni/4.,

ifrag

3.1 ZR4 1-A 3.2 Pri-PPA 3.3 ffi 15 3.4 ZgAMAR.r.),- . 3. 4. 1

-Jk-)k

3. 4. 2 3. 4. 3 3, 4. 4 MR_E-FiNA 3. 4. 5 3. 4.6 3..4. 7

all]

3. 4. 8 Ag/J5A 3. 4.9,

ArtigT

4. 4,=1710tic d- V-L *1

4..1 ZW1a

4.2 ffliORaul--.10,4A-4. 2. 1 i'AMM-AmAk 4. 2. 2 PAMirritffak 4.23 1T,Atft 4.3 5;

tt,r,

to-1. M 7 = -411,LAKfit_h_cdopt]Vsg, L tMli'VioDIANfia GDWW:S4.14

CMciflo;t1.6075&Elf-,topT,4,M-egA

0Eitit - 7 = 9 -b&

iI,7,YA off

)Tric2 --i-UoliMcf-* 5 131±Itilt

ablAlci*-5 411 ?10)111, <

4-E.T.oTZ,

- -

Wit). ot,

LE-c.,400-1-M411-10),U-ft ic 1: irtAgosov.

ntSRT,IV-4-D 0)75& t,,0

tz&51mmtAmeNcivK-4--z 7bs0* 11, JQII.J

t M-151,1Eb&nMoVI--5-4

tcts--,-a,

4')J---e

c M-47 9

--comm±owlvt,1 aglidc

-4- 6 LL 75,; t OD 116--RVIJabiZZIEI tc <

<.

*65t-- 6cL75,1;,, -3A1501/.1.,0 Lopizopq

7J04; ic*.

A*2411-E24it,

7,3f -au.

7 4:173/ 4 -ii"-=-30DirCtl-MRVIii 5 tst*RtskiiEVe::#7-4 M.M it ts751-- k.t0T, 113)&4M-Ba.)''ililft_hODRirz VOA a L'o) maigzcve 41. z

b& t,,LE,ft OT, --E-0)52.-NyfigicN

ta:

bs

z

ts -E

tt. WArlaz..' it Mil

--NAgMoD)c. 6

Ltstdi;,

tsiaX0

Vt3ct

7:p 44; b,o-)A e 5 75,, MgVE-1.003A, 1-1fflViL7REEMMoDitt0E6-ct

26, Mattg

ucaisl-McDVE-, -J73/-0Mhts1311N-4,

< (DIQUAt

;416.

aglitioCi*al)J4ccrA

I-9 7"ittc..t

2-1*7V)&3a7gz. Jits < Y5-*Ai140-\b-g1P)

6{r <

5 L-N 4-)11.-co bs, ti.b& M-'g -0)4ViltnIfAM/c tAii-j-ZtIL 5

cRIV)

T -c, LZENVgicM-X03a,ftt-tqff b161;111-tJf., 2L±.0).t 5 IsIVAt, 5147-T- I) -016f114 t,1 -c1fLMZ% 'MATA-R4

fits

A-Engefartioal

tAit4inwr zatm.k.

tstli4-7.=

9 -

1+1Q1C-D 0-tit 1), 2) iciTL,00

-RVI-47=. - Lfliu-cto zbs,)1/±0-)Cf-i---1Z

J:C.ViAt k_

obiti LA,

2.

Mtatili-NO

,

2.1 0010

IAMXA ø

L12,

0).1-EVLb&III .t 5 Icts < c L, --Ert'AEL

M-47s1)-0---DaftaffitsEM-e6

V--16 ;1/, c L., '74:173/ 4

-L-ct, c tst-s-ZklattoiSE-T,

5f.1 ZrAok. 6 M4MYllsf oitztusg,

z c

(3)

U-Mop t, "et Z. *AGUITETTI47 4

L

or) 8A

t

bqTAA-rtr4: ciYbk-`c

Z.

VATEDIR 5 mODI1A-C', ibMin-M,AVffts 5 tzb, ha-MZ1.9,33W>kaffirgYarSZOE71(1- Tiftgit.®

ZA133)itVlilL*Fitticgif'gUottZ.1_,r14ai33.-}/fft

Nfg 0D'R tz

tz --04011*271-XiM71( 1c5Z

Table 1 Principal dimensions

75&, 6t7g0DP,M0) tb4cVP-7.kabi-C,A9711- 0D-C'

%.-1)it1J0 L < tS

tt,1-XlEgaDt4-141A415,,tr5L 11,4cktF61-Z

hao).'

Table 1

EnEacUqqa-ggX

1Rk41 - Fig. 1

VcUIR-73111141140) 7 4

11,-Ct1, YA

oDZA-Gc 0-C

1-1-COZOY-E', i'VVV1r-.45W4L/C0t.n)

)1,41ftdC Z).

HMV&

Remark: Values in(. ) are those of towed condition which are

different from those of free running model.

( 345 )

Length b. p .

Model ship I Actual ship 142. 00 m

L 5. 0000m I.

Breadth ( moulded) Buss . 802805 I 22. 80 m

Breadth ( designed W . L.) B., . 7746m 1 22.00 m

Depth ( moulded)

D..

1

8. 00 m

Draft ( designed) d PALO .200701 5.7001

Tested condition:

Draft d . 2110. 5. 99 m

Displacement A 434. 3kg ( 437. 3kg ) 10, 200 t

Block coefficient c ,, .531

Prismatic coefficient

c,

.622 Water plane coefficient

c.

.800

Midship coefficient Co .842

L.C.B (after 'midship) I cb 3. 831 %

Metacenter above keel KM .415101

Metacentric height GM . 052m

Longi. radius of gyration

Trans. radius of gyration

Icy, /L .247

K.. /Buss (- 4114 )

(2.61sec)

j Natural roll period Ts 2.70 sec

Propeller:

Diameter 135. 56mm 3, 850 mm

1.0 (Variable)

Pitch ratio 1.0 (Fixed)

Expanded area ratio . 57 -57

Boss ratio .319 -319

Rake 0 0

Pitch angle range 50

Number of blades 4 4

Direction of turn Outward Outward

Rudder:

Number 2 2

Area ratio (incl. horn) 1/29 1/29

(

.

(4)

11"-C ts °Atm,.

oRfto--c-otso.

2.2 ntO)flfA

WAtfl7.1cie

cams

1W) icski-Z3f,31

1,111:M111 , 7J<IaN (ErAtg 2 MAD =7.1(M) 4c

-.511Z) 7.1<14--iPEtimmakto) 2 fim- 1.1

kAT, ZMoDifTERelcid

, UG

bwcw,,bytgt,Ict -3 tstRR.Rt 1--c

fi-ts-Dtz.

L'--2° w-

OCR

*A.L,EAvoi4i0E-1- nar40 5 sTiEratv,,LE

tt, (3. 4m)

LLtO

,1..4ttoL 5 1....T.1*-C.12, 7

KlIcSiA

(4-3 111,, 5.1m) *ODZat)illfr:_tz.gij 0) -t131

frts-3,4b,L

tEbtt,tbi, 6?1-11Ct " Zie)A 1- A --R.1*fit

t z c

t5Pglatc.'

Nglar1=10,7)-Fig. 2 Co-ordinate systeri

(346 )

IfF,10) AFT-1'o] )114-A- 1:t t3=-YA tz'R

!rents

ZZi&c

UM®

t 26 1c

Utzt&-2-C%-aL

4111L01-LtZ fi-ts 5 Vila-ic1 ,

t-tftJL

- -Afrzy342tiqcr.u.aopzp:A".

TO *va-citnamilDcot

.-AfflGtAgE, 2AA1cct

Offi

6frAGD3-}tZTWC0ZoL

Z*71<13tiaitmgmau,Dt10)gi

/s/jimgili

t.,, itzoprilliitX1cAT-11-rz t:.6

OD- Z. t141/EiaW141* opukvi.rivN

<, L-A,F)4.-)1,40Dintott5ittorc,

0R, MI

Foamo.t

-3

clItitailittem---m-4-0.-NtlmicteilV4-5z01-:,

A 7l'aDatAl: OD OptS 116' iLliT /01, ritwriigtsT4Gti,z,

2-3ifiralitn

am07,-[-mt.x ,T,:)71t/C..t iF P

Fig. 1 Body plan and bow and stern profiles of model.

11

IIIMORMINIMIENFORT

NEL

ME= N

MEWL rinalirde

NaltanCIIMINEEIBi

r

'8 WL

r

6 AL, 4 AL

.01

11 2 wL

111WA4mv 7riwww

B.

AP -c:,

-b-r,

,

- I-10

(5)

15-)-11-Cfr-tS t 0 JAC:*A- Fig. 2

gait] oWilif.bo irmt,

-1-0,7J-01143tVIAC-..k litS. 5..

('n+ asz)i+bzzi-Pcss +bes6 +cos°

Fzecos cudFzs sin wet

(Jo +aoo)11+ b000+C20 +asoi+ bzoi-Fceoz

M oe. cos wet os.sin wet

M WA-1-1Nt O. S. M. ,(Ordinary Strip Method)

I/C.t

0)-iWc I;

N/c--Dto-cOza).t 51c*bt.

(m+avy)5?--Fbvei'±cyrY -.1-a04±b,s4; + coy + ao4 + b94,+ c9bY95

Fivcos wet F ssin wet

(Joo+aoss).si)-Pboos20±coosb-i-aosbiS+144

+ccasb0+a+bvi...Y+evoY oe cos wet os sin cud oss-Faoo)+boc:s-b+coo0+ayfY

+bpi,...Y+cycl-l-a094+.boosi)-1--coosly,

M idc cos wet M os sin Wet

Mfg.kCtI

N.,S.M. (New Strip Method) 4C'

.1StIEODEit-Iti Et! 4-Aam-Ar *bt,::*-MFAITigfAV1141-citT1t

Z. ,t1.9*-7°

zgi /1\1115) Tz.0'

"ffA AEG)

iMINALtztoTr6Z.

ii-f*X-"c'U±.2,0) 5 FOD LiJj 0 'fthC Pk-4002k 0.10itifolAKft, Aawti,c,fo±.0)±.-Far.X VI:13A

ft%75541;1-i.Z,.h -5 icts ,-"Co 753,

L0.1,- Kb& gintS,ODT', gaio0 0)/C-DO-Cap

6--7-f:

3. A710E1,146 (1Z SOStril al Mit

3.1 AltlAk

ZMINSillf4R1430) iMlig 0 6-1--r tsc amoa

40DitaRiXrigit Table 1 l

igZA gAIAZY.11

firJopfitl.P'clt Table 2 II

"C' 0 )/L=2. 27 Uf240111--(-1P449 2. 7f.'.1> ..*14.0.1)) ict'41-47Z

a-c6 Z.

AfkrloAr.tit,

-,vA Aic--D4r-C-4-4't4PI 7° a -.'',-1E14ffeCeffts- to

Alt1.1 3 a ,

1. 20m/s, 1. 54m/s, 1. 79mts -CP 6 0 tIACM1i-YrZ 3141.0)3M5 t2A2t1, 12. 4kt, 16. Okt 18. 5kt, 7.'' 1-Vzit 0.171, 0.220, 0 256

Z.

18--20kt

6Z.

3.2 2,111.11.R.121

e

-

3 i,

v 1-

(a

Aft), ht* hamnAit LET,

Z",. Ina)

mtmicyttamcatot 7

/ tc.t , 3 T,

Itrinaz

V1141-C41Z -1, 17 R.O. 1' :7 -I, a 013

LCt Utz.

Jirligau F. P. ap_ETIFLEttaff

u-c z 0 -,-LtiNALtglox ttI,e,s± 17. 9cm

(a-e5. 07mt)

gZoD) icsiOltZ 0-e FIPASi-X

oftEtic--to-CFrts. --c41Z.

-hi- 1.,)(

?OPT J-

7%friY-6-AD %Vit41%5-

tt

. -9- :/ 9 [IA it 1 /100 fi>

EittlAg, ENZ4G1117MircgiE 1.,-c 4 .% (DT', 04-.40c-D --c415Jillicn* tur 4

3.3 fiVfic5I

0-111.1.12-n-flAtfi OM IV, lEilfaa$1:2417L"

:.sk tz. t° 7 .1-0) -U*13 *AM itA

ea,

ttt.,±,ajcp3 T2t7e -1.°114-61b14

iC/.1

< -CMMtlifilltTfiUy 1CDJflE

PCIA

1. --gRa0A0iRkfilibs' O. 2 -P.J) rgAIZ 4,4-C;id, a -7--A/0111,114P1-a1/411-43Lt

wzRrnilictoplaligUilMi/Ja

Te

EnT6Zbl,

1.,"c4IVAAlt

ReACJIIAgEOMMOD.I.T.j.b-}4t 2 T ct,r z

c 0

a-3-}0.) Fourier

CDJilIj

-5 DOS,fjjj x(t) t*371. iAMz w(=2g../2Te) EtvrY 2w 0 2h,Z3-)1,Pi;AZ &cact5/c-t)-4-0

x(t)=C1 sin (wt +ED+ C2 sin (2wt+ sz) ( 3 ) tlAC sin wt, cos wt, sin 2cut, cos 2(ot M 2T c 0-Ifed*P4] 2nT ][1411M331 ,

Ai=f2nT x(t) sib. ,cotdt=nTeCicos 6, 11

. 0

A2=S0n T

x(t), cos .addt = nT eCi sin Et 2

,A3= Tex (t) sin 2cotdt=nreC2 cosc2

conT

e Z(t) COS 2addt=nrec2 sin 62 ( 4 )' (347)'

,

U

-

L , L/C, A4= (2)

(6)

44

am 2 Te Rot Te, op.a..).0lligi CIA C2I

T 11,2-I- A22 n e C2=

nTe'2+A42

ICct-DC*ZoGtIZo attitoLtA, am 2 Te 0)0b}41, -,- Zalf4f140) )1/eiTiPLIADt04,--CIIIAN-Cv Z)c zkerc'ivA,73tes

a,

-6-e/tEct,s,

<i(7)-z,

4MARA111,20).t /c"-af97z.rffirJ3,1elfil3c.k ts , ttVICg51.7Carigf.7-,t,-..072, bN/C 01TOM-34,..0-C4,Zti, -D-Ct"NtS0c, 3.4 '

gttiAD.t.

%Roptt-w1;--me -?c Fig. 3-'Fig. 9 4CW: MF-MIAAVP I; alC Otc.WAGI, Z

AN0)4.)0Dagi4

)st -)L,V.a.Ltz:VM-C' ri

3 ',0)4kiipi /a2g-0031. ow z5c,11-Z114&5E

toillititVagt

cio At.:

19

wig ( g)

Fig. 8 l 7

VZI 0.25 EC le a

1-0

b6.753, *1214:10R1Mt Fig. 3 7 liC77.-Liza

At

NI* I kaAlffic.t."--cJfii t.,t7.to),--e

Z.

Fig. ga, LX16,,t-eatkickl-tztiMbsT:.3;11..tst,Itz

%Wait

F=O. 25 ttl../"C Fig.. 3 lc Hflacat.1,

tt OJT 6Z..

3. 4. 1 12A,EcuT5-ct n-11/ (Fig. 3, Fig. 8)

Fig. 3 co x=150° iCtstivr, Al L=0. 75, 1.00 OD

2,,, -CAViCictS )1447533Rbt1,.1-13-1Alaa

MaEr1214J1c7T:Liz. x=180° opiAti-c

Z. iliflop-)1,a, RillYeArt:rc'ae7-3-

F-511;RAM

<1:eaMtl) .ttil6Mti.r.F4ftret'gts

gicAZ0D4ctLZ,ziki*/ctlydlionirx

cfaaLkEZ'A"ts30/4)MccAL,tsto

)kajajtij/t

171,ittia) 2 a--e, mJIA

< 348 )

Xido.

--c t610,kill*AS

GmbkfEL,

Ilt&4ZEL1141ts< ts.D-z-58t(L,-co <0YC, Nac

t - t*:/

''/c z GmolLbsatrO-LP75&Xtil

gipt-v-ctilZ. *4601'51,4-i aiNi.kop4Lcc..t z

3z

/nCotZi7ePgrPbl Eitt1Z-bStti.

it--etS

ti)o

IzZ#A411041-01ia, 1%13.14101-1iPts4L--E*X.Ar

<'&Zt.:Y5,Crl, RA, kR40E4.k0Altm-AlL

-c5-tit1Ll-ZcaEtlft-rt Z. I--011 ottrivec";1-.

-)0)fij ..

Fig. 10 /c71--;-4-,, a.1 111,Al]b& u-A/o-DINA-1111Viicid<tsZ (x=90°) Bania25,, (x=60° >,

30°) T - mailitradx

<,

JJLCO

x>90°T1taiXRt,titAL.Z. gibiag

'Cl,t x=60° ogzRoAtEIMIltiL, x=30° OD 1a

iftIQUffi$M,4-,t,tsoo ctLun

Isi5tire3c.t Z

>l4At1i

ihn0MBNL,t,IL

6--et Z.

Fig. 3 o x=90° 012:1lCiVAAlt 43-61,0)05

10 0gItpG5}Z -5 igzatcd-4-"Zy2

-.)146.40Nittita

A., LteCte

3,4. z y (Fig.

,4, Fig. 8)

otao,

$cit1JVcZZ(L7541-62-%-1;ts°

Fig. 40 x=180° ODEBCA 41,,B

gifai0)4L/C.t ZgSMR.1150t S.).;1 1111C%-ktS ` 4

;TIN-

attit.ft <&5 1j,P8zvP,orp]ii0it

CZ[ItRiikA0)011-ed, -\'"PZA1-1110).b&8300 nA

tsb3;, MR-NtayJtlL. rs

1,No fth0,491 11J-Ell, lx=120°V.Z16,1, ilkR

Table 2, Wave conditions

0 Flw c /2 Cm ( 3.4 m . 3 A H/c3= 15 co, /( 4.3 mi 1B cm_ 5.1M 3 0 0.75 II100 '1.2 5 1.50 2.00 227' O. 30. 60/ 0 0 0 (3 0 0 30/ 0 OA OA OA OA 0 OA 120/ 150/ 0 0 0 0 0 0 3130' 0 , ,,

op OP OP

0 65, ) (

(7)

=

0 X etc. Hw=12cm x' etc. =15cm ,e etc. H w =18cm 1.50 0.1' 0.1 A/L=2.00 ).< 0 ----0.2 L Test Calculation 0.50 0.75 1.00 1,1 1.25 1.50 2.00 2.27

Fig. 3 Roll amplitudes

= 9C° Fn (7'3 C1-3. 0.5 ox=150. 1.0 ...

...

1.00 0.1 0.2 n X= 30° 1.0 -ct All.= 240

co ---

1-5° & ...

0.5-1.00

T___._..4...-_____ m .50 7 0 Tr," 0.1 0.2 Fn 0.1 0.2 Fn C63

Fig. 4 Pitch amplitudes

( 349 ) g 4 3 2 1 5 9. 4 3 2

le

2.00 i Roll '' j 1 5o° + A d' Unstable roll at x =180° 1.50 0.1 fl.=2J30 ... 1.25 ... 0.2 3 Fn %. 20°

-

9 ---0.1 0.2 Fn 0.3 Pitch /L = 2.0 0.1 0.2 Fn 07 5 4 3 2 0.1 0.2 En 0.3 Roll 0.1 0.2 Fn 0.2 0 0 0.5 1.00 .75 9.4 H

(8)

80.5 0.3 20.2 ... 0.2

---.--....

Do n 0 0.1

0.2E0 0.3

-g 0.4 0.9 0.4 0.3 0.2 0.1 ( 350 ) Yaw X=150° .120° 0.3 Fn 0.3 X.120° -0 20.2 0.1 0 0.1 Z-Acc 0.2 Fri a 3 I --- --- .50 --- ---... - .... - .. 0 A/LW50 0 ZOO 0.1 0.2 Fn

Fig. 5 Yaw amplitudes Fig. 6 Vertical acceleratioeat F. P.

-X.150° X.se --- 2 00 ---

---- .75

---20.2 121. 0.1 0.1 0.2 En co xr9e 0.3 0.2 2.QQ -5_11L1.25 1.00 _v_5 0/ 0.1 0.2 En 0.3 0.3 0.1 0.2 0.3 0.3 20. 0.50 0.75 A 1.00 1.25 1.50 2.00 0 2.27

A /L Test Calcutat ion

0.1 0.2 Fn C1.3 0.1 0.2 E0.5 4. 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0 0.1 0.2 Fn 0.3 - 2- Ace = tee 0.5 .3 0.4 0.3 0.2 0.1 0 20.2 o. 2 0 A 1.25 'Yaw 30° 0.11 '0.2 -0 L

(9)

if Test: 0.50 0.75 1.00 5.25 5.50 x' 2.00 0 2.27

Fig: 7 Transverse acceleration at F. P.

:01 - 0.5, 0.7 ;110-6 0.5 0.4 '20.3 0 0.2 10511 Fn =0.25 r140'=0.4,m ... iscg ---120: Q. 150 9

....

9 0°' 0.5 1.0 2.0 xiL 2.5 i` 1-, -2. 0.5 t 1.5 2.0 A/L

Fig. 8 Motioils and accelerations,

(351) 0.4,1 0-Ace X.Iscr 1.4 5-Acc in 0.3 irs h li unstable roll at x =11110° ff'To. 4.1 0. 2.00, 1

t

1.00 .C75 0 0.1 0.2 117-4cc x-scr 10:2 O./ 413 0 0.5 7.0 1.5 2.0 25 0.3, X.120° 0.2 0.1 0.3 0.1 0 0.1 0.3 0 ... 0. \1.25 0.2 0.2 ,1. 0.3 0.3 0.2 0.1 0.5 1.0 1.5 /L 1.5 1.0 0.1 0.2 Fn 0 Calculattan L 0.1 0.2 0.5 1.0 1.5 2.0

(10)

sd'

( 352 )

Phase (to pitch

'Fra=0:25. Hs, 3.4 m" ...,...., x "R---, 6CP PI Xit-i I, iA.., 1.0 1.5 -2:40 .±--Z"-5 /05.--- ' + 3Cgi . 14+kg -... 2.0 A -Or 4 -mow

Fig. 10 Unstable roll in head wave (note sprash at port bow and propeller race) biR< Z

-5 ts A/L=1.25 Ill& 1 .7 (1) b3331t1V/10

tUt Bid

<,

DiliA-Puus,i,t,,L, 2 Wil-e 37" y

*A-oc.LcctZte)--e7.)5,0

2 4tho olt 1 trti/c.EML,cleLlc5Eock 5 isftAittl

3. 4.3 5

(Fig. 5, Fig. 8)

.14R--IARODWEITitALCC clz ZWit OR4Lb/!PfS < LkAl2t1--Ntei. bs'A(, #N111/4171

*00 t tzZRLill-V-0tfatltato.

g1451iV)RibRo)

RiacoblrtVkik

< ts 75&, Z1f6W-c'

0 RP smotatnTitLtt..

1-E, mt--ect

--cozz-cf, cipt,75/C a 1,4 :/7'75i l:-C4Felikit'l

Zt0)--eZo AG40)Mire3ct--4-zg-At3DicaT,

/±l'ANYA0DbNorElla-414M--fll, ®VrTlt1aL

3.4. 4 Af1-6..h-PlAiAl (Fig.. 6 Fig. 8)

ZWALII-AT-{ThLal*i,-, cliNtZRO. 6,)*

bi-Nb-Pg lc arc 3-11tic.Zgrz,fEllIttZri`,7%Pis

V'eatkMgoVE--elt

to. Fig. 6

x=180° 0171iP 3-}Z ch

al-A-04Lic z Vff.

41!:.11ti < filtalc:±r-coZNISE-(7Z. ts 1-47-Ac e n".-flJlJz ETINAgE ap coeTi_ ( 6 ) e g lp : C. G. b,;iiriA5ETTt-t -c'o)*WAIE x=9(ropa,4,-,J2431Attjan < 1zfegNITI;11.,

0).t 5 tsiirttbst

?DflitZTIT c. Gti,tz.

.3. 4. 5 VItttlitg. (Fig. 7, Fig. 8)

IEVJartoffirTilit0A/MMcAKQTOZw

traiRPbrtaiA0401-clt.frtOWN

K, Agt

lc.t6Ctt !1t:0o

L,-C x =150°, 180°0Mbl;

; tlts<t 5 lc, TZTz/

MPAMPAziA...t )KA -co 60 x=300WPDVArlcL9-14,1ALMW:L

tilaata,--coZAt 1 2 )1/0±APfLnercZo

(1),:t

lctlyi3115Ell (

C'J5 7A

7_ ZiAi L 5 4t110-FicT

ZN), mc

< fatztirhl1=4-n

z

--Ot3-}bi,

°°@-1-1124

( 7 ) IR 7.kb);)JiAlEgi-t ToDke.101 \ 0.5 _225 \\,-F sO'

9 Phase angle to) pitch

) a Fig. 0.5 1.0 a p /11c)§7'11-6:-_77:L,

(11)

vomil

AammuwAsiowinemoraminwar Emma=

amemwammarsmanummorammormaimmoma

71riaELIVA1111WA11111INMMIIl

MEM

cn.

mum

R-oLL IT

MEM

Yaw rate

Nom

,-,

MEM

AllPHIMMINEUMN

I. MIN .:.

MEE

WOW

-41111111111MAINSIII/A1/1111

1.11111111110=1

132111MICAMFAIMI VIMIEVIVAIMN

IMMENEMIll

ct r, Vertical Acc.

NNE

1111.111111111111MINIMIII

LIIIMMIMINEILIERN

17111!.MTA

MEN

11IPMIll

INtNEN111.7111111/111

IN11111M111111MMEMEM11MEN

ITIIIIIMIWAILIMIII11111/111MI

RIFINMERSINERVIMINIMIIRY

LTAQ

1!

1

r

! V II En W.1/46.740171111111MIL._

d

ongi. ACC crq

Fig. 11 A record of irregular acceleration in unstable rolling

(353)

IT

(12)

L, V-1451SRTizt )kbs)co±,1,1-1.S'L,

OD.WiiC it,

lA1nL"

L1.4)7!3Z.

3. 4. 6

N4roknitgr.

rilattAz, ti-v-itubst; <ZWZ.06-ts

aye, M Itvgotcv, mrfoLL-c-Gt_ETNAtto&-McgMc

tillt1/10--Zo e

_L-Ftlitabse v5-cLLg_i=z;b-g-ZL, P" tygl 3. 4. 7

fit*

(Fig. 9,) Y01-1-Z.ft*El -Tr:

ob& Fig. 9 ±.-FbllArVi 07 Hri4c

AEL.,--coZbi,

37,atAttite -1-LU

YMOZZ.71±XL,--c-tozo-yee,

c Lit

ZRLM.XL01,-LIVDAVR.H.--ct, _E

TiglittX0a4t141MR0tifs-1 Ato-c.a<Ji'o-colZ

(354)

T.N0.117

Numbers on each pdint -o

are marked at every

.001 ;Seconds. 26 25 _ 24 r 0 8g 6 -0.4 - 23 2 cv >. 3 /1.2 0.8 0.6 0.4 02 14 / L = 75 X. 1500 II-1w=1.2cm

Vo = 1.2 0 mis , V = . 6 3rrr/s Te# 1.32sec

Fig. 12 Relative orientation/of model to:waVe

.6

12

Fig. 12 An example of irregular acceleration at F. P.. in unstable f011itifg.

17 0.4 06. 18 --> Stb. ward Transv.Acc. -0.2g 20 7 0. 1.0

(13)

jP0)i5 74-1,60

3. 4. 8 AVJQ311. ZtJYA-g 1,-C Za--DbNOD*pric, ts111753i-EM 11, tz.-z, Fig. 11 &IRA' 12cm (3. 4m), L=0: 75, 7. =150°, Vo= 1. 20m /s OD oDE01#1.1-e, Th'n1A0) 2 4-`)))7=1M-Cf,. cop

tg&I Fig. 12 ICTT:tbs, ODtVdttg.INfg&IIYI-C' 6 Z. Af1431Emb

".1_,'"CtO Z. tte. COD ct 5 tSWit ODLCI;VCTil"

Wiriltiltbs t.,' bid--c <,, Tt T=I --)11bAlgC

IN 20°

5 istAl&--cL--c-iots o o

Z. Fig. 13 d Fig. 11--e411,111:13.ettE t.: "C. t/1Z

tt

kcRtao/P.-Alchz1.,10ts)3411)MT604-thi.c, b11--)bN60

otolato:k

lamb

0)

on331,7:d-cc---Do-c&op,et -5 cc.pdUTh L-cmir.. 1,--c-i-J.L0 Fig. 14 4;f:t ot -5

F, SilsoDN

Fig. 14 Simplified model of bow acceleration due to impulsive force.

P 0/1S.ILNAlizt.7.6iL, 1 coamc6zNiktot

iclmiiiiAit a bl'L

0 mopm-1.

INRIgtzt- mz,

tNtle14.a-w

(l+mzY2=-F g

(Ky7,2+1f72)#pF

(&) a =2-1-1d7 a

F _

+ 1.p

g

l+m, K552

(9)

WC, tbs S.. S. 8 1/2qid&CNtr_ L,-c m2=4, K'=Kry 1 P/L=0. 35 a/g=1.

Ll-taf F=212kg

Z.. 6/litinAgEN-oltsz.

itTAIC 7.1,4"C'&11S0 2:dMiN75-C 619,

kl-^-AalfA37:1 Zbdic ot,tso

t,

V.&

tsVako

tsgiStb43111-) L. tfi)-1

,;75NT 6 Z.

tstsr,j,R (x=180°) gz'i2

-)L

WinnAltoVIT

aNitam

Z.

34.9 itatiAT

Fig. 15(a)---(f)&12aX12cm (Hw I Lt 1 A42)o±gAo,,

L t.:.

o-c

Z. 111-5.1.0 c1Z54,101.141114117. -

- 'Z'71,MODZJI-L

tRittota,of.igEtc,

,2N-r L

vo Itts 1;tstoo-z,, igidegODPAP

-;:f:tiCi.Lt Z. t tzElilfittafg-Ft

<

ilf1--eNIXILALt{g-FWc

Fig. 16(0^4) rr31 &ALI ODALCET iC

-1-,VLA-M-C1,tztoT660 5UstAb; tl, 'f*L L/C

Ailopili'fr'faDMAltfETW4stS t, Not 5 tc.1,i, L,

*Art (vo/c et

Plts:15,11-1,-co -5 T66751, c.

A1diViTE0D- -- apt4t1. oDB*A CDT, 41.-D

0

Lt 2:l0 Z. 111*()) [Malt

ay-A'

Abi;)c#0)3119-zg-FolVirl-A-7.T:t., VD-C 6Z.

Fig. 16(f)4I C 41. I; ODLLI3K-113.1451-- Utz t OYU, 2V.L

=1. 502ToDEttottRa T'A1tiFIT753* <z

C.

ZLL,

ODALVIITMRA1Ct L-cia4V9Mii

iMg-F751.1.11,g;)

<t

,E11-)11,6 titV4--e6 L. Lot.:295,

offoAalt

< Sea margin bs'E <

tt

4,, MAO* I; 6 Cra"±PP MiltirAttilAR

4.1 MA:Ike

&.-xfois (400m*ps), --L7 OD tAnsillopmga,

/Z.! 1,,f/4710r(704)::04 141-1.)- Z ct ic Ltzb3,

ki-aliggODEIER0D15t=1`44.t , 4DTbNtSX-751t Utz. C.-11.; &I Table 1 4;f:1,--C *4*MifirC&I1di

taft- -2< :/

ilir1Z --c

't

.t

Ala

-( 355 ) (10) T, lC, 1 L

(14)

1; 1.0 0.5 (356 ) 3e se Course angle Ca) COurSe angle (b) (0)1 EhrelkolICI4tA t.,-c 2. 61tP4IC apiXtra';'11:.*1 1 0)16:

Lt-_,[kgoismiA. Fig. 17 optl

-MODA_ItVa 0

0. 4m/s tli; 0. 1m/s21 5

t-eLL,

w

OfttItc.t.-D-Ctt6

Fig. 15 Speed teduction in waves

Course' angle-(d) V .90° Course angle Ifir 1-511231Lkc,.t--D -ct-? ;o,.>

igstc n=coVig b& 1/4 iCia < tS V=

0. 975, 1.012, 1. 050 m/s

i10 LJ

nittus

tn5ic_v_g_ z my)] )i,fr4 12.

130 2

)14fJ

aL7 9 .F;

t 4 1=141)Alttop,$)J--taK_E.0)1, 71/caau

uto

11 0 -1 0 o x rg - Ill I ( I An.. I25 , l2in, o V..1.20 m/s a V.1.54m/s/ X V.=1.79 m/s 1 X 1 A/L=0.5 , =120m 0 V.=1.20 mis a V. =1.54m/s X V.=1.79'm/s o o9 3../L.3.5 , 12co, o V...1.20 m/s a V. =1.54 m/s x 'V..1.79 rnis. I 1 ''''14111.111111111W is , , AIL =0.75 , 14.,12cm o V. 1.20 rn/s A V.=154 m/s X V. 1.79 51315 o ii t 1 Ail=2.0,14,12 cm, o V..1.20 m/s A V. 1.54mis isV. =1,79 mis I X o x o I All .7.0 , 12cm a Vo 51.20 mts a Vo 1.54 m/s. X 'Vo 1.79 rnts 11 30° l60° 90° 120°

cP 30° so° so* 120° 1ge

Course angle 30? 60° 90°' 3zcP 158 Itcr Course angle arf iso° 30° so° so° 120° Is / s a. (e) . 1500 1.0 0.5 0.6 0.5

(15)

I

1.0 0 1.0 1.5 He/I1 50 1/40 1130 He/ L 111./ 1/50 10 Wave heght cm) 1/50 1;40 (e) 1/40 I . /5 , (CM) 1/30 1/30 20

Fig. 16 Effect of wave

4.2 Utfi-'131.riMgMA 4. 2. 1 litM;)Artg

+24+40 0

(11) "elt05-GIELX, =2a (12) L.-C*6tz )1,R=9/NL Fig. 18 iC7Ts.t0

El* t_.440)tn5?c, H13-44cE l'; IaTt!I Iv5-J-iklOpiraMMZ

7 .

-

*MI 'T-7 14 Ma0V) RC; jaila) 0.5 1.0 1.0 10, AIL./.5 ,X.113Cr 0 ,=1.20 mis V..I.54 m/s 5551.70 m/S 5 Han- 1/ 50 1/40 10 Wave height , cm, 15 Wave t, 9.(a.1 (f)

height on speed reduction

1/30

Rb'i;N:t

titzfih (3Vc5ekl;t)

LJO=

Jill®

'ark- g XZ' tz I) Ow 0)5' ;L-N.M.fifOR LtziAT 4. 2. 2 g4MCA-10E

Vi 41 0 Eli 7 )t,

ODI-M4C.t a O. + b Onc2 (deg) 495=10.1 Sbn+ii,

I

(13) (i),.=(sb1/i+195.+11)/2 i/ 611/X, ti,i)4

70 a , b5

Gt/, ( 357 ) 20 20 I . ---- ... ...-.. ....----' I --- tso X

-- -.--Ail .1 00 8/1 so All .2.25 (d) 1/ 50 1/40 1/30

---A/L.2.27 x 0 V,1.20 m/s V.51.54MIS X 401.79m/s 5 10 Wave height H. an ) 15 20 15 20 1.0 .0 1/50 1/40 1130 20 5 10 Wave height, cm) (e) 1.0 (b) 10 Wave 01

-

1.25 5

-0 . A . /113.0 0 1.54 Va.1.79 0 1111.1.25 0 .1,20 . .1.54 m/s .1.79

(16)

st.

^ 2.7

-ILI 2.6 S. 25, 0), ru 0.2 0.1 (358) 0.1

2 ) 40Daliii00-"c4i2ae= boo' (Jø +a)

-C, cop.t.5ICts;fs..av

14..W.tg,475,;a/.1\-_-_-A/ccti)t6-coz.

Fig. 19 IC ice 31a). Ka, ICA opArtic

Fig. 20 IC ice. ,OD

4. 2:3 iV%I.k

NA/ad

z. cb =1 \ Tcb.2 (deg) (16)

"eXfp'Vl.Z75, (13)4-e*?67t a

b 4AR

_

Fig. 17 Model set for free roll test in towed

condition t.0 Lt-I-TOMi*fAZaz.Y;;E-0VAMJA, 95. 01MITAL 1.,-c*a5ZC.biT 0 N + b (17) gm

N

*P1 -4-ZALtiE < L4b4DbNZ. Azkifcc-3PtZ1441c} 0.2 A 0.1.

0.2

0.3.

Fig. 18i Linear damping coefficients and natural roll period

onverted into model

03

Fp

_o 0, 0 9 0.0-0o 0 0 , 0 , 0,

o' . 's 6 '' - ', i ,

8 0

8

Model Roll axis . Kxx

o Car Ferry G 0.411

o ,. (with propeller) Free

, A " (Actual ship in service), ..

x Container Ship j G 0.355 14' J-EE14-4,,sc,,k.zzirait-mcoptucktfopfa + bsb.) (Om. i-ãd) (14) (15) cbm=10° RY 20° 0)n-404-AN10,, N20 Fig 21 iC;Icto

a, b

R*Arli12°---13° .4t-fro7N i;

t:

to-c6,57511;, N20 z-Do-ctt91.1f/cck

4.3 41X

Fig. 18 IC..t

t -7

gmayfolck

tf4.-100-40. 05-0.06,ilfr-1110 n = 1 /4IC a (12) 4LP-Jaic 6e.T&rLi-t-La, lie= 2cr0 =Ka+r we 2

a,

2b

KA= 2a e= : 0.3 0 0 L a

-L, Fn

(17)

0.3 0.2 0.1 0 -0.1 0 1140)SEZ.L.Prt-MODWCii"*OpitilLODAV4,0Digt,U, 7°T2 MillsAT2nAth-CtOZL 7511.

witorMtiorincctiER-J- z)i

PL-AfrL GtLZ. %4O0DIA753-c,c,PdH z 111E13 uryj GbN-etst,,75,', VIMIO0).0AftWig--c't t - 7" .N

L-c tzb tc, AA1--c2EZ u-roybt-Ftilha6

trCOZ L,jfl1-9 ./...h5--Do-c0Z,

VIctlg11175i ZL;k_GI-LZ.

AvmAgspALL-co4mq, Tautt,n

vitz-mgr( LVs oV41-c

c

ct Fig. 19 --E'r91

755, - .0)-14.V4-11Bct n=1./4 019i

253Nt-co-c, c

i.5.7_2 ap A,* N,g4 op MO 7T;

U-cos.

Fig. 19 Effective damping coefficient and its linear and nonlinear components in comparison with linear damping coefficient

N ,ARC1*--;i1.-*At 0.01 Tf,tiE.VPAALtt

0.02 ct it,t.clo/J\ 7°13-ti-A-optk

IlgROVAFP0)CMI, *%4Act CA pi ot=4--kr,

V=hcca

5.

ligAJ

M4: 9 -AON1.0&;?.artiictst, NA NitEft%

c U;3:11,1N-M- -1--fts .EIL4P1W1-0)

MAGDIrtriiiiiV4Itzo

(1)artbsIlORm-4.4 L ob)- -MD,,iAft

Pat

izUtiN5PR--e, W&TUit61-PIEMP-DIA0 1/2 1i5

-( 359 ) Q=114 -

4-.o- -0 .7

- v

o-

-4

0 IC e ('Pm=1 Cf) a___o__

--)

---

v

7- ---Q- -Fr

v

Ke ( (Pm= 50) I

- ..---

__.-

-8---

---

0

---

---,.

--_-

--0.-0

___--0-o0 0

0 0 Kcx Ko

Q.1/4

02

0.3 Fn

02

03

Fn 0.3 se 0.2 8 se 0.1 0

-.

(18)

0.02 0.2 01 0.257 , (2)1 It'Z-7:2 --.)1/0±ALRUlf, *F4 < ts

eafial:g6 VAT

172 < tS ( 3 )

-)1,00-1-xeLzkolopito-ru,

mAztn-cuiaa-ikt,t,:eviA77_Ztd, gibia

ik"cillN)f.cot t Z.

( 4 ) 13 ilitEIIITUSSORrAickf-rZ)M1.1.1.U4 SiC.!;,Nr.C141° ( 5 ) 7 ' UALtIC ZVEb4EVC.!-Pts <.

Fig. 21 N-coefficients to speed

Fn = 0.300 0.329 0.200 0.150 0.100 0.000 0.057 10: 1 51 Pm ,(i(Pnt+ICon.11) I 2_, '0deg)!

Fig. 20 Effective damping coefficient curves to mean rorl angle

iMcklt

(6)

rh-JR-g66rilliaapitonARKomm, ,Np-5mo3 AbAbZ'Afilorph&Ao. < 7 ) at Jr.xllioDZiWt

OJNOltoF6-11itIA--co

ODTs, 1 /111%i)1,R < 714295M d;'s 1-1-Xect tZAIRIapb& ( 8 ) AfIg-±"TNAU 7

ow-Vgagict

o

zsAiaLm.xe.L0.t.trceit,

aicjz,IRfrop,

-0

N445 ., Nzo t Est irnated)

I .. li., , Ill :...vez,_.. I I --' - 2-. 0.06 0 0 0.04 0.1 0.2 0,3 *RI 0 0 (360) 0 5

(19)

(9.) MA- VALtopitimau-MCgr.AMA

WrOZ)01MCTZ0-)1/,4:

l.,--COVAIS.-01AN

Agt/1,A-'

0

MI6 &tea ct A rhl

L-nct_E-natEc.

ot<IA-Ct6 , 1/10-C.

-

U't

ff, 6-61i'

< ,753 illiMM-eGt;E

tVC..t ZhMIT-1.1113IV 1 g J?Lhit

taut.

VSMAI'R)AgEg-F,4/8EA/C>11.-CittMaK iii'J f*L -bsAiti.EFWY)!Pts.

ihii

fai43T, MthiTecitf-ciDEV)Kg 3 ft, fs Z. NRW1q.i.E.1i0. 01f1 t-"Cf A

Cit43tt

bg.). 034 a, N209 0.020 Z0 -7,tC.11..t < tsZ *UMWDAVAUF)tigirlif-WL.

t.

75g/ N,

"47

-ODZINYttirAtZ?VM 43L U-c,

H 0--APJUM=r,L

zo tiaM 6 AN5f5E15193 311U-cZy,1-4tc !Mt L--2M3-1-apiEfAV5V4i1,-c-F tz,

8*.6'{47

i;N5NAli-atcm- < tZtAzIckireODZAEC;WtiEtlirg930)blitV41, 0)14.V It .t$19fff:A-it grgiaF AC 0 M270-20 t-tt')T11_, 'to

t A SC *

1)

15 142 t

-7 a-

44--'g." (1971)

a) EfiAl]i3 "Rit'ETLIM.7

-

likKa

-

- (-7:- 1 - 5 ), *MRY4-4.71,

t0,502, 504, 505, 510-', 1971, 511-"a, (1972)

: ztuqueziLpop&Alil

csVER03" NA153.1fra,A-i=

9132-%-', (1966)

11141git, "Short Crested Wave

Sway, Yaw 16tO Roll opiEMIC-DI.0-C" NI$

mer,1 v42-Fuk , (1971)

ggzjifg, "x I- 9, _ktc.t:ZNSII

RitioDVDtaaR7tXr.i'v , PANZIrlaf

5-tiRA16 Mr 7A% 4 (7° ,Aqi% IS 1.

%), (1970) 6 ) "A 77cittC.t aLtIVDMOD:MbiltAl:7°,0 , fr,14145Miff 9Y0

(7°0 Y.,J44A %

A), (1971) ) YJ\)IUjL

z Lazatt4i&NIZAM(-

),

(Q2)'

%525, (1973)

8)

M1315,..=.g "-AA

t

Mogibtivtqc

z Nitgflft", BENZVIiIMA

%144-'g-, (1972) 91) AZ45(5.,

'57 i1

-"C", INNI4A9tYZA-2

H-152, (1974)

LipmmulamimilOntliiiiimmirw:ImMWWItifsiM-01111,1141ffifffillic WiVympA

(361)

6.

(*),

"

-.

: .9-2 526'6',

Cytaty

Powiązane dokumenty

N ikt n ie zapomina o potrzebach finansow ych Skarbu Państw a, n ik t też n ie może przeczyć, że większym w ynagrodzeniom pow inny odpo­ wiadać większe staw ki

spalania, stąd duże zainteresowanie możliwością optymalizacji pracy poprzez lepsze poznanie wpływu procesu mieszania na inne parametry technologiczno-eksploatacyjne jak:

De als gevolg lage geaggregeerde vraag verergert de productiviteitscrisis, want (zoals Adam Smith, Joseph Schumpeter en Nicholas Kaldor al wisten) als de economie slecht draait,

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

[r]

Podobne korelacje istotne statystycznie zaobserwowano również pomiędzy pozytywną relacją z Bogiem i poczuciem związku z grupą (r=0.562; p=0.010) oraz pomiędzy negatywnymi

LA_SurveyPurposeType: the LA_ SurveyPurposeType code list includes all the various survey purpose types, such as: land consolidation, control measurements or division of a

Thoolen Methodieken voor de berekening van staalconstructies van transportwerktuigen Literatuuropdracht/scriptie, Rapport TT.0392, Sectie Transporttechniek. In dit verslag is