• Nie Znaleziono Wyników

Middle Eocene in the Sołokija Graben on Roztocze Upland

N/A
N/A
Protected

Academic year: 2022

Share "Middle Eocene in the Sołokija Graben on Roztocze Upland"

Copied!
17
0
0

Pełen tekst

(1)

Geological Qulll1erly, Vol. 38, No.4, 1994, p. 739-758

Jan BURACZVNSKI, Zdzislaw KRZOWSKI

Middle Eocene in the Sotokija Graben on Roztocze Upland

Lithological·mineralogical characteristics of quartt·glauconitic sarKIs lIS well lIS physical features and chemical composition of glauconite from new stand on RoztOC"lC are presented. X·ruy diffraction showed disordered structure of glauconite :1$ a mixlure ofillile and smectile. TIle poI!l5sium'lIf&on age of glauconite WIlS dctcnnined.

[)eveJopmeot of Solokija Graben look place in tnc Larnmian and the end-Eocene tectonic phases.

INTRODUCTION

Eocene deposits in the Lublin region, represented by quartz-glauconitic sands and si

lts,

are found in the foreland of the Lublin Upland among Pulawy, Lubart6w and Parczew (J

.

E. Mojski

~l al., 1

966; J. Uberna, 1981

; J. Uberna E. Odrzywolska-Bie6kowa, 1970). The

age of those deposits is dated as the lowest level of the Upper Eocene based on micropa·

laeontological studies (K. Poiaryska, Locker. 1972;J. Uberna, E. Odrzywolska-Bienkowa, 1977). The Eocene deposits were formed in the epicontinental European sea consisting of western and eastern basins (F. Kockel

, 1988; A. Vinken. 1988; A. P. Vinogradov,

1966; B.

Kosmowska-Ceranowicz

et al .• 1990).

Geologica] studies performed in the western pan of the Lublin Upland show numerous

sites of Eocene deposils (Fig. I

). They appear to be well preserved in the Radawiec Graben at a level of 185-205 m a.s.1. (A. Henkiel. 1988a) as well

as o

n the residual hills near Piotrk6w (A. Henkiel.

1988b),

Bialowoda at 251 m a.s.l

. (S. Marszalek et al.,

1991) and Wo1a Studz.ianska at 292 m a.s.1. (S. Cidlinski, personal comm unication).

South of this area. glauconite sands were also found on Roztocze Upland (Fig. 2). W.

Rogala (1912) was the first to report glauconite sand occurrence in Roztocze in the vicini

ty

of Magier6w and Potylicz dating them for Oligocene. Glauconite sands occurring at the

southern border of Roztocze near Sopot and Horyniec (R. Ney, 1969) as well as near

Terespol cr. Musial. 1987) belong to the

sandy-clay series of

the Badenian. While exploring

(2)

740

".

."

, - .

Jan Burnczyr'iski, Zd2;islaw Knowski

',.. ... '-! ., •••..•• , • , , •..•••...

""

, 200>.

,

.::::::::::: c/ . .

"'...t

, L D

,.

Fig. I. Palocogeogmphy ofCentrnl Europe during lhe Eocene (after J. Kasinski et al., 1993. supplemented) 1 - marine ~a of north and south basins; 2 - range of the Middle Eocene lagoon; 3 - runge of occunence of Eocene sediments: 4 - dclu: 5 - direction of p:.J.acorivcrs; 6 - occurrence of Eocene sediments in the Lublin Upland according 10: I - A. Henklel (1988a), 2 - A. Henkicl (l98Rb), 3 - S. Mwsulek eta/, (1991),4 -So Cidlillski, 5 - J. BUr:lC'Zyrlski c/ aL (1992),6 - W. Rogala (1912)

Paleogeografia ~rodkowej E'AJropy w eocenie (wedlugl. Ka!;i!lskicgo i in., 1993, uzupelnione)

1 - obstar morza bascnu p6lnocnego i poludniowcgo: 2 _ usiQg zalewu ~rodkowoeocenskicgo: 3 - grnnica wystepowania osadowcoccriskich; 4 - delta; 5- kierunck nck transportuj~eyeh ITI..nlcri:li; 6 - stanowi.~ka eoctllu na Wyiynie Lubelskicj wcdlug: I- A. Hcnkla (1988.:1), 2_ A. Henkl:l (l988b). 3 - 5. Marszalka i in. (1991),4 - 5. Cicllirtskicgo, 5 - J. Buroezyllskicgo i in. (1992). 6 - W. Rogali (1912)

the Tomasz6w Lubelski

areas,

J. Kulczycka (1975)

found

glauconite sands in severa l

boreholes. Based on preliminary

lithological

c haracteristics. the deposits siluated in the

Solokija valley were classified as Oligocene

(1. Buraczynski, J. Gurba, 1977/1978). Within

the cartographic works on

the Detailed Geological Map of Poland (Tomasz6w Lubelski 1:50000 sheet), some s

tudies were undertaken to determine the stratigraphic position of the

glauconite sands (1. Buraczynski etal., 1992). Lithological

, mineralogical

(K.

Radli cz) and

phytopalynological (E. Gafd zicka, 1994) analyses were carried out. To detennine glauco-

(3)

Middle Eocene in the SoIokija Graben on R~tocze Upland

r.:-:-:1 2 l:....:....:...

illllIlil' rd' - ' - .

741

Fig. 2. Geological sketch of the Tomamlw Lubelski environs (lifter 1. 8urDCzynski, 198(V1981; S. Ci~lil\ski. J.

R~howski, 1993; R. Ney, 1969)

I - marts, opokas and gaisa, Maestriehtian: Crllt - lower. Crm] - upper. 2 -quartz-glaueonitie sands, Middle Eocene (E); 3 - gnds and detritallimesa:ollCS. &denian (MI): 4 -clays. Sannatian (M5); S -lXIlIfirmed faults;

6 - supposed faulls; -0-0-- section line of profile Fil-3; contourline every 10 m

Szldc pogiczny okolie TomllSZOWl Lubelskiego (wedlug J. Buraezyl\skiego, 198(V1881: S. Cidlinskiego. J.

R:r.echowskiego, 1993; R. Neya,I969)

I - m:lrJ1e, opoki i gezy, mastrycht: Cr.l - dolny. Crm.3-g6my: 2 - piaski kwun:owo-gbukonitowe, eoccn grodkowy (E); 3 - piaski i wapicnie de\l)'1yczne. baden (M4): 4 - ily, sarmat (M,); 5 - uskoki pcwne; 6 - uskoki pnypUSU'Zatne; -0--0-- linia prlClcroju fig. 3: poziomice co 10 m

nite

age by

the potassium-argon method,

it

was subjected

to

complex chemical,

x-ray,

thennal and radiometric studies (Z. Krzowski, 1993).

(4)

742 1an BUr.lCl.ynski, Zdzislaw Knowski

Heavy mineral composition

Profile "'~h Weight

OPM GLA TRM AMP PV. EPI

(m( ""'~,

Pickjelko 16 10 0.57 31.8 44.0 23.6 0.6

-

4.3

Pickielko 20 J4 0.78 87.5 4.6 7.'

- -

7.6

SUlfowola4 4 0.10 SO.7

-

17.4 0.7 1.8 2.1

OPM - opaque minarals, GLA - glauconite, TRM - transparent minernls, AMF _ ampllibole, PYR _ pyro- disthcne, STA - staurolite, AND-andaJusilc, TOP- Iopaz

GEOLOGICAL-LITHOLOGICALCHARACTERlSTICS

Geological mapping showed that glauconitic sands occurred in the Solokija Graben

under a thin (3-10 m) Quaternary fannalian cover in an area 2-3 km wide and 20 km long

(Fig. 2)

.

Only near Ruda Woloska, where

they are artificially

exposed, do they come

up

onto the surface at a level of255 m a.s.l .

(J.

Buraczynski

et af.,

1992). A residual hill (315

m

a.s.l.) is

found

on the graben edge, NW of Tomasz6w Lubelski

. It is buill

of finely grained

,

weathered, rust-yellow coloured quartz-glauconitic sands

(J

m). Among heavy minerals there are found the resistant ones, lounnaline42.5%, staurolite and diSlhene 23.1 % as well as ruti le 13.2%, of similar compositions to the unweathered formations (Tab. I). At its ceiling

in

a one meter layer, there are sandstone concretions with goethite-hematitic cement

(PI. I, Fig. 8). They are flat, 20-50 em in diameter and 5--10 em in thickness. Their

surface is s

mooth, of mettalic brown colour and the floor is not equal to appendices.

In the Solokija valley near Laszcz6wka, two boreholes were made on the terrace.

Under the Quaternary sediments (9-

10

m), quartz-glauconitic sands and silts were drilled. Their

thickness was 19 m in

the Laszcz6wka 29 borehole and 40 m in the Piekielko 30 borehole which is 400 m away (Fig. 3).

Eocene fonnalions

in

both boreholes are lithologically similar

(J.

Bumczyl'iski et at., 1992). They are formed of grey-green quartz-glauconitic sands of streaked texture and micrite clay binder. In grain-size composition, they are fine-grained sands predominantly in the 0.05-0.

1 mm fraction

(70%) with silt added (Figs. 4 and 5). The fraction above 0.2 mm

is concentrated in

streaks constituting 25%.

In

some sites, thin interbedding of coarse sands (0.5--

1.0 mm) is found. The carbonate contents are about 5%. £ocenc outcrops near

Ruda Woloskaare built of medium-grained sands

(Mz =

3), intensely green and decalcified

(1. Buraczyriski, J. Gurba, 1977/1978).

Studied deposits for the Laszcz6wka (Fig. 4) and Pi ekielko (Fig. 5) profiles are charac- terized by grain-size parameters: mean grain diameter Mz

=

4.40-4.67 and 3.87-4.64;

standard deviation crt

=

1.39-1.69 and

1.15--1.53, skewness Ski =

0.58-0.74 and 0.42-0.71

and kurtosis

KG =

0.60-0.76 and 0.72-0.77, respectively

. Deviation

values

(a[)

point to

poor sorting of th e deposits under dynamically changing con

ditions.

The formations

accumulated from the s

uspension in

an environment of weak currents favouring sedi

men-

tation.

(5)

Middle Eocene in the Solokija Graben 011 Roz!oc1.1l Upland 743

Ta b 1 e 1 in (rac:lion O.O5-().l mm

GAR TUR Z'R RUT TIT DIS STA AND TOP

'.6

42.9 8.7 13.3

6.'

4.6

S.,

2.0 1.4

II.S 4S.S 3.8 4.'

1.9

IS.O 4.S 0.3

-

7.S 42.S 3.' 13.2

o .s

14,8 '.3 2.3 4.6

xcnc, EPI- epidote, GAR _ gamet, TUR - tOllmmJinc, ZIR - iircon, RUT - rutile, TIT - titanhe, DIS-

Quartz (80%)

is

the main mineral material and glauconite of 0.05-0.1 mm diameter constitutes 10-15%. The content of heavy minerals in the fraction 0.1-0.25 mm is 0.2-0.3

% and in some places increases toO.7%. Opaque minerals (50-80%) are predominant (Tab.

I). Among transparent minerals, a set of resistant and of medium-resistance mineral

,!:oszcZOwko

~

~~~

EJ ... r.r.~>1 IWIillI r"il

:.~.':~:'

" ~

1 2 3 4 5

Fig. 3. Geological section or Sotokija Graben (nftcr J. Burnezynski el (II .. 1992)

Quntcrnary: I _ alluvial deposits. 2 _tcmtCc sands, 3 - colian·deluvinl sands, 4-1ocsses, 5 - fiuvi.31 sands, 6 _ S.3I1dy lill; Pliocene: 7 - qu:\rtz.glnucollhic &ands; Maeslrichtinn: 8 - marls, 9 - gaizes; iO - fnutts;

boreholes: 28 - l:.aszcWwkn 28, 29 - t.aszcz6wka 29, 30 - Piekiclko 3(}

Pnekroj geologiczny przez row Solokiji (wedlug l. Burnezyriskiego j in., 1992)

Czwmtorle<!: I _ nluwin. 2 - piasld tar:lSowc. 3 - piaski eoliezno-deluwinlnc, 4 - Iessy, 5 - piaski rzeczne, 6 - g1ina zwalown; pliocen: 7 - piaski kwarcowo-glaukonilowc; mastrycht: 8- margIe, 9 - opoki; I 0- uskoki;

otwory wiertnicze: 28 _ 1:.aszcz6wka 28, 29 - t.nszez6wko. 29, 30-Pickielko 30

(6)

744 Jan BuraC'l)'dski, Zdzistnw Knowski

Uthology Granulation Mz

0 . 1 2 3 ' 51

Fig. 4. Grain-size composition and paramde~ in phi scale in t.a5zcWwk:l29 profile

M~ - mean diameter, Cl- slnndard devinlion. SkI -skewness. Ko- curtosis; lithology CJ(planatioos as in Fig. 3 Ul.iamicnie i parnmwy uziarnienia w skaJi phi w prolilul:..aszcWwkn 29

Mz - ~~njD. ~rednie:l, 0'1- gruficmy wsp61czynnik wysortowania, 541- gr:lficzna skotnoU. KG - kurtoza;

objunienin litologiijnk nn fig. 3

associations are predominant. tn the Laszcz6wka profile, there are found tourmaline and dislhene and staurolite (10% each). zircon and rulille (5% each), as well as epidote (3%) .

However, in the Piekielko profile lounnaline (40%) as well as disthene and staurolite (20% ) occur in J argeramounts. Theamountofind ividual transparent minerals in the vertical profile

is variable. In the upper part of the Laszcz6wka profile there are amphiboles, chlorites and garnets whereas they are not found in the lower part. Moreover, there are larger amounts of disthen. staurolite and rutille there. Compared with the Luszawa profile(J. E. Mojski el oJ.,

1966) they contain more quartz by 20% and half as much glauconite. In these profiles an association of resistant minerals is predominant and in the Luszawa profile their amount is twice as much. The differences in heavy mineral composition can be explained by different fields of sources and sea depth. Moreover, the examined profiles lack phosphorite concre~

tions.

CHARACfERISTICS OF GLAUCONlTE

Characteristics of glauconite were measured for a sample from 27.6 m from the Laszcz6wka 29 borehole and 9.6 m from the Piekielko 30 borehole. Glauconite removed by a magnetic separator was subjected to chemical. x~ray. thermal and radiometric studies (Z. Krzowski, 1993).

(7)

Middle Eocene in the Soiokija Gr.aben on ROl.loctC Upland

MI. 5. Gmin-siz.e composidon and ~tel1 in phi scalc in Piekicll:o 30 profile EKplanations - sec Fig. 3 and 4

Utinmienic j paramelry uziamicni:a w sknli phi w prolilu Plckiclko 30 Objdnienilljak na fig. 3 i 4

74'

A sample from

Laszcz6wka contains

1

3.2% glaucon

ite. Glauconite

grains are, gree

n,

black, beige and rust coloured. Black colour is most frequent. In the grain-size composition, the 0.2-0.24 mm fraction (69.3%) is predominant. Grain morphology is varied. There are egg, capsular, tabular, spheroidal, verrucose., d

iscoidal and·

mixed shapes.

G

lauconiteoccurs in

threedensi~ fractions. 1be 2.5-2.5 g/cm

J

fraction includes 76.3%

ofthc glauconite, the 2.4-2.5 gfcrn fraction

-

19.3% and the 2.3-2.4 glcrn 3 fraction

-

only 3.4%. "The percentage content of glauconi

te.

prevalence of thick grains of various morp

hology

and lack of detrital grains as well as relatively high de

nsity indicate

that glauconi

te is authigenic. syngenetic with deposit accumulation.

X

-ray diffracti

on. bes

ides diagnostic reflexes

for g

lauconite.

did not show stra

nge minerals

(Fig. 6a). A broadened and indisti

nct basic reflex

(001) points to a low degree of

glauconite structure orde

r. Diffraction of

air-dried preparation after saturat

ion

with glycol

a

llows classifation

of glauconite as disordered, constituting a mixture of illite and smectite

(8)

Jan Bumcl)'ftski, Zdzislaw KnoW5ki

Table 2 Chemical eomposition or glllueonlle

I:.IIszez6wka Piekielko

Component number of C31iolls number or cations

wei&ht percent per molecule of weight percent per IQ(llccule of

glauconite glauconile

SiOz SO.90 S; 3.791 47.00 S; 3.574

AI"" 6." AI4 0.209 1." AI4 0.426

FelOllObl 20.40 AI~ 0.400 21.90 AI6 0.287

Fo>O,

17.60 Fe· 0.985 19.40 Fe'+ 1.111

"'"

2.48 f-eh 0.157 2.2S Feh 0.142

MaO 3.92

M .

0.434 4.S7 Mg 0.517

<,0 ". <

0.703 1.92

<

0.768

N.,o

0.04

N,

0.'"

.41 N,

0.069

CoO 1.89 Co 0.078 1.02 Co 0.036

H,o- 3." 4.12

H,o· 6.13

'.69

"'3>

0.16 0.12

p,o,

0.71 0.49

ST 0.08 0.06

v 0.019 0.015

D ,

0.002 0.032

lOI (6OO'C)

6.19

8.09

LOI (IOOO·C) 1." 0.04

Sum 99.79 99.89

(liS). Thecontent of smectite packs is 20-30%. which indicates

a polymorphous type 1 Md . The disordered inner structure of glauconite grains and their great poros

ity are shown in scanning photos (pI.

n,

Fig. 9).

The curves of thermal differentiation analysis show three distinct endothermal effects

at the temperature maxima

160,

575 and 950·C (Fig. 7a). Mass

losses

were 2.7 and 4.2%

for the first and second endoeffects, respecti vely. The lotal Joss of the heated sample mass

was

10.4%.

Thechemi

cal composition of glauconite from Laszcwwka is as fol

lows: Si0

2 - 50.9%.

AI 20 3

-

6.9%,

F~03 -

17.6%, FeO

-2.5%, MgO-

3.9%

,~~O-7.4%, Na20-

0.04%, Cao -

1.9%. Besides the

increased content of

F~03 (1

7.6%), thi s is a typical chemical composition of glauco

nite, not

differing from the average (1<. Smul ikowski, 1924).

The crystaJlographic formulas of glauconite, after calculating the results of chemical

analysis to sum to 22 negative e

lemenlary charges (Tab. 2)

using the

Hendrick and Ross method, are of the form:

(KO.103N ... Do.07 .)(F~~"Mg0.434AI~Ioo)[s;,.191AlbV20901ll(OH)2J

(9)

Middle Eocene in the SoIokija Gruben on Roz.tocze Upland 747

The sample from the Piekielko borehole includes 17.1 % glauconite. In the grain-size distribution there can be observed different grain sizes. The 0.5-0.25 mm fraction con- stitutc?s 15.8%,

the

0.25-0.2 mm fraction - 25.2%, the 0.2-0.16 mm fraction - 26.3%

and the

O.I6--{).1 mm

fraction - 21.7%. The grains of over 0.5 mm diameter occur indi vidually.

The most frequent colour of glauconite is dark green though there can be found light green, black, beige and brown grains. Glauconite grain morphology is differentiated. There are egg-shapt:d, ball-shaped, venucose, capsular a nd discoidal grains. The density fraction 2.4-2.5 glc m 3 is definitely predomina nt (99. 1 %) in spite of great morpho logical diversity of grai ns.

Morphological features, greatdi versity of shapes and sizes os well as lack of high content of detrital g ra ins in the deposit points to the glauconite' s authigenic character syngenetic with th e deposit development. Beige and brown colours of some grains are the evidence of weatheri ng processes. Lack of de nsity variability in the glauco nite roof layer indicates that it was washed by waves.

X-ray examinatio ns show poor ordering of glauconite internal struc ture and diagnostic reflexes are found on its powder d iff raction pattern (Fig. 6b). X-ray diffraction of air-dried dreparntion after saturation with ethyle ne glycol shows that it is a mixture of illite and smectite. The 20-30% conten t of smectite packs is the evidence for a polymorphous type IMd. The glauconite grains arc characterized by disordered internal struc ture and great porosity.

Thennal studies confirm glauconite mineral heterogeneity and high content of swelling packs. The the nnal curves show e ndothennal e ffects with three max ima. The mass loss for the endoeffect at t60"C is 3% and a1575

"

C is 4%. The total mass loss for the heated sample is 10% (Fig.7b).

The c hemical composition of glauconite from Pieki elko is 3vernge except for low 5i02 content (47.0%). The chemical anal ysis of glauconite (Tab. 2) a llowed calculation of structu ral formulas which are as fo llows:

Composition of octahedral cations and their number not exceeding 2.0 enable classifi-

catio n of glauconite from thet.aszcz6wka and Pieki elko profiles as mica dioctahedra with

small defects in octahedra. Ana lys is of glauconite external fea tures (decolourization of

some grains) and x-ray characteristics as well as chem ical composition show that the

examined glauconi te underwent wC3thering which caused its secondary transfonnation.

(10)

748

i f

• ,

lO,u4

." •

"

Jan Burutzyliro, Zd%isl;aw Knowski

,

G ioU co

,

,u

,~

'" , , ..

2,12

,

" i

, .

" I "

• .. ..

,

'"

a

, '."

b

. 1 " " " . i

" .. ..

Fig. 6. X-ray dirrrac!ogr.uns of powder specimen of glaueonite: a - from t.astct.6wlc:l 29 profile. b - fronl Piektelko 30 proIHe

Dyfrnklogramy rcntgtf10wskie prepa.mlu proslkowcgo glaukonitu: a - z profilu t.aszcrowb 29, b-z promu Pickiclko 30

ABSOLtrrn DATING OF GLAUCONITE

Lately, much attention has been paid to importance of dates obtained by isotope

geochronology methods.

or

minerals suitable for mdiometric dating of sedimentary rocks, glauconite plays an important role. It is

famled

in lhe under-surface layer of sediments and

is sensitive to temperature. salinity, oxidizing-reducing potential changes as well as to other environment parameters.

It

is one of the sedimentary minerals containing potassium in

amounts sufficienllodetermine isotopic age. Glauconite has been used as a marine sediment

index for stratigraphic-palaeogeographical aims.

Numerous stud

ies of sedimentary rock age by means of glauconite show that conver-

gence of geochronological and geological data can not 31wnys be obtained. Glauconites tend to lower radiometric data compared with geological methods by about 20% and sometimes even by 40%

(G.

R. Thompson, J

. Hower. 1973).

Glauconite from the Laszcz6wka and Piekielko profiles was s ubjected to radiometric dating. This mineral is characterized by high

~Ocontent

in spite of partial weathering and imperfect internal structure ordering. In the laszcz6wka profile

its content is 7.38%

and in the Piekielko profile

7.92%.

The radiomelric dating s howed the argon age for the

sample from

the bottom layer of

the Laszcz6wka profile to be 39.S±3.0 million years and for the sample from (he top layer

of the Piekiel:ko profile to be42.2±3.0 mill

ion years (Z.

K.rz.owsk.i.

1993).

Theagedifference

(11)

Middle Eocene in !he SoIokija Graben on ROZIOC7.e Upland

'" IV ."

OTA no

1"""-\

OTA

l' ." ..

I

• ,.

• I\. I

,

TO

• .. .. '" I I ..

a b

a b

749

Fig. 7. Differential!hermal anal)l$is (DTA) curves of glauconite: a - from t.aszcz6wka 29 pmr.Je, b - fmm Pickielko 30 profile

Knywe tenniczne anali%)' ro:micowej gtaukonitu: a - z profilu I:.a>.w.:dwkll 29, b - z profilu Piekielko 30

of 2.7 million years for both samples is within the error limit. The obtained dates correspond to Bartonian, at present numbered as Middle Eocene (W.

B.

Harland

et ai.,

1989). This age is also confirmed by studies on carbonate nannoplankton by E. GaUlzicka (1994) which specify the age of these sediments as Middle Eocene, level NP 16 (E. Odrzywolska-Biefiko- wa, K. Potaryska, 1978).

Convergence of the dates obtained by different methods confrrms reliability of the potassium-argon (K-Ar) method in doubtful stratigraphic problems concerning Tertiary sediment series in the Lublin region.

PALAEOGEOGRAPHY OF SQI:.OKUA GRABEN

Gradually damping movements of Laramian orogenesis rejuvenated lability of rigid foreland during the Palaeogene (K. Potaryska, E. Odrzywolska-Bietikowa, 1982). Trans- gression developed due to eustatic changes of the world see level. The Eocene seaconsisted of two basins: the eastern European and the western European.

In the Middle Eocene the marine transgression from the West reached the Lublin Upland joining the eastern basin (F. Kockel, 1988; S. A. Moroz. J. P. Sokolov, 1988; A. P.

Vinogradov, 1966). Numerous Eocene sites on the Lublin Upland indicate that the sea reached the Metacarpathian Ridge. The sediments dated in the Soiokija Graben indicate

(12)

750 Jan Buraczyll.ski, Zdzislaw Knowski

that flooding of the Upland happened in the Middle Eocene, level

NP 16

(E.

Gatdzicka, 1994). Thestudied sediments come from the transgression described so far as Upper Eocene (K. Potaryska, E. Odrzywolska-Bienkowa, 1977; B. Kosmowska-CeranowiczetaL. 1990).

Regeneration of old faults and development of folds took place at the tum of the Cretaceous and Tertiary periods in the Laramian orogenic phase

(R,

Ney. 1969; W.

Potaryski, 1974; M. Harasimiuk, A. Henkie!, 1981; A. Henkle!, 1984). The tectonic activity intensified in the

Zamo~ -

Rawa Ruska fault zone due to which the Sotokija Graben developed. The Solok

ija

Graben is bordered

by

a tectonic edge in the east and

the

Krasnobr6d

-

Lubycza Anticline

in

the West. Directions of main structural elements correspond to main tectonic trends NW-5E

(J.

Buraczynski et aI.,

1992; S. Cie§linski, 1.

Rzechowski, 1993).

C

lastic material deposited in the

shallow coastal zone formed a delta. The Ukrainian Shield and Metacarpathian Ridge were the alimentation region for the delta. The river flowed to the West from the contemporary basin of the uppe

r Bug

and upper Dniesterrivers.

It

formed the delta with the face reaching the Wista valley to the West and the Lubart6w region to the North (1. Kasiriski etat., \993). From the South, delta range is determined by the Wyinica and Por valleys as well as the northern edge of Roztocze bordering with the

land of the Metacarpathian Ridge (Fig.

I). The beginning of delta development is deter- mined by the Middle Eocene sediments found in the Solokija Graben near Tomasz6w Lubelski (1. Buraczynski

et al., 1992) and near Rawa Ruska

and Magier6w

(W.

Rogala, 1912).

At the end of the Eocene, duri

ng the synchronous movements in

the Pyrenees phase of Alpine orogenesis, there devdoped weak block movements which displaced Eocene formations 20

m (Fig. 2). Slight mobility of geosyncline foreland affected poorly developed

and residual Eocenesediments preserved only in the Solokija Graben.

After recession of the sea, in continental conditions, sandstone concretions of goethite- hematitic cement developed

(K.

Radliczjide J. Buraczyfiski

el al., 1

992). The character of concretions shows that they developed in desert climate conditions probably in the Upper Oligocene. These concretions are still found on the residual hill (315 m a.s.

1.

) situated close to the graben edge near Szarowola, which is built ofslI'Ongly weathered quartz-glauconite sands. Similar concretions overlaying weathered Eocene sediments were found near Wola Studziaiiska on the residual hill, at 292 m a.s.1. (S. Cie§Jinski, personal communication).

In recent times the roof of Eocene formations in

the Solokija Graben is at 255 m a.s.1.

and on the residual hill at a height of 3

15

m a.s.l. From

this position it can be concluded that original thickness of the Eocene sediments was greater by at leas

t 50 m. Thus, areal ex

tent during the Eocene was significantly larger, and later denudatioR removed it from the

areas close to the graben. In modern times Eocene sediments are found onl)' in the graben axis and on the residual

hill.

CONCLUSIONS

I.

On the Roztocze Upland

in

the tectonic graben a homogeneous series (40 m) of

slightly carbonate (5%) quartz-glauconite sands is found. The 0.05-0.

I mm fraction (70%)

(13)

Middle Eocene in lhe Solokija Graben on RoZloeze Upland

75 '

is prevalent in the grain-size composition. The parameters in phi

scale are: mean diameter Mz.. = 3.87-4.64, sortin g a l = 1.15-1.61, skewness Ski =0.42-0.74. Poorly sorted formations accumulated by suspension from weak currents under changing, dynamic conditions.

2. In the mineral composition, quartz content is 80% and glauconite content is 10-15%.

Opaque minerals (50-80%) prevail in the heavy mineral compositio

n. Among transparent

minera

ls are found the resistant ones:

tourmaline (40%), disthene and staurolite (20%).

3.

As

regards morphology, glauconite is represented by different size and shape grains;

the grains of fraction 0.

1-0.25 mm (73%) are predominant. MorphOlogical features indicate

an authigenic character of glauconile which is syngenetic with the sediment development.

4. Glauconite chemical composition

is

typical, not differing from the average. The

in

ternal structure is characterized by a low degree of order and large porosity. The composition of octahedral cations, not exceeding 2.0 in number, makes it possible to include it

into dioctahedral micas of small

defects in octahedrons.

5. The stud ied glauco

nite has a high content

of K20 (7.4-7.9%). The rad

iometric dating

showed the argon age to be 39.5-42.2±3.0 million years. The obtained data indicate Middle Eocene, corresponding to phytopalynological dating of level NP 16.

6. The studies show that marine transgression took place in Middle Eocene, not in the Upper Eocene as it has been assumed so far. C

lastic material was deposiled in the shallow

coastal zone, whose alimenlalio

n

areas were the Ukrainian Shield and Melacarpathian Ridge -

the area of the contemporary basin of

the upper Bug and Dniester rivers.

Acknowledgements. The authors express their thanks

to

Prof. S.

Halas,

Institute of Physics, M. Curie-S

kodowska University,

Lublin for

the radiometric detennination of

glauconite argon age to Dr. K. Radlicz, Polish Geological Institute, Warsaw for the analysis of heavy minerals and

10

M. Se.

K. Jakimowiez-Hnatyszak and E. G6recka for the chemical

analyses.

Zaklad Gcogrntii Regionalnej Uniwersylelu M. Curic-5k10d0wskiej Lublin, Ill. Akademicka 19 Kllledra Gcotechniki Polilecbniki Lubelskicj Lublin, ul. Nadbystrzycka 40 Received: 4.01.1994

REFERENCES

BURACZYNSKJ 1. (198IY1981) - Development of valleys in the escarpment zone of the Roztocze (in Polish with En,lish summary). Ann. UMCS, B, 25126, p. 81-102.

BURACZYNSKJ J., GURBA J. (19TIIl978) -Sandstones of Batiatyczc in Pickiclko sacred spot on Tomaszow·

skie Roztocze (in Polish with English summary). Ann. UMCS, S, 32133, p. 219-235.

BURACZVNSKI J., BRZEZINSKA·w6JCIK T., SUPERSON J. (1992) -Obj:l§nienia doSzczcg6towej mapy pologicznej Polsn 1:50 000, ark. Tomasz.6w LubelskL PaJislw. Ins!. Geol. Warszawa.

CIESLINSKI S .• RZECHOWSKI J. (1993) - Mapa geologiczna podlota czwarto~~ RoZiOCZll micdzy Tomaszowem Lubc:lskim a Hrebennem. In: Tektonika Roztocza ijcj aspekly sedymentologicUIC, hydrogeo- logiczne i geomorfologiczno-krojobrozowe (cds. M. HlltllSimiuk i in.), p. 39-46. UMCS. Lublin.

(14)

752 Jan Buraczyl'iski. Zdzislaw Knowski

GAZoZICKA E. (1994) - Middle Eocene calcareous n:lllnofossiis from the RoZlOC7.e region (SE PoI!lIld) -their biOSlr.!.tigraphic and palacngoogmphic significance. Geo!. Qu:u1., JB. p. 127-138. no. 4.

HARASIMIUK M .. HENKIEL A. (1981)- Post-Cretaceous tectonics at northern slope oflhe meta-Carpathian Swell in tile Lublin arca (in Polish with English summnry). prz. Geol., 29, p. 511-573, no. II.

HARLAND W. B .. ARMSTRONG R, L., COX A. V .. CRAIG l.. E .. SMlTII A. Go, SMITH D. G. (l989)-A goological time scnJe 1989. Cambridge Univ. Press. Combridgc.

HENKIEL A. (1984) - Tectonics of Me.w-CainD7.oic rover of the notthem slope of the Mctacarpa.tlUan Swell (in Polish with English summary). Ann. UMCS, S, 39, p. 1S-38.

HENKIEL A. (198&:1) - New investigations of the Tertiary cover in the north-western part of tbe Lublin Upland (in Polish with English summary). Biul. LTN, 30, p. 73-78, no. 2.

HENKIEL A. (1988b) - New investigations oCthe Paleocene in the nonh-westem partofthc Lublin Upland (in Polish with English summary). Biul. L TN, 30, p. 67-71, no. 2.

KASII'iSKI J., P[WOCKI M., TOtKANOWICZ E. (1993) - Upper Paleocene facies setting in northeast Poland and its control of amber distribution. 2-nd Bnltic Conference Vilnius. Abstracts, 39.

KOCKEL F. ed. (1988) - The NW &!ropea.n Tertiary basin, Eocene. pnlaeogoography. I :2.500,000. In: The northwest European Tertiary basin (ed. A. Vinckcn). Gool. Jb., A 100.

KOSMOWSKA-CERANOWICZ 8., KOCISZEWSKA·MUSIAt. G., MUSIAt. T .. MOLLER C. (1990) - The ambu·he:lring Tertiary sc:dilMnts near Parczew (in Polish with English summary). PT. MlIL Ziemi, 41, p.

21-35.

KRZOWSKI Z. (1993) - Trucio~owc osady glaukonitowe na Wyi,ynie Lubelskiej w gwietle ~ochronologii

iz.otopowcj glaukonitu. PT. Nook. PL., 231.

KULCLYCKA J. (1975) - Sprawozdanie z badmi gcologiczno·1;wi~dowcz)'ch 1.2 twirami w rejonie Tomnszowa Lubclskiego. Arch. panstw. Inst. Geol. Warszawa.

MARSZAt.EKS., ALBRYCHT A., BUt.A.

s.

(1991) -Obj:LSnicniado S=g6lowej mnpy gcologiCZllej Polski 1 :50 000, ark. Niedtwica. Pal\stw. Inst. Geol. War:szawa.

MOJSK I J. E .. RZECHOWSKI J., WOZNY B. (1966)-Upper Eocene al Luszawa on Wieprz river nenr LubLU1~W (in Polish wilh English summary). Pn. Gool., 14, p. 513-517, no. 12.

MOROZ S. A., SOKOLOV J. P. (1988) - Stratigrafija nitniego p~JcogelUl sieviernoj Ukr.liny. Tektonika i stratigrnfija. AN USSR,lnst. Gco!. Nauk., 29, p. 74-78.

MUSIAl. T. (J987)-MioceneofRoz..oeze(south·ca.stcm Poland) (in Polish with English summary). Biul. Geol.

Wydl.. Geo!. UW, 31, p. 5-149.

NEY R. (1969) - The Miocene of the southern Roztoctt. between Horyniec and t.6wcza, nnd the adjacent urea of the Carpathian foredeep (in Polish with English summ,1ry). Pro GooJ. Komis. Nauk Gool. PAN, Krakow, 60.

ODRZYWOLSKA·BIENKOW A E., POZAR YSKA K. (1978) - Biostr.ltigr.lphy and isotopic age of Middle and UppcrEocenejunction beds f[omthe: S=cin IG I borehole(in Polish with Eng[ishsummary). Kwrut. Geol.,

n,

p. 611..{i18, no. 3.

POZARYSKA K., LOCKER S. (1972) - Les organismes planClOniqucs de I'Eocene superieur de Siemiefi.

Pologneoriental. Rev. Micropaleont., 14. p. 57-72, no. 5.

POZAR YSKA K .. ODRZYWOLSKA-BIENKOWA E. (19TI)-On lhe Upper &eene in Poland (in Polish with English summary). Kwart. (kol., 21, p. 59-72, no. I.

POZARYSKA K., ODRZYWOI..SKA-BIENKOWA E.. (1982)- The innuenceoftectonicson sedimentation in the Polish Lowlands in the Tertiary (in Polish with English summary). PrJ.. Gco!., 30, p. 589-591, no. II. POZARYSKI W. {1974)- Obszargwiefokrzysko-Iubclski. In: Budowa gco!ogiczna Polski, 4, Tektonika, C"l.. I,

p.349-363.

ROGALA W. (1912) - 0 utworach ol!gocel\skich na Roztoc"zu Lwowsko-RBwskim. Kstega Pnm. XI Zjazdu l..ekarzy i Przyr. Krak~w, 228.

SMULIKOWSKI K. (19'24) - 0 glaukonicie. Kosmos. 49, p. 502-544.

lHOMPSON G. R., HOWER 1 . (1973) - An e)(pianation for the rndiometric Pges from glauconite. Geochim.

Cosrnochim. Acta, 37, p. 1473-1491.

UBERNA 1. (1981) - Upper Eocene phosphate-bearing deposits in nOl1hern and eastern Poland. BulL Acad. Pol.

Se., 29, p. 81-90, no. I.

UBERNA 1., ODRZYWOLSKA-BIENKOW A E. (I m) - New localities of the Upper Eocene in northern parts oCtile Lublin region [m Polish with English summary). Kwart. Gee\., 21, p. 73-84, no. I.

VINKEN A. (1988) - The Northwest European Tertiary Basin. GeoL

So ..

A 100.

VINOGRADOV A. P. ed. (1966) - Atlas of lithological·paleogeographicpl maps of the USSR. Acad. Sc.

USSR, 4.

(15)

Middle Eocene in the SoJolcija Grabt:n on ROl.lOC7.C Upland

Jnn BURACZYNSKI, Zdrislaw KRZOWSKI

EOCEN SROOKOWY W ROWIE SOLOKIJI NA ROZTOC'W

SlreSl:Cl:enie

W rowie SOOkiji, naobsmnc 2 x 2Okm, wy$l~puj~ u1wory COCCMkie pod cicnkll pokryw;I a.wart()l'7.((lu. w poziomie 215 m n.p.m. Tworva one drobnoriamiste pi:Wd kw:tn:owo·glllUlconitowc 0 spoiwic ilastym i maksy·

malncj miqszoki 40 m (0tw6r wkrtnia.y Piekielko lO). W ieh skbdtie il'lll1ulomclryewym Prl:(lwata rrokeja O,S-O,I mm (70'i1». Ccehuj~ si~ wskafnikami utiamicni:l Mz '" 3,87--4.64, wysortowanicm CJl = 1.1S-1,53,

sko~notci~ St= 0,42-0,7] oraz kurto~ KG '" 0,72-0,77. Wysortowanie osadu jest stnbe, co WSWJ.lje na zmicnll:l dynnmikc I nlrumutacjc zawicsiny w lrodowisku slabych pr.jd6w. GI6wllym twonyW1:m mincmlllymjcst kw::tn::

(80%); gloukonil 0 ~Rldnicy riam O,OS-O.l mill wy5t~puje w iloki ]0-15%.

W sldodlie mincraJ6w c~tkich prl:(l~toj~ mincrnly nieprZc'UOCzyste (SO-&o...). Mincraly pr7.C'UOClysle RlPRlt.Clltuje zesp61 mincral6wodpomych i.fRldnioodpomych: turm:JJin i dystcn +1l!:1urolil po 10%, cyrkon i rulyl po 5% oraz:epiOOI 3 .... W badanyeh profil3Ch nit stwicrdtonO konlcrecji rosroryt6w.

Pmbh l Olworu Picldelko 30 llIwiCl'll 17, I.., ilaukonitu barwy ciclTll1o:r.ielonej

°

u6tnicowancj morfologii zinm. ZOecydowanic ~wata (99,I") {rokcjn pokiowa 2,4--2,5 glem'. Cochy morfologiC:WCriam g1aukonilu wskaZU,R na lIutigeniCUlY chaml:ter, syngcnelyemy z rozwojcm osadu. Ziamn te ccchuje nicupDr7.QdkoWlUla Slruktura wcwoetrzna i dub porowliloU. Skl:w;l memiCllly glaukonilu opr6cz niskicj llIwart~ci SiOz nit odbic8ll od paccietncto. IegD wWr strukturnlny rna postat:

Sklad kaiion6w oktacdrya.nych i ich liczba (ponikj 2.0) wSkWlj:). t.c glaukonit nalefy do mik dioktacdry- CUlych 0 niewielkich defdi:l!ich w oIctaedrnch.. Oatowaniem glnukoniw ml:lod~ potasowo'3rgono~ stwicrdwno wiek39,.5t3,Oi 42,2±J,Omln I.iu, wsb:tuj~y naeoc;:en$fodkowy. Bad,,"i ... ntlnnoplanklonu ~glanowego l.IIIia.aj~

Ie utwO£)' rowniel do eocenu trndkowego (E. Gaf.d7.k:b. 1994).

Ucxne Slanowiska 0$3dI)w COCCIlU na Wytynie LubelsL:iej wskazuj:l. '1c Il'IOI'ZI: wkroczylo na w:d melakarpa.

dei. Material klastyc%lly osadlH si~ w plytkiej UlIOCC I~ dl:lt~ Obnarem nlilTlC11tacyjnym deity lubelskiej byla tafCUI ukr.Utisk:a i waI melakttrpackL Rxcka plyn~ na 1lIch6d obc:jmowa/n wsp6lezesne dorl:ecz.eg6mcgo Bugu i a6mego Oniestru. PocZll;tdi: deity W~at:7..3j:j OSlIdy poIo1oIle w okoliey To!lWzow3. Lubelskic:go, Rawy

Ru.~kiej i Magierow3.. PoIudniowy bneg deity W)'Vl:lrnl dolina Solokiji, p6tnocn3. krn~dt ROZIocza ornzdoliny Poru i Wytnicy.

Po wycoraniu si~ mona. w utwornch Iych utwony/y si~ konkrc:cje pi'lSkowCtl. ospoiwic gctylowo·hcrnatYI1>

wym. Rotwirw;ly 5i" one w warunkach klinUilu pWllynncgo. Konkrccjc Ie wYSI~p\lj~ Iln twJclnalych 0500ach coccnu, nn ostMcU 0 wysok~ci 315 m n.p.m. pay krnw¢zi mwu SoIokiji onn n3.QStlll'leu 292 m n.p.m. pn;y p6lnocncj kta~ Ro:aocza kolo Woli Slud:ti:mskicj.

(16)

Geol. QuatI., No.4. 1994 PLATE)

. . ... ..

, ':I.~ f" ~ ~ " .

• .$..." ••• ~ ~.'. - ],: .if..~'

. i .. '.\, • . ~ ... < .r.. .. ~~

' • \0' • • I I:~' ~ . '1'\ -,,'" ' j.IM ...

L , . .

~.~. ~

!t il. i~ ~". ·

. .. -... . • • ... ~:Jt"'f'.. . ~.-.." • . , • ~ .,... ... ' ~ ' • .' .

, • ~. ' , IJ " t .. ,. ,t'.

--I ~ " . . 1: i 6 j ' .~ " ." , .. '.'. ~ . a ,..: '''' .

.. ' • • ' ~,,""PI' '4"

, •. - • • \'I. . t , ' ... .. f J" • . ~ t.- 'JI ~, t I (Ii. '. . !! .... "- .... . .. , i ~ ' . ,,. ~." . , •. ~T. ~.~' • .... '. .~' t;.,. , ~

.. . . , tt1 .-"-'.' . ' , . ~) .• "

Jan BURACZYNSKI, Zdzislaw KRZOWSKI- Middle Eocene in the Solokija Graben on Roztocze Upland

(17)

Gcol. Quart., No.4, 1994 PLATE 11

<

I

Jan SURACZYNSKI, Zdzislaw KRZOWSKi - Middle Eocene in the Solokija Gmben on ROllOC/.e Upland

Cytaty

Powiązane dokumenty

Our analy- sis of the trench record based on the original description and figures, complemented with our own field observations and photographs, contradicts the interpretation that

Estimation of the density of the eruption length of 107 eruptions of the Old Faithful geyser: the estimator f 7 resulting from the algorithm has bandwidth h 7 = 0.25... Estimation

Now here it is the picture which demonstrates us the real shape of chain and sagging in a horizontal position with sprockets (Fig. We made the experiment using special test

The pres ent au thor (Chrz¹stek, 2013a) de scribed, from the mid dle Turonian sand stones of D³ugopole Górne Quarry, an as sem blage of trace fos sils com - pris ing

Com par i son of Priabonian dinoflagellate cysts from the Leliszki suc ces sion and the Priabonian part of the Popiele Beds at Koniusza (Gedl, 2013) show sig nif i cant dif

A 3D model of the de pos its in the Nowodwór-Piaski area is con structed on the ba sis of out crop and GPR data with the use of mul ti ple-point sta tis ti cal meth - od ol ogy to

The trace fos sils as sem blage oc cur ring in the lower part of the D³ugopole Górne sec tion con tains mod er ately di verse trace fos sil as sem blage, typ i cal of

which no human power Can parcel or enclose; the lordliest floods And cataracts, that the tiny hands of man Can tame, conduct, or bound, are drops of dew To thee,