• Nie Znaleziono Wyników

British Chemical Abstracts. A. Pure Chemistry, January

N/A
N/A
Protected

Academic year: 2022

Share "British Chemical Abstracts. A. Pure Chemistry, January"

Copied!
105
0
0

Pełen tekst

(1)

BRITISH

CHEMICAL ABSTRACTS

'jff

ISSUED BY THE ’...

BUREAU OF CHEMICAL ABSTRACTS

19 3 3

A —PURE CHEMISTRY

BUREAU

[Representing the Chemical Society and the Society of Chemical Industry]

Chairman: G. T. MORGAN, O.B.E., D.Sc., F.R.S.

JULIAN L. BAKER. A. J. GREENAW AY.

FRANCIS H. CARR, C.B.E., D.Sc. J. T. H E W ITT, M.A., D.Sc., F.R.S.

R. T. COLGATE, D.Sc. W. MACNAB, C.B.E.

F. P. DUNN, B.Sc. EM ILE S. MOND.

E. V. EVANS, O.B.E. T. S. MOORE, M.A., B.Sc.

Editor: T. F. BURTON, B.Sc.

Assistant Editors:

F. G. CROSSE, F.I.C .

J- J-

FOX, O.B.E., D.Sc.

H. M. DAWSON, D.Sc., B.Sc., Ph.D., F.R.S. E. H. RODD, D.Sc.

H. W. DU DLEY, O.B.E., M.Sc., Ph.D., F.R.S. E. E. TU R N E R , M.A., D.Sc.

A. A. ELDRIDGE, B.Sc. H. W REN, M.A., D.Sc., Ph.D.

Indexer: M A R G A R E T LE PLA, B.Sc.

Offices o f the Bureau: C e n t r a l H o u s e , 46, F i n s b u r y S q u a r e , L o n d o n , E.C. 2.

(2)

BRITISH CHEMICAL ABSTRACTS

A .- P U R E CHEMISTRY

J A N U A R Y , 1933.

General, Physical, and Inorganic Chemistry.

L ig h t ex cita tio n and e m iss io n in h yd ro g e n sp a rk s u n d e r in crea sed p re ssu re . W . F i n k e l n - b u h g (Physikal. Z., 1932, 3 3 ,888— 889). A. J. M.

B a n d s due to the h y d ro g e n m o le cu le : 2 p 3n

b a n d s o f h y d ro g e n . I. Sa n d e m a n (Proc. R oy.

Soc., 1932, A , 138, 395— 411).—-The proposed arrangement o f the new H 2 bands described by Richardson and Davidson (A., 1931, 887) is criticised, and a simpler scheme is suggested. L. L. B.

O p tica l in v estiga tion s o f the a cco m m o d a tio n co e fficie n t a n d d istrib u tio n fu n ction fo r m o le ­ cu la r tra n sla tion at lo w p re ssu re s. L. S. O rn-

s t e i n and W . R . v a n Wi j k (Z. Physik, 1932, 78, 734— 743).— A Fabry-Perot etalon was used to measure the distribution o f intensity in a spectral line o f He, and calculations are given relating this distribution to the distribution o f velocities in the gas; the calculations give an accommodation eoeff.

o f 0 3 for He colliding with a glass wall at 650°.

A. B. D. C.

O p tica l in v estiga tion o f the co llis io n s o f gas m o le cu le s w ith a w a ll. L. S. Or n s t e i n and W . R.

v a n Wi j k (Proc. K . Akad. Wetenscli. Amsterdam, 1932, 35, 722— 726).— The problem o f the collision o f gas rnols. with a wall has been investigated by spectroscopic observation o f an electrical discharge in He at 0-01 cm. pressure, contained in an annular space between two walls, the inner cooled, and the outer heated to 320°. J • W . S.

Q u a n tu m defect fo r h ig h ly excited S states of p a r a - and o rth o -h e liu m . L. P. Sm i t h (Physical R ev., 1932, [ii], 4 2 , 176— 181).— Calc. vals. o f the quantum defects for the o- and p-systems are 0-289 and 0-160, respectively, compared with 0-230 and 0-122 obtained by Hylleraas (cf. A., 1930, 1487) uncorrected' for polarisation o f the atom core, and 0-298 and 0-140 needed to yield the experimental

term vals. N. M. B.

P h o to m e tr ic in v estiga tion of the m o s t intense e m is s io n b a n d s of flu orin e. J. Aa r s (Z. Physik, 1932, 79, 122— 138).— A discussion o f the intensities o f F , lines in bands at 17,439,16,379, and 18,548 cm.-1

2 A. B. D. C.

S p e ctr u m o f d o u b ly -io n ise d n eon ( N e i u ) . T. L. d e Br u i n (Proc. K. Akad. Wetensch. Amster­

dam, 1932, 35, 819— 826).— Ne i ll spectrum has been photographed to 2000 A., and new lines have been measured and classified. J. W . S.

L ifetim e o f the m e ta sta b le SP 2 n e o n a to m . E . Ma t u y a m a (Physical R ev., 1932, [ii], 4 2 , 373—

378).— Measurements o f the rate o f decrease o f absorption o f the 6402

A.

line o f Ne excited by a high-frequency oscillatory current gave the val.

0-005 sec. at 5-2 mm. pressure. N. M. B.

D u ra tion o f m e ta sta b le states : n e o n . J. M.

An d e r s o n (Canad. J. Res., 1932, 7, 434— 443; cf.

A., 1931, 781).— Decay curves for the absorption lines XX 6402, 6334, 6266, 6163, 6143, and 5945 at room and liquid air temp, are shown for a series o f pressures, and half life-pressure curves are re­

corded. A t the same pressure and temp, the rate o f decay varies for different linos. N. M. B.

E n e rg y b a la n ce o f a p o sitiv e c o lu m n o f s o d iu m v a p o u r. M. J. Dr u y v e s t e y n (Physikal. Z., 1932, 33, 822— 823).— The distribution o f radiation be­

tween the D lines and the infra-red bands o f Na vapour has been measured for a column o f Na vapour.

W . R . A.

C on tin u ou s s p e c tru m o f s o d iu m . H. Ham ada (Nature, 1932,130, 811— 812). L. S. T.

V ib ra tio n a l a n d ro ta tio n a l stru ctu re o f y e llo w - re d e m iss io n b a n d s p e c tru m o f s o d iu m m o le cu le . Y . Uchida (Japan. J. Physics, 1932, 8, 25— 50; cf.

A., 1932, 667).— Full data for rotational fines o f the first five order groups arc given, and fines are identified with the wave nos. calc., with the mol. consts. ob ­ tained from absorption data, and their quantum transitions are fixed. The mol. consts. o f N a, were B0" 0-15399, cq 0-0007, and a, 0-00003 cm .-1 "

N. M. B.

S p e ctra l lin es o f C i v and C l i v . S. C. Deb (Bull.

Acad. Sci. Agra and Oudh, 1932, 2, 43— 50).— The spectral lines o f Cl iv and Cl v are classified. The ionisation potentials are, respectively, 55-17 and 69-36 volts, which are larger than Bowen’s vals. (A., 1928,

210). M. S. B.

C on tin u ou s s p e c tru m o f p u re a rg o n . S. P.

McCa l l u m, L. Kl a t z o w, and J. E. Ke y s t o n (Nature, 1932, 130, 810— 811).— The special characteristics which appear in the spectrum o f highly-purified A

are described. L. S. T.

S p e ctru m o f p o ta s s iu m h y d rid e . G. M. A lm y and C. D. H a u s e (Physical Rev., 1932, [ii], 42, 242— 266).— Full data and analyses for the fines o f 29 bands in the range 4100— 6600

A.

are tabulated.

Absorption bands were masked b y alkali bands except hi the region 4600

4800

A.

Heats o f dis­

sociation are 1-25 and 2-06 volts for the excited and ground states, respectively. A Franck-Condon

(3)

2 BRITISH CHEMICAL ABSTRACTS.— A .

intensity diagram is in good agreement with observed

intensities. N. M. B.

C h an ge o f w a v e -le n g th a n d in ten sity in ir o n , n ic k e l, a n d tita n iu m lin es b y d isru p tiv e d is ­ ch a rg e . H . Na c a o k a, T. Fu t a g a m t, and I.

Ma c h i d a (Sci. Papers Inst. Phys. Chem. Res.

T okyo, 1932, 19, 169— 184).— Line shifts are char­

acteristic o f different spectral series, and are classified into several types. Relation with stellar spectra

is discussed. FT. M. B.

In te r fe r o m e te r m e a s u r e m e n ts in the e x tr e m e u ltra -v io le t r e g io n o f c o p p e r . J. C. M c L e n n a n

and ( M i s s ) F. M . Q u i n l a n (Phil. M a g ., 1932, [vii], 14, 823— 829).— Cu arc lines between A 2276 and 1980

A.

were measured. H . J. E.

H y p e rfin e stru ctu re o f a rc lin e s a n d the n u cle a r m o m e n t o f c o p p e r . R . Ri t s c h l (Z.

Physik, 1932, 79, 1— 25).— Both Cu isotopes have nuclear moment 3/2. A . B. D. C.

S p a r k sp e ctra o f c o p p e r , s ilv e r , a n d g o ld b e tw e e n 1300 a n d 300 A . L. Bl o c h, E . Bl o c h, and J. Fa r i n e a u (J. Phys. Radium, 1932, [vii], 3, 437—

451).— Wave-lengths and intensities are tabulated for approx. 400 lines o f Cu, 640 lines o f Ag, and 540 lines o f Au, in the ranges 1377-4S— 385-94, 1321-02—

260-17, and 1341-58— 296-13 A ., respectively.

N. M. B.

S p a r k s p e c tr u m o f r u b id iu m in the u ltra ­ v io le t. J. J a n i n (Compt. rend., 1932, 195, 1010—

1012).— Using the electrodeless discharge and R b prepared from R bN 3, 96 lines between X 2400 and 2150

A.

have been measured,

of

which

20

are assigned to R b ii, 29 to R b in , and 5 to R b iv.

C. A . S.

F irs t s p a rk s p e c tr u m o f a n tim o n y . R . J.

L a n g and E. H. V e s t i n e (Physical R ev., 1932, [ii], 42, 233— 241).— Full data and analyses for about 200 lines

in

the range 7000— 600

A.

are tabulated.

N. M. B.

H y p erfin e stru ctu re in the a n tim o n y s p a rk s p e c tru m a n d the n u cle a r m o m e n t o f a n tim o n y is o to p e s . J. S. Ba d a m i (Z. Physik, 1932, 79, 206—

223).— Hyperfine structure o f a series o f Sb i i lines indicates the moment 3 /2 for Sb121 and 7 /2 for Sb123.

A. B. D. C.

H y p e rfin e s tru c tu re in the a n tim o n y a r c s p e c tr u m , S b I. J. S. Ba d a m i (Z. Physik, 1932,

79, 224— 230). A . B. D . C.

S p e c tr u m o f io d in e in a d s o rb e d state. D .

Ch i l t o n and E . Ra b i n o w i t s c h (Z. physikal. Chem., 1932, B , 19, 107— 112).— The absorption spectrum o f I sorbed on a chabasite crystal is similar to that o f I dissolved in CGH G or that o f I vapour, except that it exhibits two, or possibly tliree, max. It is concluded that sorption is mol., and that the sorbate consists o f several layers differing in the firmness with which they are attached to the surface. The spectrum is widened somewhat towards the ultra­

violet, compared with the other tw o ; this is ascribed

to sorptive forces. R . C.

E x tin ctio n o f io d in e flu o re s c e n c e b y m a g n e tic fie ld s a n d fo r e ig n g a s e s . W . Be r g (Z. Physik, 1932, 79, 89— 107).— An investigation o f extinction

b y magnetic fields and foreign gases shows that the magnetic field not only itself extinguishes the fluores­

cence, but also increases the effective cross-section o f the mols. for collision with I, N„, 0 „, and A.

“ A. B. D. C.

A b s o r p tio n o f the flu o re s c e n t lig h t o f io d in e b y its v a p o u r . I. I. Ao a r b i c e a n u (Compt. rend., 1 932,195, 947— 949; cf. A ., 1932, 891).— The tem p .- absorption curves o f six lines o f the fluorescence spectrum o f I b y I vapour in air at temp. 23— 270°

show that increase o f absorption with rise o f temp, is due both to the gases o f the air and also to increase in collisions bringing I 2 mols. into various states.

C. A . S.

L a n th a n u m sp e c tra (La I, L a i i. L a i ll ) . H . N.

Ru s s e l l and W . F. Me g g e r s (Bur. Stand. J. Res., 1932, 9, 625— 668).— The available data on the La spectrum have been analysed and the lines classified as belonging to the La i, La n , and La in series.

The ionisation potentials are 5-59 volts for La, 11-38 volts for La+, and 19-1 volts for L a++. D. R . D.

C o llis io n p h e n o m e n a o n o p tic a l e x c ita tio n o f v a r io u s m e r c u r y is o to p e s . S. Mr o z o w s k i (Z.

Physik, 1932, 78, 826— 843).— Im proved apparatus confirms the result that a non-extinguishing inert gas exerts a selective effect on the intensities of hyperfine lines o f the H g isotopes. A . B. D. C.

E m is s io n life o f th e m e r c u r y re so n a n ce lin e at 2537 A . S. Mr o z o w s k i (Z. Physik, 1932, 78 , 844—

846).— Measurements of the emission life o f the H g resonance line 2537

A.

do not agree with observations

on absorption. A. B. D. C.

S p e ctr a o f h ig h -fre q u e n c y d is c h a r g e s . I.

C o m p a r is o n o f d a m p e d w ith u n d a m p e d e le ctr o d e le ss e x cita tio n . J. K . Ro b e r t s o n (Phil.

Mag., 1932, [vii], 14, 795— 806).— The spectra o f the discharges in H g and Cd vapours are compared.

II. J. E.

Is o to p e d is p la ce m e n t in h yp erfin e stru ctu re . G. Br e i t (Physical R ev., 1932, [ii], 42, 348— 354).—

The order o f magnitude o f isotope displacements can be explained as due to small changes in nuclear radii.

Data for Hg, Tl, and Pb arc and spark spectra are in agreement with this theory. N. M. B.

M e r c u r y v a p o u r d is ch a rg e . E. L 'Jb c k e

(Physikal. Z., 1932, 32, 890— 895).— The probability o f ionisation in the H g discharge is calc. In the H g arc at low pressures the concn. o f electrons is smaller than that of positive ions. There must be heavier negative carriers present. A. J. M.

S p e c tr u m o f tr e b ly -io n is e d le a d . J. Ki s h e n

(Nature, 1932, 130, 739).— A necessary modification o f this spectrum gives 6s2& a val. o f 340,180, yield­

ing an ionisation potential o f 41-9 volts. L. S. T.

H y p e rfin e stru ctu re o f a r c lin e s in v a c u u m o f b is m u th in th e v is ib le a n d the u ltra -v io le t r e g io n s . W . Mo h a m m a d and P. N. Sh a r m a (Phil.

Mag., 1932, [vii], 1 4 , 977— 990).— The hyperfine structure of 13 B i lines in the violet and ultra-violet regions has been examined, using two Lummer plates.

J. W . S.

(4)

C o ld ca th od e v a cu u m a rc. F. H. Newman (Phil. Mag., 1932, [vii], 14, 788— 7-94).— The mechan­

ism of starting and maintaining the arcs is discussed.

H. J. E.

S tru ctu re s in the K a b s o rp tio n sp ectra o f Cu a n d Z n in b r a s s . S . Ka w a t a (Japan. J. Physics, 1932, 8, 51— 5G).— The structures for the pure ele­

ments and in some kinds of brass were largely in­

fluenced b y the phases o f the absorbing atoms, and showed no satisfactory agreement with Kronig’s theory (cf. A ., 1931, 993). N. M. B.

IV-Series fo r the elem en ts 73 T a to 81 T l. I.

T. Ma g n u s s o n (Z. Physik, 1932, 79, 161— 169).—

The lines NiyNyi and NyNyr, vn were measured for Ta, W , Os, Ir, Pt, Au, and Tl, and the /¿-absorption edge was determined for C. A. B. D. C.

M e a su re m e n ts o f the a b s o rp tio n coefficien t fo r A rra y s in the n e ig h b o u rh o o d o f the ¿ -e d g e s o f th e elem en ts P t and A u . M. Wo l e (Proc. K.

Akad. Wetensch. Amsterdam, 1932, 35, 547— 550).—

The results are used to calculate the no. of dispersion electrons connected with each of the 3 ¿-levels.

H. J. E.

X -R a y stu dy o f the d ensity d istrib u tion in the d is ch a rg e tu be. Y . Is h i d a and T. Su e t&u g u (Sci.

Papers Inst. Phys. Chem. Res. Tokyo, 1932,19, 185—

188).— Qual. investigations of pressure variations in the positive column o f various H g discharge tubes were made b y means o f X -ray photographs.

N. M. B.

O rig in o f th e sp e ctra l selective p h o to -e le ctr ic e ffe ct in th in a lk ali m e ta l film s . R . Sh h r m a n n

and A. Sc h a l l a m a c h (Z. Physik, 1932, 79, 153—

160).— An investigation of the spectral selective plioto-effect for K films on Ag surfaces with films greater and less than the monoat. layer shows that the layer of K atoms can reduce the energy required to extract electrons from the Ag. N o barrier layer photo-effect need be postulated.

A. B. D. C.

L o n g -w a v e lim it o f the p h o to -e le ctr ic effect d e te rm in e d fr o m a to m ic v o lu m e o f the elem en ts.

G. Sc h w e i k e e t (Z. Physik, 1932, 79, 248— 253).—

Theoretical. The long-wave photo-electric limit is shown to be proportional to the 2/3 power of the

at. vol. A. B. D. C.

D iffra ctio n o f fast p ro to n s b y g o ld fo il. E.

Ru p p (Z. Physik, 1932, 78, 722— 727).— Protons traversing gold foil gave X -ra y interference patterns for the wave-length 6-4 X 10~12 cm. corresponding with the accelerating potential of 200 kv. Atom factors for protons were determined. A . B. D. C.

E m is s io n o f p o sitiv e io n s f r o m c o ld su rfa ces u n d e r the influen ce o f s tro n g e le ctric fie ld s.

W . R . Harper (Nature, 1932, 130, 775). L. S. T.

R e fle x io n o f a to m ic b e a m s f r o m s o d iu m ch lo r id e cr y s ta ls . R . M. Za b e l (Physical R ev., 1932, [ii], 42, 218— 228).— The wave nature of He, Ne, and A was investigated b y the reflexion of beams of these gases from natural NaCl, and laboratory- grown NaCl crystals cleaved under various conditions;

evidence of diffraction was obtained in all cases.

N. M. B.

D iffu s io n o f p o sitiv e io n s o f sa lts th ro u g h c o p p e r at h ig h te m p e ra tu re . M a s s s p e c tr o ­ g r a p h a n a ly sis o f the e m itte d io n s . J . Ci c h o c k i

(J. Phys. Radium, 1932, [vii], 3, 47S— 4S5).— When the chlorides of Li, Na, K , Mg, Cu, Sr, and Ba en­

closed in a Cu film are heated to a high temp., the positive ions of the salt diffuse .through the film and become a source o f com plex ions consisting of com ­ binations o f the metal o f the salt with the Cu or the P t forming the supporting electrode. N. M. B.

M a g n e tic s p e ctra o f se co n d a r y e le ctro n s fr o m s ilv e r. S. Ch y l i n s k i (Physical Rev., 1932, [ii], 42, 393— 399).— Kinetic energy distribution curves are given for A g bombarded with cathode rays in the energy range 2-1— 30 equiv. kv. Peak locations vary somewhat with the primary volta ge; the curve forms are similar to those of the continuous X -ra y spectrum.

N. M. B.

K in e m a to g ra p h ie e le ctro n m ic r o s c o p y o f o x id e ca th o d e s. E. Br ü c h e and H . Jo h a n n s o n (Ann.

Physik, 1932, [v], 15, 145— 166).— Film exposures of emitting oxide cathodes are examined by an electric electron microscope and results are discussed.

W . R . A.

N e w ca th od e in v e stig a tio n s w ith the e le ctrica l e le ctro n m ic r o s c o p e . E . Br ü c h e and H. Jo h a n n­ s o n (Physikal. Z., 1932, 33, 898— 899).— The electron microscope (cf. A ., 1932, 209) has been used to study cathodes of pure W , and o f Th and W . The former differs considerably from an oxide cathode in its behaviour, whilst the latter occupies a position betwreen the tw o types. A . J. M .

P o la r is a tio n o f e le ctro n s. E. Ru p p (Physikal.

Z., 1932, 33, 937— 940).— The earlier experiments (A., 1932, 317) have been extended and a new one is described for double scattering at 90°. Polarisation brought about b y this m ethod must be due to a different cause from that in the earlier experiments.

It may result from polarisation o f the nucleus.

A. J. M.

L a rg e -a n g le s ca tte rin g o f e le ctro n s in g a s e s.

I I . C. B. 0 . Mo h r and F. H. Ni c o l l (Proc. R oy.

Soc., 1932, A , 138, 469— 47S; cf. A., 1932, 1185).—

Angular distributions o f scattered electrons in H 2, C 0 2, CH4, N 2, Ne, PH 3, and H 2S have been measured to 160° for 30— 150 volt electrons. The elastic and inelastic scattering curves are found to be closely similar. The elastic scattering curves show a gradual change in form for successive elements in the periodic

table. L. L. B.

M o tio n o f an e le ctro n in a cry sta llin e la ttice.

G. C. Wi c k (Atti R . Accad. ‘Lincei, 1932, [vi], 16, 142— 149).— Theoretical. Taking into account the resonance forces between a conducting electron and the bound electrons o f the lattice, the energy levels of the former are calc, approx. There is an energy max. for zero velocity o f the electron. O. J. W .

V e lo c ity d istrib u tio n o f e le ctr o n s in the p o s i ­ tive co lu m n . M . J. Dr u y v e s t e y n (Physikal. Z., 1932, 33, 856— 863).— The diffusion o f electrons in the positive column is investigated for small c.d.

The gradient o f the column is calc., and the formula;

are applied to the positive column in Ne. A . J. M.

(5)

4 BRITISH CHEMICAL ABSTRACTS.— A .

Q u a n tu m th e o ry o f d iffu s io n o f e le ctr o n s . L.

Go l d s t e i n (Compt. rend., 1932,195, 864— 866).

Q u a n t u m m e c h a n i c s [ a p p l i e d t o ] t h e f o r m a t i o n o f n e g a t i v e i o n s . Y . Ro c a r d (Compt. rend., 1 9 3 2 ,

195, 9 4 5 — 9 4 7 ) .— Calculation o f the nature o f the spectrum emitted on the fixation o f an electron b y H 2 or He shows that this process m ay be the origin o f some o f the light o f the night sky. C. A . S.

R e v is io n o f at. w t. o f s ilic o n . R a tio S iC lj : S iO a. P. P. We a t h e r e l l and P. S. Br u n- d a g e (J. Amer. Chem. Soc., 1932, 54, 3932— 3938).—

This ratio, determined b y hydrolysis o f SiCl4 in dil.

HC1, gives 28-103 ±0-003 for the at. wt. of Si.

L. P. H. (c) M e th o d o f s e p a ra tio n o f is o to p e m ix tu r e s a n d its a p p lica tio n to the is o to p e s o f n e o n . G.

He r t z (Z. Physik, 1 9 3 2 , 7 9 , 1 0 8 — 1 2 1 ) .—Diffusion through porous walls in vac. gave partial separation o f the Ne isotopes. A. B. D. C.

N e w is o to p e s o f m e r c u r y . F . W . As t o n

(Nature, 1932, 130, 846).— Definite traces o f new lines 197 and 203 have been obtained in the mass spectrum o f Hg. The former is due to a new isotope, but the latter m ay be due to the hydride o f 202, although this is considered improbable. The p ro­

portions of H g197 and H g203 are 0-01 and 0-006%, respectively, and their effect on the mean at. wt.

is therefore negligible. L. S. T.

A t o m ic d is ru p tio n b y m e a n s o f h y d ro g e n c a n a l r a y s . F . Ki r c h n e r (Physikal. Z., 1932, 33, 777).—

The at. disruption o f L i has been studied b y an apparatus essentially simpler than the apparatus o f Cockroft and W alton (cf. A ., 1932, 893), whose results are confirmed. W . R . A.

P e r io d o f r a d iu m . E. Gl e d i t s c h and E. Fo y n

(Amer. J. Sci., 1932, [v], 24, 387— 393).— B oltw ood’s method on a Norwegian broeggenite gives 1691

years. C. W . G.

P a s sa g e o f n e u tro n s th ro u g h m a tte r. H. S. W .

Ma s s e y (Proc. R oy. Soc., 1932, A , 138, 460— 469;

cf. A ., 1932, 443).— Mathematical. Born’s quantum theory o f collisions is applied to the elastic collisions of neutrons with material particles. A neutron model consisting o f a H atom in a nearly zero quantum state is considered. The experimental evidence indicates that the radius of such an atom must be

< 2 -0 X 1 0-13 cm. L. L. B.

R a d io a ctiv ity o f s a m a r iu m . G. v o n He v e s y

and M. Pa h l (Nature, 1932, 130, 846— S47).— Sm is radioactive, emitting a radiation o f the a-ray type, the intensity o f which is reduced to half its val. by 1-3 ¡x o f Al. L. S. T.

Io n is in g e ffe c t o f a -ra y s in s o lid d ie le ctr ic s.

H . Fo l m e r (Proc. K . Akad. Wetensch. Amsterdam, 1932, 35, 636— 642).— An improved technique has shown that a-radiation influences the conduction of paraffin exposed to P o radiation and suggests the probability of ionisation in solid dielectrics.

W . R . A.

T e m p e r a tu r e v a ria tio n o f th e to ta l cu r re n t- c a r r y in g elem en ts in a ir. A. Be c k e r and I.

Sc h a p e r (Z. Physik, 1932, 7 9 , 186193).— Saturation

current due to com plete absorption o f Po a-rays by a vol. o f air increased as the temp, o f the air rose from —80° to 250°; the increase must be due to variation of the energy required for formation of the current-carrying elements. A. B. D. C.

(3-Rays o f a ctiv e d e p o s it o f a ctin iu m . S. Y .

Sz e (Compt. rend., 1932, 195, 773— 775; cf. A ., 1932, 790).— Ho and the energies and origins of the groups in the ¡3-ray spectrum o f this deposit, relative to the T h-B line Hp 1398, have been redetermined with substantially different results (cf. A ., 1926, 105). Three groups, Hp 2418, 2670, 2772, were not found, two, 2149, 2456, are shown to be due to the transition A c -B A c -C, and three, 1953, 2252, 2304, to A c -0 T A c-C ". C. A. S.

R a d ia tio n s f r o m ra d iu m -D a n d -E . J. A.

G r a y (Nature, 1932, 130, 738).— Ranges o f the (3-rays o f R a-A in various substances are given.

Absorption o f the y-rays in Pb has been measured and a soft type o f y-ray, presumed to be the M -rays characteristic o f at. no. 83, detected. A-Rays are emitted b y approx. 30% o f Ra-Z) atoms and primary rays by < 4 % ; the primary rays consist apparently of a band extending from X

<

0-28

A.

to X

<

0-30

A.

The properties o f the hard y-rays o f R a-A indicate that they are excited b y some o f the (3-rays after their escape from the nucleus. L. S. T.

G a m m a -r a y io n is a tio n ch a m b e r . G. C. La u­ r e n c e (Canad. J. Res., 1932, 7, 103— 105).— The chamber described is claimed to be as sensitive as a good gold-leaf electroscope, but the scale length is longer, permitting fewer readings each o f longer

duration. A . G.

y -R a y s o f t h o r iu m -Ii a n d o f the th o riu m -C b o d ie s . C. D. El l i s (Proc. R oy. Soc., 1932, A , 138, 318— 339).— The [3-ray spectrum o f T h -A + C has been studied and new measurements have been made o f the energies of the (3-ray groups. The relative Hp o f the different groups were determined, also the abs. Hp o f certain strong groups. The intensities o f the groups were measured photo­

metrically. The y-rays associated with the dis­

integrating bodies have been deduced from these

results. L. L. B.

A v e r a g e life o f a ctiva ted a to m ic n u c l e i : p r o b a b le ca se s o f im p o s s ib ilit y o f y -r a y e m iss io n . F. Pe r r i n (Compt. rend., 1932, 195, 775— 778;

cf. A ., 1932, 5, 790).— Theoretical. Considering that oscillation o f one constituent o f a nucleus in ­ volves- oscillation o f the remainder, the calc, mean life of a state, e.g., o f Ra-C", is greatly increased.

Nuclei consisting o f helions, Be8, C12, etc., or of helions and demihelions, Li®, B 10, etc., ought not

to emit y-rays. C. A. S.

Io n isa tio n b y y - a n d c o s m ic r a y s in o x y g e n a n d x e n o n . V. Ma s u c h (Z. Physik, 1932, 79, 264—

265).— Ionisation o f 0 2 and X e is proportional to the density o f the gas for the harder components o f cosmic rays, but not for rays o f smaller energy.

A . B . D. C.

S e c o n d a ry r a d ia tio n p r o d u ce d b y c o s m ic ra y s . J. M. Be n a d e (Nature, 1932, 130, 699). L. S. T.

(6)

7 L ig h t e m is s io n ca u sed b y e le ctro n ic, io n ic, and

a to m ic co llis io n . W . Ha n l eand K . La r c hJs(Physi- kal. Z., 1932, 33, 884— 887).— The directional distri­

bution o f intensity for the three types o f collision is investigated, and an arrangement o f apparatus for studying this in ionic and at. collision is described.

A. J. M.

A t o m ic e igen fu n ction s and en ergies. C. W .

Uf f o r d and G. H . Sh o r t l e y (Physical Rev., 1932, [ii], 42, 167— 175; cf. A., 1931, 781).— Mathematical.

N. M. B.

B r e a k d o w n d isch a rg e as sta tica l ion isation . H. Ei s l e r (Z. Physik, 1932, 79, 266— 274).— Break­

down discharge may be explained by a purely statical ionisation o f the atoms or mols. o f the dielectric.

A. B. D. C.

S p a ce ch a rg e a n d its rela tion to the ch e m ica l co m p o n e n ts o f the a tm o sp h e re . R . St o p p e l (Z.

Physik, 1932, 7 8 , 849— 853).— Short-circuited electro­

meters show considerable variations o f zero varying with the gas (H2, N2, 0 2, and C 0 2) surrounding the

instrument. A. B. D. C.

C o s m ic -r a y io n isa tio n as a fu n ction o f p r e s s u r e , te m p e ra tu re , a n d d im e n sio n s o f the ion isation c h a m b e r . J. W . Br o x o n (Physical Rev., 1932, [ii], 4 2 , 321— 335).— Investigations over a pressure range did not support the subsidiary radiation theory o f cosmic-ray ionisation (cf. A., 1931, 3). N. M. B.

M a g n e tic s p e c tru m o f c o s m ic ra y s . P. Ku n z e

(Z. Physik, 1932, 79, 203— 205).— A Wilson chamber in an intense magnetic field showed curved traces o f cosmic rays, positive particles being more frequent than negative; an energy spectrum is shown.

A. B. D. C.

A ir a fte rg lo w a n d active n itro g e n . J. K.

Ro b e r t s o n (Canad. J. Res., 1 9 3 2 , 7 , 4 4 44 5 0 ) .— The air afterglow spectrum in the visible range con­

sists o f a continuous faintly banded region 4 4 0 0

5 0 0 0 A., and a pure continuum in the yellow and red.

Evidence indicates that the yellow-red afterglow is due to N ; the addition o f Hg vapour at once destroys

the glow. N- M. B.

V alu e o f b k a n d a to m ic ra d ii o f elem en ts in re la tio n to the p e r io d ic sy s te m . J. A. M. v a n T .t e m p t (Rec. trav. chim., 1932, 51, 1117— 1130).—

bk is a periodic function o f the at. no. Hence, in cases where its val. is unknown, bk may be determined b y interpolation in the bk- at. no. curve. The vals.

obtained are closely correlated with the at. and ionic radii. For any one element, the radius o f the positive io n < th a t o f the neutral atom C tliat o f the negative ion, the difference becoming smaller with increasing at. no. o f the element. The vals. with C e "", Ce‘ " , and Ce suggest that free Ce has the electronic structure 2 8 18 18 10 2, analogous to that o f C e "" (2 8 18 18 8), whilst the C e"' ion has the structure 2 8 18 19 8. An attempt is made to correlate these at. radius relation­

ships with superconductivity phenomena.

E d d in g to n ’s th e o ry a n d p h y sica l co n sta n ts.

G. S. R . Kr i s h n a n (Nature, 1932, 130, 776).— Vals.

have been calc, for the physical consts. Selected vals.

are: at. wt. o f H , 1-00774±0-00002, e/m0 1-77001 ± 0-00013 X 107 c.m.u., e 4-S1209±0-00037 x 10"10 e.m.u.,

iV 6 -0 1 1 3 2 ± 0 -0 0 0 8 9 x l0 23, and /i 6-64879 J

X0-27_ - cere found

D e te rm in a tio n o f e /m f o r “ th re a d ” *n® at ^ 9

Si e b e r t z (Physikal. Z., 1932, 33, 895— 897™- ''vere are obtained for e/m greater than for elec(^°y| p

S tru ctu re o f lin e sp e ctra in cr jia n e , a li-

To m a s c h e k (Nature, 1932, 130, 740).— C R ela tive binations for Pr, Nd, Sm, and Er have bin R a m a n

e s. (Miss) R e g u la ritie s in the lin e sp e c tra o f s, 54, 4199—

R . To m a s c h e k (Physikal. Z., 1932, 33, 0f the lines The phosphorescence spectra o f the rt «-C 0H 13Br, CaO and MgO are investigated. is have been

S p e ctr u m o f c h r o m iu m in (Ps character-

De u t s c h b e i n (Physikal. Z., 1932, 33,8s- The re- The absorption and emission spectra o f (jbrations are room temp, and at — 180° to — 190° werhlls, and the Cr is capable o f producing phosphors cP 2575 cm .-1, isomorplious with the principal material11^ O -H fre- itself as larger mols. in the principal cr:orce aPS e x ‘

H 2S and the L ine s p e c tru m o f s a m a r iu m io n ii

its v a ria tio n w ith the te m p e ra tu a a % change and J. G. Ha r w e l l (Proc. K . A k a d .ie detected, sterdam, 1932,35, 979— 994).— The ah G- A. G.

o f SnT" in hexagonal cryst. Sm (EtSCE</ FT and C.

been determined parallel to the optic -575 25S7).—

and 169° abs. Absorption lines in tl ° f H 20 drops -2200 A. are tabulated. V with varying

D o u b le t sep a ra tio n o f the

Br u n e t t i and Z. Ol l a n o ( Nu o v of ‘ t ] e m e d i u m

2 8 1 -2 9 0 ; Chem. Zentr., 1932, i, to be Hleiiticai solution o f Ce(N 03)3 gives a Raman xticl b . cm.-1 and a 5-6M solution o f CeCl3 t)

cm .-i These are ascribed to the Ce^ “fche transition 2-F5/2— |F7/2, m agreemci]meters

magnetic measurements, but not v j j p , .

doublet formula. b en zop h en on e.

A b s o rp tio n s p e c tru m o f o(J. Amer. Chem.

p re ssu re s and the e x iste n ce o f 1 light scattering I. U ltra -v io le t b a n d s b etw een ¡s i3 contrary to W . Fi n h e l n b u r g and W . St e i n e i, the discrepancy 79, 69— 88).— The absorption speos. L. O. (c) atm. indicates that the 0 4 mol. ex

mols. united by van dor Waals f01h a m s m s fo r the p o u r s b y a ir.

S ig n ifica n ce o f u ltra -v io le t j ull Soc chi

^uUf eS- 2 I -B2 Ry (w ilc luminiscence 62- 68)-— The hypothesis that u % 0j 1255. 1931 bands o f alkali halide crystals are lUnds j j lc temp o f two neighbouring ions lvithin 8j.e give)l for mal|y to contradictions hi the theoryand ethers W ith removed b y assuming that the neqow 300° probably an internal surface. peroxy-derivatives, M o le cu la r a b s o rp tio n o f m diate products are cu les in the v a cu u m ultra- D. R . D.

and H Sp o n e r (Z. Physik, l (^r the in flu en ce o f were m eaau^ktroehem ., 1932, 1560 A. for IC1, IBr, and BrCl. (t Brfillingha{IS (A>;

A b s o rp tio n s p e c tru m o: j) . j ) W . G. Br o w n (Physical Rev., _

363).— Vibrational analysis leaf" B °thsic'[iiil:d o f the IBr absorption spectruiiVe ' T E^ 1lt™n r 1 UaS-Sm or SrS-Sm

(7)

8 BRITISH CHEMICAL ABSTRACTS.— A .

phosphors greatly increases their efficiency, so that they can be excited by an ordinary electric lamp.

The Bi must be fused with the phosphor, and probably acts as a sensitiser, taking up the incident radiation and passing it on to the phosphor. A. J. M.

R e fle ctin g p o w e r o f th in m e ta llic film s . P.

Ro u a r d (Compt. rend., 1 9 3 2 , 1 9 5 , 8 6 9 — 8 7 0 ) .—The reflecting power o f the glass-metal surface o f a Au film 9 -5 — 1 0 -4 mp for XX 5 7 8 0 , 5 4 6 1 , and 4 3 5 8 A . decreases with increasing thickness to min. for thick­

nesses < 5 -2 mjx, and then rises rapidly. Films o f Ag and P t behave similarly. C. A . S.

V a ria tio n o f re fle ctin g p o w e r o f b is m u th on m a g n e tisa tio n . E . En g l e r t and K . Sc h u s t e r (Z.

Physik, 1932, 79, 194— 196).— Variation o f resistance o f Bi with temp, does not affect reflecting power.

A. B. D. C.

Io n ise d g a s e s in a m a g n e tic fie ld at p re s su r e s b e lo w 1CU3 m m . H g . T. V. Io n e s c u and C. Mi h u l

(Compt. rend., 1932, 1 9 5 , 765— 767; cf. A ., 1931, 285; 1932, 554).— The effects o f pressure and H 20 vapour are examined. In the atm. waves o f length

> 10 m. are reflected where pressure is < 10~J mm.

Hg, i.e., at heights > 150 km. C. A. S.

S c a tte r in g o f lig h t b y s o u n d w a v e s . P. De b y e

(Physikal. Z., 1932, 32, 849— S56).— Theoretical.

A . J. M.

S e le n iu m o r selen ide re c tifie r ? W . S. Gr i p en- b e r g (Physikal. Z., 1932, 33, 778).— Certain facts indicate that the rectifying properties of a Se rectifier are really attributable to a very thin surface layer

of Fe selenide. W . R . A.

S electiv e p h o to -e ffe c t a n d o p tic a l a b s o rp tio n at c o m p o s it e p h o to -c a th o d e s . W . Kl u g e

(Physikal. Z., 1932, 33, 873— 874).— The composite cathodes are made up of a layer o f Ag, on which is deposited a layer o f alkali oxide with alkali metal adsorbed. W ith such a cathode there are two max., one in the short-wave, the other in the long-wave region. B y making the M20 -M layer very thin, the long-wave max. gets weaker. It is also possible in this case to study both the photo-effect and optical reflexion. There is no min. o f reflexion corresponding with max. o f photo-electric efficiency. A. J. M.

S p e ctr a l se n sitiv ity o f [p h o to -e le c t r ic jc e lls w ith c o p p e r e le ctro d e s co v e re d w ith cu p ro u s o x id e . G. A t h a n a s i u (Compt. rend., 1932, 1 9 5 , 767

769).— Using electrodes o f electrolytic Cu covered with Cu20 prepared b y (a) the author’s method (cf. A ., 1925, ii, 1067), (6) Garrisson’s method (cf.

A ., 1923, ii, 728), and (c) heating to 1000° and cooling rapidly, and as electrolyte 0-liV-CuSO4, -KC1, or -KNOg, the e.m.f. o f the photo-electric cell is with (a) negative, but with (6) and (c) positive or negative.

The positive effect is due to CuO, which when alone produces an e.m.f. o f sign opposite to that produced b y Cu20 . A similar explanation holds for the varying position o f the max. sensitivity, that for Cu20 being at 4600— 1800 A ., but displaced towards red by CuO, the max. for (6) being at 5100— 5800

A.

C. A . S.

E le c trica l a n d o p tic a l b e h a v io u r o f s e m i­

c o n d u c to r s . V II. P h o to -e le c tr ic p ro p e rtie s o f

s e m i-c o n d u c to r u n id ir e ctio n a l la y e r s . W . Le o

(Ann. Physik, 1932, [v], 15, 129— 144).— The capacity and resistance of unidirectional layers o f Cu20 and

A g2S are considered. W . R . A.

R e la tio n o f o p tic a l tr a n s p a re n cy o f cu p ro u s o x id e to e le ctr ic a l co n d u ctiv ity . G. Mö n c h (Z .

Physik, 1932, 7 8 , 728— 733).— The absorption edge o f Cu20 lies at 638 mp and is independent o f the con­

ductivity o f the sample; the transparency o f the sample was used to measure the 0 2 content o f the

layer. " A . B. D . C.

E le c tro s ta tic th e o ry o f the d ep en d en ce o n fre q u e n c y o f io n ic m o b ilit y a n d d ie le ctr ic c o n ­ stan t in m ix e d s o lu tio n s o f s tr o n g e le ctr o ly te s.

I. G e n e ra l th e o ry . H. Fa l k e n h a g e n and W .

Fi s c h e r (Physikal. Z., 1932, 33, 941— 945).— The general solution o f the differential equation connecting ionic mobility, dielectric const., and frequency is

considered. A. J. M.

D ie le c tric co n sta n t. I. V a ria tio n o f d ie le ctr ic co n s ta n t o f q u a rtz w ith a p p lie d p o te n tia l. H.

Sa e g u s a and K . Na k a m u r a (Sei. Rep. Töhoku, 1932, 21, 411— 438).— Apparatus and technique for the accurate determination o f dielectric const, are de­

scribed. The dielectric const, o f a quartz plate cut perpendicular to its optical axis increases exponen­

tially with applied potential from about 2000 volts per cm. thickness, and increases rapidly with rising temp. W hen the quartz plate is cut parallel to the optical axis, no such effect is observed up to 12,000

volts per cm. E. S. H .

E le c tr ic m o m e n t o f h y d ro g e n p e r o x id e . E. P.

Le n t o n and 0 . Ma a s s (Canad. J. Res., 1932, 7 , 81—

85).— The electric moments o f H 20 2 and o f H 20 were measured b y determinations o f the dielectric" consts.

o f solutions in dioxan at 25° and in E t20 at 10° or 0°.

The vals. obtained were 2-13 and ’ 2-06 X 10~18 for H 20 2 and 1-90 and 1-71X 10~18 for H 20 . The lower val.

obtained for H 20 in E t20 m ay be due to its association being greater at the lower temp, or to experimental errors. The val. obtained for H 20 2 favours the

formula H 20 - x 0 . A. G.

C o n n e x io n b e tw e e n d ip o le m o m e n t and co h e siv e fo r c e s . A. E. v a n Ar k e l (Rec. trav.

chim., 1932, 51, 1081— 1107).— Calc, and observed vals. o f b.p., dipole moment, and van der Waals a and b for org. liquids are compared. London’s theory (A., 1930,1239) is extended to more complicated mols.

van Laar’s law concerning the additivity o f b (A., 1916, ii, 386) is obtained as a first approximation for sub­

stances o f zero moment. For halogen atoms a /F 2 is const. ( F = a t . or mol. vol. at b.p.). For C tetra- halides [e.g., CBr3Cl) P = ( F comrlound V0) j Fcomp()un(i approx., where 7 '= b .p . abs. It follows that the val. o f the b.p. is approx. additive. For partly halogenated compounds (e.g., CHC13) the b.p. is 45° >

theory for compounds containing 1 H, 85° higher for those with 2 H , and 81° higher for those with 3 H , the val. o f this increment increasing with dipole moment.

The val. o f a depends on the sum o f the abs. partial moments and n ot on the total moment. For isomeric derivatives o f CfiH c the b.p. rises with dipole moment.

Of disubstituted C2H 4 derivatives, the aa-compounds

(8)

have the lowest b .p .; when both substituents are the same, the ir<z?is-isomerides have lower b.p. than the cis. A study o f C2H 6 and C3H 8 derivatives indicates that the more a group is surrounded by other atoms, the smaller is its effect on the cohesive forces. The b.p. o f CF4 is about — 130°, and not — 15° as stated by Moissan (A., 1890, 944). D. R . D.

D ie le c tric co n sta n t o f ethyl a lco h o l v a p o u r and p o s s ib le e ffe ct o f con d u ctiv ity . H. L. Kn o w l e s

(J. Physical Chem., 1932, 3 6 , 2554— 2566).— Except near the saturation pressure 3 (A — l)/(K -)-2 ), where K is the dielectric const., varies linearly with P , the ideal v.p. Near saturation the slope o f the graph o f K against P increases markedly. The val. o f K , calc, from the slopes o f the lower part o f these curves,

is 1-686 x lO -18. S. L. (c)

D ip o le m o m e n ts o f quin olin e and isoq u in olin e.

R . J. W . Le FiiVRE and J. W . Sm i t h (J.C.S., 1932, 2810— 2811).— N ew' determinations o f the dipole mdments o f quinoline and isoquinoline give vals. o f 2-18 and 2-52 x 10~18 e.s.u., respective^. H. A. P.

D ie le ctric con sta n ts o f liq u id and s o lid ethyl eth er a n d n itrob en zen e. J. Ma z e r (Spraw. Prace Polsk. Towarz. Ficyz., 1931, 5, 181— 200; Chem.

Zentr., 1932, ii, 352— 353).— For E taO, e rises with fall o f temp, and is max. (12-39) at — 105-4°, there­

after falling rapidly until at — 117-2° (solidification) it suffers sudden change. For solid Et20 e approaches 2-04 as the temp, falls below — 118-9°. For P hN 02, e (35-41 at 30-01°) becomes max. at 9-6° (38-15) and then falls rapidly to 11-82 at 7-71°, finally approaching the val. 2-709. An anomalous val. is again obtained near the f.p. (Cf. this vol., 11.) A . A. E.

Io n ise d ga ses in a m a g n e tic field a t p re ssu re s a b o v e 10“3 m m . H g . T. V. Io n e s c u and C. Mi h u l

(Compt. rend., 1932, 195, 1008— 1010).— The effects o f pressures >10~3 mm. H g on the conductivity o f ionised H 2, N2, and air in fields >80 gauss for X 250—

660 cm. are examined, as also is the relation between conductivity and electronic current in various fields, and between dielectric const, and field at various pres­

sures. Marked changes occur at pressures o f 0-02—

0-15 mm. Hg, which would favour propagation hi the atm. o f waves o f X 5— 6 m. at 50— 80 km. height at the expense o f longer waves. C. A. S.

E le c trica l co n d u ctiv ity o f p a lla d iu m w ith o cc lu d e d o x y g e n . D. P. Sm i t h (Z. Physik, 1932, 78, 815— 823).— 0 2 lowers the electrical resistance o f P d independently o f the presence o f H 2.

A. B. D. C.

E le c tricity tra n s p o rt b y o x y g e n in m e ta ls . A.

Co e h n (Z. Physik, 1932, 78, 824^-825).— Polemical against Smith (cf. preceding abstract). A. B. D. C.

E le c trica l resista n ce o f tita n iu m and z ir c o n ­ iu m n itrid e s a n d a n ew resista n ce effect. P.

Cl a u s i n g (Z. anorg. Chem., 1932, 2 0 8 , 401— 419; cf.

A ., 1931, 921).— The nitrogenation o f filaments o f Ti or Zr can be followed by measuring the resistance for various filament currents. The formula ZrN has been established b y synthesis. Resistivities o f TiN and ZrN and their temp, coeffs. have been measured.

Peculiar hysteresis effects in the change o f resistance

with temp, are described and attributed to traces o f free metal in the nitrides. F. L. U.

C on d u ctiv ity o f c o r u n d u m . H. v o n W a r t e n - b e r g and E. P r o p h e t (Z. Elektrochem., 1932, 3 8 ,

849— 850).— The conductivity o f corundum rises from

* = 1 -3 X l 0~7at 1500° abs. to 5 -0 x 1 0 ^ at 1S00° abs.

Data are given for ruby. Artificial ruby m ay be pre­

pared b y heating A1,03 with Cr20 3 (1% ) at 1600° abs.

D . R . D.

T e m p e ra tu re co e fficie n t o f re s istiv ity o f s ilic o n an d a [new ] th e r m o -e le c tr ic p h e n o m e n o n o f u n i­

p o la r su b sta n ce s. C. Be d e l (Compt. rend., 1932,

1 9 5 , 871 873). The ends o f a fragment o f Si heated to a const, temp, exhibit p.d., e.g., with pure Si in fragments 0-4 mv. at 100°, in crystal 8-6 m v. at 330°.

Carborundum, pyrites, and galena behave similarly (cf. A., 1930, 402). This is due to the equal and opposite currents produced at the ends by the thermo­

electric effect combined 'with the rectifying power o f a unipolar substance. It is impossible therefore to determine the temp, coeff. o f resistance o f Si, as there are three superposed a ction s: the thermoelectric effect, dielectric conductivity at the contacts, and conductivity proper o f S i ; it is, however, certainly negative for pure Si. The resistivity o f Si containing 0-1% Fe decreases continuously to 400°, but with 1-8% Fe there is a min. at 210°, above which it is positive (cf. A ., 1910, ii, 481; 1931, 30). C. A. S.

V a ria tio n o f the true a n d a p p a ren t e le ctrica l re s istiv ity o f q u a rtz w ith te m p e ra tu re . S.

Sh i m i z u (Sci. Rep. Tohoku, 1932, 2 1 , 439— 454).—

The causes o f the variation o f resistivity with time have been investigated at different temp. (cf. A ., 1932,

560). E. S. H.

E le c trica l co n d u ctiv ity o f m e r c u r y at h ig h tem p era tu res a n d p re s su r e s. W . Br a t j n b e k

(Physikal. Z., 1932, 33, 830— 831). W . R . A.

R o ta tio n o f R o ch e lle sa lt in a lk alin e m e d ia . A. N. Ca m p b e l l and A. J. R . Ca m p b e l l (J. Physical Chem., 1932, 3 6 , 2610— 2614).— The marked variation o f rotation with [OH'], the reduction in [OH']

o f aq. NaOH caused by the salt, the decrease in conductivity on mixing aq. Rochelle salt and NaOH, and the form o f the equilibrium diagram point

to complex formation. S. L. (c)

S p e ctr o ch e m istry o f co m p o u n d s o f the s te ro l g r o u p . K . v o n Au w e r s and E. W o l t e r (Nachr.

Gcs. Wiss. Gottingen, 1931, 101— 119; Chem. Zentr., 1932, i, 2595— 2596).— Solutions o f linalool (I), geraniol ( I I ) , famesol (III), cinnamyl alcohol (IV), and their Ac derivatives, and triolein (V) in quinoline and l-C 10H 7Me were examined. O f the homogeneous substances only (I), and its acetate, and (V) were normal. The solvents have a moderate effect; the exaltations o f n are usually 0-2— 0-3 and o f the scattering power 5— 10% > for the homogeneous materials; with (III) these are unchanged in solution, and with (IV) and its acetate somewhat diminished.

Vals. for (II) in quinoline differed from those in l-C 10H 7Me. Cholestane, cliolestene, ^-cholestene, a-cholesterylene, cholesterol, and cholesteryl butyrate and oleate were also exam ined; vals. o f n in solution and in the fused state correspond, but those o f dis-

(9)

1 0 BRITISH CHEMICAL ABSTRACTS.— A .

persion exhibit variations. All the compounds tend towards depression o f the mol. and sp. refractory power. Ergosterol (VI), ergosteryl acetate, palmitate, and benzoate, ergosteryl-U3 acetate (V II), ergotetra- ene (VTII), suprasterol-I and -II, suprasteryl-I acetate, and an irradiation dihydro-derivative C27H 440 were studied. Ergosterol and its esters differ optically from the suprasterol group, the latter belonging to the cholesterol group and the former exhibiting exaltation.

Hence (VI) contains a conjugated linking; two double Unkings are considered to be conjugated and the third isolated. W indaus’ formula (A., 1930, 1578) is not excluded. (VII) is also conjugated; in (V III) either two double linkings are conjugated and the third is isolated, or three he in a ring and the fourth is remote.

In the suprasterols the three double linkings are isolated, whilst C27H 440 contains a conjugation.

Hydroxycholestenone and dehydroergosteryl acetate

were also examined. A . A . E

R e fr a c tio n o f g a s e o u s a ceta ld eliyd e a n d eth yl a cetate. H. Lo w e r y (Phil. Mag., 1932, [vii], 14, 743— 745).— The gaseous refractive indices o f MeCHO (for X 5461 A.) and o f EtO A c (for X 6461, 5893 A.), and the dispersion o f MeCHO between X4358 and 6708 A., have been measured. H . J. E.

D is p e r s io n o f g a s e s a n d v a p o u r s a n d its r e p r e ­ sen ta tion b y the d is p e r s io n th e o ry . I I I . D is ­ p e r s io n o f o x y g e n b e tw e e n 6000 a n d 1920 A . II.

La d e n b u r g and G. Wo l f s o h n (Z. Physik, 1932, 79, 42— 61).— Interferometer dispersion measurements give vals. which can be represented b y a dispersion formula with three characteristic frequencies at 1899,

1468, and 544 A. A. B. D. C.

O p tica l p r o p e rtie s o f ca rb o n a te s. H. Br a s- s e u r (Z. Krist., 1932, 83, 493— 495).— The ionic refraction, R, of C 0 3" is taken as 10-88 or 8-38 accord­

ing as the electric vector of the incident light is || or

± to the plane o f the C 0 3" groups (cf. A ., 1924, ii, 373). The birefringence o f fourteen normal or basic carbonates is calc, as the difference between the vals.

o f n deduced from R = M ( n 2— l)/d (n 2+ 2 ) through use o f the two vals. o f R for C 0 3" . The calc, bire­

fringence exceeds the actual only for

(M g0H )2Mg2(C 03)3,3H20 and Na2Ca(C03)2,2H20 , but is less for all others, indicating respectively non- paralleUsm and paralleUsm o f the C 0 3" groups.

C. A. S.

M a g n e tic c ir c u la r d ic h r o is m a n d a n o m a lo u s m a g n e tic ro t a to r y d is p e r s io n in c o b a lt ch lo rid e s o lu tio n s . M. ScufjRER (Compt. rend., 1932, 195, 950— 952).— W ith a field o f 50 kilogauss and aq.

CoCl2 o f d19 1-122 positive magnetic circular dichroism and anomalous magnetic rotatory dispersion were detected. The ellipticity-X curve shows a max. of 2 p = i-5 0 ° for X 5100 A. (the wave-length for which absorption in the band X 4350— 5700 is a max.), and is steeper on the long-wave side. The rotation-X curve has a point o f inflexion at X 5050, rotation being positive or negative as X is > or < 5050 A . (cf. A.,

1925, ii, 478). C. A. S.

M a g n e tic c ir c u la r d ic h r o is m a n d r o t a to r y d is p e r s io n . A. Co t t o n (Compt. rend., 1932, 195, 915— 919).— The results reported in the preceding

abstract are discussed with reference to the previous work o f the author and others (cf. A ., 1906, ii, 146;

1930, 668). The assumption that only paramagnetic atoms can give rise to the effects is questioned.

C. A. S.

M a g n e to -o p tic ro ta tio n b y c o n d e n s e r d is ­ c h a rg e . E. G. Sl a c k and W . M. Br e a z e a l e

(Physical R ev ., 1932, [ii], 42, 305— 311; cf. Allison,

A „ 1930, 1541). N. M. B.

M e c h a n ica l d o u b le r e fr a c tio n o f o ils in r e ­ la tio n sh ip to the m o le c u la r f o r m a n d a s s o cia tio n . III . D. Vo r l a k d e r and J. Fi s c h e r (Ber., 1932, 65, [B], 1756— 1762; cf. A., 1931, 286).— Observations are recorded for many org. liquids o f known mol.

composition. The sp. doublo refraction [D\ vals.

are much lower for aliphatic than for aromatic deriv­

atives even when the internal friction o f the oils is o f the same order o f magnitude. The [Z)]t vals. are regarded as an approx. mathematical expression o f the relative tendency o f the mols. towards association.

W ith paraffin hydrocarbons, aliphatic dibromides, and dicarboxylic esters o f the malonic series the influence o f linear structure o f normal C chains is obvious. The longer C chain o f Me2 succinate imparts a greater directive stability to the mol. than does the shorter C chain of the isomeric (CH2-OAc)2. «-Pentane and E t20 show no D effect under the experimental con­

ditions. CcH 6 becomes positively double refractive, but no effect is observed with cycZohexane. H om o- logues and substituted derivatives o f C6H G show a greater D effect than CGH 6. Hydrogenation o f homo- logues o f CgH g causes the disappearance o f all D effect, which falls in the sequence l-C 10H 7Mc, tetra- and deca-hydronaphthalene. Cyclic liydroaromatic and open-chained, strongly-branched hydrocarbons cannot be distinguished from one another. The greater effect with C10H S derivatives in comparison with CgH g com pounds shows that the tw o CG rings in C10H 8 lie approx. in the same plane. The preponderating importance o f the linear para position is observed. W ith PhCl, PkBr, P hi, the val.

diminishes with increasing at. wt. o f the halogen.

The contrast between positive and negative sub­

stituents in C0H G does not find expression. H . W . T h e o r y o f d ia m a g n e tis m o f co n d u ctiv ity e le c ­ tr o n s . R . Pe i e r l s (Physikal. Z., 1932, 33, 864).—

A method o f calculating diamagnetism o f free electrons is indicated, which is free from the restriction that the wave-length o f the electron must be small com ­ pared with the orbit radius. A. J. M.

M a g n e tic co n sta n ts o f b e n ze n e , n aph th alen e, a n d an th racen e m o le c u le s . K . S. Krisunan

(Nature, 1932, 130, 698— 699).— The principal sus­

ceptibilities of mols. o f CgH g, C10H 8, and anthracene have been calc, b y a method previously given (A., 1932,1078). The increase in susceptibility from C6H G to C10H 8 to anthracene is practically confined to a direction normal to the plane o f the mols., which is also an axis o f approx. magnetic symmetry.

L. S. T.

In flu en ce o f lig h t o n p a r a m a g n e tic s u s c e p ti­

b ility . O. Sp e c c h i a (Nature, 1932, 130, 697— 698).

L. S. T.

Cytaty

Powiązane dokumenty

U se of antim ony electrode in the electrom etric determ ination of j&gt;H- T. Electrodes obtained by electrolytically coating a P t rod with Sb gave gradually

Cancerous tissue and rat’s brain tissue both show an aerobic lactic acid (I) content higher than the normal.. The lessened respiration in the diseased tissue

acids. Tho latter yields quantitatively 4 : 6 -di-iodo- 2 -nitrophenol when treated with iodine and mercuric oxide in glacial acetic acid. Sodium G-hydroxymercuri-2-

ferometer with the aid of standard reference mixtures. The combined weight of the two esters in the mixture was then found by difference, and then- individual proportions

electrodialysis. displaced by the no. of adsorbed org. compound, but is proportional to the no. It is therefore concluded that there is no sp. poisoning of the centres

321— 322° (from naphthalene and the acid chloride in presence of carbon disulphide and aluminium chloride), is treated with manganese dioxide in sulphuric acid

H. Influence of pressure on the conductivity of solutions of acids. A t constant temperature the percentage increase of conductivity, regarded as a function of

T he iron in th e ash is d eterm ined by dissolving in hydrochloric acid, adding potassium perm anganate solution u n til pink, and m aking alkaline with sodium