• Nie Znaleziono Wyników

COMPARATIVE ANALYSIS OF ELECTRIC ENERGY RISK CHANGES IN SELECTED EUROPEAN REGIONS

N/A
N/A
Protected

Academic year: 2021

Share "COMPARATIVE ANALYSIS OF ELECTRIC ENERGY RISK CHANGES IN SELECTED EUROPEAN REGIONS"

Copied!
18
0
0

Pełen tekst

(1)

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 344 · 2017 Informatyka i Ekonometria 12

Alicja Ganczarek-Gamrot

University of Economics in Katowice Faculty of Informatics and Communication Department of Demography and Economic Statistics alicja.ganczarek-gamrot@ue.katowice.pl

COMPARATIVE ANALYSIS OF ELECTRIC ENERGY RISK CHANGES IN SELECTED EUROPEAN REGIONS

Summary: In the paper volatility of prices from selected European electric energy mar- kets was described using multivariate autoregressive models VAR-GARCH. Quotations from Polish TGE, European EEX, Nordic Nord Pool and center Europe OTE were used from January 2014 to October 2016. We made risk analysis of change in average daily prices and proposed a portfolio of electric energy contract. The risk of single contracts was estimated by Value-at-Risk (VaR). The risk of portfolio was estimated by Condi- tional Value-at-Risk (CVaR).

Keywords: VAR, DCC, VaR, CVaR, portfolio analysis.

JEL Classification: C5.

Introduction

The aim of the paper is to assess the risk of volatility in the price of electric- ity on the Polish Power Exchange (TGE) compared to the risk of changes in prices on the neighboring electricity markets. Markets such as Nord Pool operating in Sweden, Norway, Denmark, Finland, Lithuania, Latvia, Estonia, as well as markets coordinated by the technical operator OTE in the Czech Republic, Slo- vakia, Hungary and Romania and the European Electric Exchange (EEX) trading of electricity in Germany, Austria, France and Switzerland were considered.

A comparative study was carried out on the basis of average daily electrici- ty prices [EUR/MWh] in the period from 01.01.2014 to 10.30.2016. The average daily price on day-ahead electricity markets quoted in [EUR/MWh] were repre-

(2)

Alicja Ganczarek-Gamrot 8

sented by the index POLPX spot base (POLPX) [www 1] on TGE and by spot index ELIX base (ELIX) [www 2] on EEX. For the Nord Pool spot market which covers very diverse countries in terms of level and volatility of prices all the publicly available average prices were taken into account. These prices in- clude [www 3]:

– SYS – average system price for the whole Nord Pool,

– SE1 (Luleå), SE2 (Sundsvall), SE3 (Stockholm), SE4 (Malmö) – average daily prices for Swedish subregions,

– FI – average daily price for Finland,

– DK1 (Aarhus), DK2 (Copenhagen) – average daily prices for Danish subre- gions,

– Oslo, Kr.sand, Bergen, Molde, Tr.heim, Tromsø – average daily prices for Norwegian subregions,

– EE – average daily price for Estonia, – LV – average daily price for Latvia, – LT – average daily price for Lithuania.

Prices for markets using the services operator OTE are represented by sym- bols:

– CR– average daily price for Czech Republic, – SR – average daily price for Slovakia, – HU – average daily price for Hungary, – RO – average daily price for Romania.

1. Introductory data analysis

Distributions of average electric energy prices from 01.01.2014 to 30.10.2016 for selected markets are represented by box-plots in Fig. 1.

(3)

F S

t E t o t p i m 1 v c

w Fig.

Sour

ty.

Esto tion outl the pric in m mill 16.0 valu calc

whe Yt

1

Yt

. 1.

ce: O

D The onia ns a

lier an ces mar ls.

03.2 ues cula

ere:

– av

1 Av

ma Own

istr e h a. I are rs w

alyz is a rket A 201

the ated

: vera

ave vera arke rese

ribu igh n D furt were zed asso ts w neg 14 a

e a d as

age erag

C

ge e ets

earch

ution hest Den

ther e ob d pe ocia with gati and asse

s ab

e pri ge p

Com

elec

h.

ns o av nma r ch bser erio ated h a ive fou ssm bsolu

ice pric

mpa

ctric

of a vera ark a

hara rve od w d w

lar av ur ti men

ute

in d ce in

arati

c ene

ave age and acte d. A wer with ge vera ime nt o

pri

day n da

ive

ergy

rag pri d on eriz All re r exc sha age

es in of v

ice

y t, ay t

ana

y pr

ge e ices n EE zed

fiv reco

cess are

dai n M vola

diff

t–1 alysi

rices

lect s w

EX by ve o orde

s of of ily May atilit ffere

. is of

s no

tric ere neg po occu

ed f el unc

pri y 20 ty w enc

ΔY

f ele

oted

city rec gati siti urre

on lectr

con ice 015 was es:

t = Y

ectr

d for

pri cor ive ve ence

Su rici nven

wa on s ca

=Yt

ric e

rm 0

ices ded pri ske es o unda ity s ntio as o

EE arri

−Y

ener

01.0

s ar d in ices ewn of n ays.

sup onal obs EX.

ied

1

Yt , rgy r

01.2

e ch n Po s we ness

neg . Th pply

l en serv Du ou

, risk

2014

har olan ere s. In

ativ he y ov

nerg ved ue to ut u

k cha

4 to

racte nd,

rec n th ve a phe ver

gy in o th using

ang

30

eriz Lit cord he a ave eno dem sou

De he p g d

ges…

.10.

zed thu ded aver

rag ome man urce enm pres dyna

.201

by ani d. Pr

rage ge d enon

nd, es s mark

senc ami

16 o

y hig a, L rice e d daily

n o wh such

k e ce o ics

on s

gh d Latv es d daily

y p of n hich h as e(DK of n

ind

elec

div via distr y pr rice nega h oc

s w K1) nega dica

cted

ersi an ribu rice es i ativ ccur wind ) o ativ ator

(1 9

d

i- nd

u- es in ve rs d- on ve rs

1)

(4)

1

t E s a e

F S

t a n c m a a F 10

the Eas stan are elec

Fig.

Sour

the ana nen cho mal and and Finl

Fi ave tern ndar

not ctric

. 2.

ce: O

To dy alysi nts w osen

Ta lize

Fi d dy In d No

land ig. 2 erag n E rd d t as city

Dis to 3 Own

o de ynam is w wer n to able ed v

ig.

ynam n th

orw d a

2 pr ge e Euro devi dyn pri

strib 30.1 rese

eter mic was re ch

ana e 1 varim

4 s mic he a way

and rese elec opea iatio nam ices

buti 10.2 earch

rmi cs o car hos alyz

list max

how cs in anal

we Es

ents ctric an on i mic

s are

ions 2016 h.

ine of c rrie sen ze d ts t x ro ws ndic

yze ere ston

s th city

mar is lo as o e ob

s of 6 on

the chan ed o

to dyn the otat the ces ed p stro nia,

he em y pri

rket ow on r bser

dyn n se

e rel nge out.

ana nam fac tion e av in t peri ong La

mpi ices ts o wh rem rved

nam elect

latio e in

Ba alyz mics ctor n.

vera the iod, gly atvi

Ali

iric s. T of L hich main d in

mics ted m

on b n pr ased ze a ind

loa age

abs , av cor a a

icja

al d The Lith h ind ning

ma

ind mar

betw rice d on aver dica adin pri solu vera

rrela and

a Ga

distr gre huan dica g ma arke

dicat rket

wee es o

n th rage ator ngs ice ute age ated

Li ancz

ribu eate nia, ates ark ets i

tors t

en t on i he s

e pr rs.

for of sys ele d. A ithu

zare

utio est v

, La s th

ets.

in N

s obs

the indi cre rice r pr ele stem ectr Ano uani

ek-G

n o vol atvi hat c Me Nort

serv

ave ivid e pl es a

rice ctri m o icit othe ia,

Gam

of da atili ia a chan ean ther

ved

erag dua

lot and es a icity

f tw ty p er g and

mrot

aily ity and nge nwh rn a

in t

ge p al m (Fi two and

y in wo f price grou d th t

y ab wa d Es

es in hile, and

the p

pric mark

g. 3 o pr dyn n th

fact es i up o he P

bsol as o ston n th unu Cen

peri

ce o kets 3), t rinc nam he s

tors in t of t Pol

lute obse

nia.

he p usu ntra

iod

of el s pr thre cipa mics syst s.

the the ish

pri erve On price ual u al-E

form

lect rinc ee p al c s in tem ma pri ind

ice ed f n N es o ups Easte

m 0

trici cipa prin com ndic m of arke ces dex

diff for Nord

on t and ern

01.0

ity, al c ncip mpon

ces f thr ets o in x PO

ffere Pol d P this d do

Eu

1.20

, as com pal c nen

usi ree of S

De OL

ence lish Pool ma own rop

014

we mpo com nts w

ng fac Swe enm LPX

es o an l th arke ns o pe.

ell a onen mpo wer nor ctor ede mark X ar

of nd he et of

as nt o- re r- rs en k, re

(5)

s C p n i m f f c o P

F S T stro Cze pric nort into mar four for cen of a Poli

1 1 1

Eigenvalue

Fig.

Sour Tab

ongl ech G ces th, G o fo rk,

rth It PO ntral Ta abso ish

0 1 2 3 4 5 6 7 8 9 10 11 12

. 3.

ce: O ble 1

Ma 1 SE SE SE F DK DK Os

ly c Rep Gene

of on Give our Lith is t

sho OLP

l-we akin olut

(PO

Scr Own 1. L an

rket 1 E2 E3 E4 FI

K1 K2 slo

corr pub eral the wh en th

gro hua the

ould PX i

este ng te i OLP

ree p rese Load nd a t

C

rela blic lly, e m hich he c oup ania Cen d b is m ern

into incr

PX)

plot earch ding abso

Com

ated is c the mark h TG

corr s: t a, L ntra be n mor tha o ac rem ), H

Scre

N

ts fo h.

gs of olut

0 0 0 0 0 0 0

mpa

d wi corr e av kets GE

rela the Latv al-W note

e st an th

cco ment Hun

ee plot for

umber of

or pr

f fac te ch

F1 2 ,934 ,929 ,910 ,553 ,743 ,800 ,931

arati

ith t relat vera in wa atio firs via a Wes ed th

tron he n unt ts fo ngar

r prices

f eigenva

rice

ctor hang

8 99 03 7 9 07 7

ive

the ted age the s m ons

st i and ster hat ngly nor t the for S ry (

alue

s an

rs in ges

ana

val wit val e ce mode

am is N d Es rn E dy y co rthe

e re Swe

HU

nd a

n pri P alysi

lue th th lues entr eled mong Norw

ston Euro ynam

orre rn m esul

ede U) a

abso

inci

PRIC F2 3 0,08 0,12 0,16 0,32 0,39 0,29 0,06

is of

s of he p s of ral d.

g dy way nia, ope mic elat mar lts o en ( and

olute

ipal

CES 2 3 880 258 663 220 955 976 614

f ele

f EL pric f PO

and yna y an

the . cs in

ted rket of P (SE

EL

e ch

com S

ectr

LIX es i OLP d w amic

nd e th ndic wit ts.

PCA 4 – LIX

hang

mpo ric e

X in in S PX weste

cs i Sw hird cato th c A, f – M we

ges

onen

0, 0, 0, 0, 0, 0, 0,

ener

ndex Slov

ind ern indi wede

d is ors chan

for Malm

ere s

of p

nt an

F3 4 1385 2101 2138 5859 1301 2777 0770

rgy r

x. T vaki dex n Eu icat en, Pol of nge abs mö)

sele

price

naly

5 1 8 9 1 7 0

risk

The ia an

are urop tors

the land

ele s in solu , D ecte

es

ysis k cha

e pri nd H e m

pe t s, m e se d w ctri n pr ute Denm

ed.

s for

0 0 0 0 0 0 0 ang

ice Hun ore than mark

econ with

icity rice

diff mar

r pri

F1 5 0,85 0,87 0,86 0,62 0,56 0,78 0,85

ges…

of nga e co n th kets

nd h ind

y pr es o ffere rk (

ices

CH 1

41 762 20 62 17 33 04

ele ary, orrel he m s ma

– F dex rice on th

ence (DK

s HAN

ctri and late mar ay b Finl x PO es d

he m es t K1 –

NGE

icity d Ro ed w rke be land OLP dete

mar tim – A

ES F 0,2 0,2 0,2 0,4 0,4 0,3 0,1

y in oma with t in div d, D PX erm rket e se Aarh

F2 6 2096 2362 2688 4966 4407 3320 1656

1

n th ania h th n th vide Den

, th mine ts o erie hus)

6 2 8 6 7 0 6

1

he a.

he he ed n- he ed of es ),

(6)

Alicja Ganczarek-Gamrot 12

Table 1 cont.

1 2 3 4 5 6 Kr.sand 0,9356 0,0500 0,0071 0,7378 0,3441

Bergen 0,9225 0,0466 0,0136 0,7335 0,3423 Molde 0,9545 0,0760 0,0592 0,8456 0,1541 Tromsř 0,9289 0,0127 0,0539 0,8039 0,0374

EE 0,5368 0,2625 0,6211 0,6228 0,4557 LV 0,0349 0,3078 0,8948 0,4778 0,4197 LT 0,0369 0,2976 0,8967 0,4678 0,4195 POLPX 0,1238 0,4139 0,5017 0,1997 0,5632

CR 0,2507 0,8726 0,2612 0,3072 0,8536 SR 0,1916 0,8810 0,2899 0,2394 0,8738 HU –0,0599 0,8532 0,2498 0,1445 0,8065

RO –0,0326 0,7735 0,1840 0,0592 0,6905 ELIX 0,3573 0,8055 0,1806 0,3556 0,8121

Variance 8,9747 4,3505 3,0824 7,9058 5,1671

% of Variance 0,4487 0,2175 0,1541 0,3953 0,2584 Source: Own research.

Fig. 4. Loadings for prices and changes of prices with normalized varimax rotation Source: Own research.

Molde SE4

SE2 SE3 Kr.sandOslo BergenTromsř DK2 DK1 FIEE CRELIX

SR POLPX LVLT

HU RO

SE2SE4SE3 FI

DK1

DK2 Oslo Kr.sand Bergen

Molde Tromsř LV EE

LT POLPX

SR CR HU RO

ELIX

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

F1 0,0

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

F2

(7)

Comparative analysis of electric energy risk changes… 13

2. Metodology

The following definition of Value-at-Risk (VaR) will be utilized in analysis of multivariate time series [Jajuga, 2000; Weron, Weron, 2000; Heilpern, 2011].

VaR is defined as such loss of value, which is not exceeded with the given prob- ability

α

at the given time period Δt, and it is expressed by the formula:

P(Yt+Δt ≤ YtVaRα(Y)) =

α

, (2) where:

Yt – is a present value,

t

Yt+Δ – is arandom variable, value of in.

VaRα in the given time period Δt=1 (one day), may by written as a per- centile of the order

α

of dynamics indicators:

P(ΔYt≤ −VaRαYt)) =

α

, (3) where ΔYt is a dynamics indicators.

For a single contract VaRαYt) is

α

– percentile of dynamics indicators:

VaRαYt) = – FΔY1(

α

). (4) Using variance-covariance methods we obtain:

VaRαYt) = – F1(

α

)⋅

σ

ΔY +

μ

ΔY, (5) where:

) (

α

F1 – is a

α

-quantile of standarized distribution,

ΔY

σ

– is a standard deviation of ΔYt,

ΔY

μ

– is an expected value of ΔYt.

If we treat ΔYt as a random realization of non-stationary process, then it may by expressed by the equation:

t =

Δ

Y

μ

tΔY +

ε

t, (6)

t Y t

t

σ ξ

ε

= Δ , (7) where:

Y tΔ

μ

– a time-dependent expected value of dynamics indices described by SARIMA model,

Y tΔ

σ

– a time-dependent standard deviation of dynamics indices described by GARCH model,

(8)

Alicja Ganczarek-Gamrot 14

ε

t – the vector of heteroscedastic residuals,

ξ

t – white noise.

Then equation (5) can by written in the form:

α

VaRtYt) = – F1(

α

)⋅

σ

tΔY +

μ

tΔY. (8) For m-dimensional matrix of absolute differences ΔYmt, VaRtαYmt) can written analogically:

t t

mt

t Y F x

VaRα( Δ ) =− 1(

α

) xTH +xTμ , (9)

where:

Ht – variance-covariance matrix of multidimensional process of absolute dif- ferences,

μt – vector of expected values multidimensional process of absolute differ- ences,

x – vector of weights of individual contracts.

In portfolio analysis a coherent risk measure CVaR (Conditional Value-at- -Risk), given by formula (10), is applied more often than VaR [Artzner et al., 1999; Rockafellar, Uryasev, 2000]:

) (

CVaRα ΔYtm =EYtmtYtmVaRtα( ΔYmt) t}. (10) Linear and non-linear models of single and multi-dimensional are discussed in many works [Osińska, 2006; Zivot, Wang, 2006]. Their applications to the financial market, the commodity market or the electricity market are described by [Weron, 2006; Fiszeder, 2009; Trzpiot, 2010; Krężołek, 2015].

SARIMA vector models incorporating autocorrelation and periodicity may be employed to describe multivariate time series. The m-dimensional processes of ΔYt can be written as m-SARIMA model (Seasonal Auto-Regressive Inte- grated Moving Average), (p, d, q) × (P, D, Q) with period s [Brockwell, Davis, 1996]:

mt

mt B B Y

Y = − − Δ

Δds (1 )d(1 s)D , (11) where:

B – shift operator, d – integration rank,

D – seasonal integration rank.

(9)

Comparative analysis of electric energy risk changes… 15

If εt~D(0, Ht ), then we can write:

t 0,5 t

t H u

ε = , (12) where:

Ht – m×m dimensional conditional variance-covariance matrix,

ut – m×1-dimensional vector with zero expected value and unit variance- -covariance matrix.

Multivariate GARCH family comprises models of conditional covariance matrix Ht. These include the generalization of a 1-dimensional model GARCH to form a multi-dimensional model Veche (p, q) [Kraft, Engle, 1983] and BEKK (p, q, M) [Engle, Kroner, 1995], factor models K-factor GARCH [Engle, 1987]

and O-GARCH (1.1 m) [Alexander, Chibumba, 1996], as well as models of constant conditional correlation coefficients (CCC) [Bollerslev, 1990] and dy- namic conditional correlation coefficients (DCC) [Engle, Sheppard, 2001; Engle, 2002; Tse, Tsui, 2002]. In this study, the following model of [Engle, 2002] is applied:

t t

t DΓD

H = t , (13)

)

;...;

( )

;...;

( 110,,5 0,,5 110,,5 0,5,

=diag q t qmmt Qtdiag q t qmmt

Γt , (14)

where:

) ,..., ,

( 1t 2t mt diag

σ σ σ

t =

D – is a diagonal matrix with dimensions m × m. El- ements of this matrix are estimated using univariate GARCH models,

Γt – matrix of dynamic conditional correlation coefficient, )

( ijt

t = q

Q – symmetric, positive definite matrix of dimension m

×

m:

1 '

1

) 1

1

( −α−β

= t t t

t Q u u Q

Q ,

it it

uit

σ

= ε ,

Q – unconditional variance matrix of ut, β

α, – positive parameters, α +β <1, m – dimension of time series.

The autocorrelation coefficient between two time series in Engle’ DCC model is:

) ))

1 )(((

) 1 ((

) 1 (

1 1 2 1 1

2

1 1 1

β + β + β

− α

− β

+ α + β

− α

β + α

+ β

− α

= − ρ

jt jjt jjt it iit

iit

ijt jt it ijt

ijt q u q q u q

q u u

q . (15)

(10)

1

i

w

w

v

3 g 16

ing

with

whe

μ

0

valu xi

3. E gain

U opt

h re

ere:

– t ue w

– th

Em In ns o

Usin tim

estri

: the with he s

mpir n th of p

g a mizat

icti

exp h eq shar

rica e c rice

a mo tion

ions

pec qua re o

al a ons es o

odif n pr

s:

cted al sh of m

ana stru on f

fica robl

d po hare mark

alys ctio five

atio lem

ortfo e fo ket

sis on o

ma on o m m

E

folio or ev

in p

of t arke

Ali

of th may b m x

Δ E(

o va very por

the ets (

icja

he c be min

>

xi

ΔYm

alue y m rtfol

por (Fig

a Ga

clas form n→

,

>0

= 5 i

mt )

e be mark lio.

rtfo g. 4

ancz

ssic mu

| C , i

= 5

1

x

=

i

efo ket)

lio 4): S

zare

cal M late CVa

= i

i = x

5

1

= i

x

re p ),

(16 SE4

ek-G

Ma ed:

( aR Δ

1 K, 1,

iΔ x por

6), c 4, D

Gam arko

Ym

Δ 5 K,

iY rtfol

con DK1

mrot

owit

mt) Y

5,

μ

≥ lio

ntrac , PO

t

tz [

|,

μ0, rec

cts OLP

[195

cons

on PX

59]

stru

abs , HU

mo

uctio

solu U, E

ode

on

ute ELI

el, t

(the

ave IX w

the

e ex

erag wer

foll

xpe

ge d re u

low

(16

ecte

dail used

w-

6)

ed

ly d.

(11)

F S

A f s t

F S Fig.

Sour

AC for son tilit

Fig.

Sour . 5.

ce: O

Fi F a Ind nalit

ty e

. 6.

ce: O Tim Own

ig.

and dex ty, a ffec

Aut Own

me s rese

5 sh PA

PO auto ct. D

toco rese

C

serie earch

how ACF OLP oco Dis

orre earch

Com

es o h.

ws t F se PX.

orrel trib

elati h.

mpa

f dy

the erie Co lati buti

on a arati

ynam

tim es an

ons on.

ions

and ive

mic

me s nd ider

In s ar

dis ana

s in

seri a h red ser re le

strib alysi

ndic

ies histo d dif ries epto

butio is of

ator

of s ogr ffer s of oku

on o f ele

rs fo

sele ram

renc f dif urtic

of P ectr

or se

ecte gra ces ffer c an

OL ric e

elec

ed i aph ch enc nd e

PX ener

cted

ncr h an ara ces exhi

dyn rgy r

d ma

rem nd q

cter we ibit

nam risk

arke

ment qua rize

ob fat

mics k cha

et

ts, F antil

ed b bserv

t tai

ind ang

Fig.

le-q by h

ved ils.

dicat ges…

. 6 quan

hig d clu

tors

– th ntil

h v uste

s he f le d vola erin

feat distr atili ng o

ture ribu ty, of v

1

es o utio

sea vola 7

of n a- a-

(12)

Alicja Ganczarek-Gamrot 18

To estimate a vector of expected values in multidimensional process of dy- namics indicators μt, in VaRtα ( ΔYmt) , given by formula (9), SARIMA models are used. In Table 2 results of vector-SARIMA model estimation are presented.

Not all parameters differ significantly from zero. The best precision in SARIMA model estimation we obtained for time series from Sweden. In Table 3 the diag- onal matrix Dt resulting from the first-step estimation of Htby DCC model is presented. In Fig. 7 components of Dt matrix are presented. The highest esti- mated variances were obtained for POLPX index. The lowest variances were obtained for Danish dynamic indicator.

Table 2. Parameters of SARIMA(1,0,1)(1,1,1)7 models

Markets SE4 - 1 DK1 - 2 POLPX - 3 HU - 4 ELIX - 5 Parame-

ters value p-value value p-value value p-value value p-value value p-value p(1) 0,5879 0,0000 0,4948 0,0000 0,4031 0,0000 0,1806 0,0006 0,6098 0,0000 q(1) 0,9335 0,0000 0,8869 0,0000 0,8433 0,0000 0,6719 0,0000 0,8204 0,0000 Ps(1) 0,1351 0,0001 -0,0411 0,2496 0,0833 0,0212 -0,0692 0,0816 0,0044 0,9125 Qs(1) 0,9604 0,0000 0,8993 0,0000 0,9009 0,0000 0,7377 0,0000 0,8270 0,0000 MS 22,3890 30,1750 49,3720 47,5990 25,6540 Source: Own research.

Table 3. Parameters of first-step DCC model estimation– diagonal GARCH(1,1) models Markets SE4 - 1 DK1 - 2 POLPX - 3 HU - 4 ELIX - 5 Parameters value p-value value p-value value p-value value p-value value p-value ARCH(1) 0,1447 0,0351 0,0432 0,0147 0,4274 0,0003 0,2649 0,1075 0,1381 0,1503 GARCH(1) 0,8930 0,0000 0,9591 0,0000 0,7335 0,0000 0,8067 0,0000 0,8891 0,0000 Source: Own research.

(13)

Comparative analysis of electric energy risk changes… 19

Fig. 7. Conditional variances of matrix Dt

Source: Own research.

In Table 4 the matrix Γt resulting from the second-step estimation of Ht by DCC model is presented. In Fig. 8 components of Γt matrix are presented.

Correlations are dynamic and positive but not strong. The strong dependence was observed only between dynamic indicators from Nord Pool (SE4 and DK1).

In Table 5 solutions of optimization task (16) are presented for different values of

α

. The greater level of risk we observed for short position (CVaR) than for long one. CVaR of portfolio means how much portfolio can average change next day bringing the lost. The most appropriate contract in every model it is SE4. But number k of exceed VaR in every portfolio is much greater than allowable. In every case share of k in number of observations – w is greater than

α

level. It means, that obtained portfolios’ quintiles are underestimated.

1 85 169 253 337 421 505 589 673 757 841 925 1009

0 10 20 30 40 50

CondVar_SE4

1 85 169 253 337 421 505 589 673 757 841 925 1009

0 10 20 30 40 50

CondVar_DK1

1 85 169 253 337 421 505 589 673 757 841 925 1009

0 10 20 30 40 50

CondVar_POLPX

1 85 169 253 337 421 505 589 673 757 841 925 1009

0 20 40

CondVar_HU

1 85 169 253 337 421 505 589 673 757 841 925 1009

0 10 20 30 40 50

CondVar_ELIX

(14)

Alicja Ganczarek-Gamrot 20

Table 4. Parameters of second-step DCC model estimation – parameters of Γtmatrix

Parameters value p-value

rho_21 0,7294 0,0000

rho_31 0,3409 0,0000

rho_41 0,1728 0,0000

rho_51 0,4179 0,0000

rho_32 0,3600 0,0000

rho_42 0,1880 0,0000

rho_52 0,5242 0,0000

rho_43 0,2138 0,0000

rho_53 0,3779 0,0000

rho_54 0,2885 0,0000

alpha 0,0216 0,0000

beta 0,9046 0,0000

df 5,2289 0,0000

Source: Own research.

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_SE4_DK1

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_SE4_POLPX

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_SE4_HU

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_SE4_ELIX

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_DK1_POLPX

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_DK1_HU

(15)

Comparative analysis of electric energy risk changes… 21

Fig. 8. Conditional correlations between daily indexes on selected markets Source: Own research.

Table 5. Solutions of optimization task (16) Posi-

tion Port-

folios α Portfolios share xi Portfolios parameters SE4 DK1 POL

PX HU ELIX C

VaR μ ki wi

short

P1 0,001 0,970 0,030 0,000 0,000 0,000 –3,688 0,0143 115 0,112 P2 0,005 1,000 0,000 0,000 0,000 0,000 –3,437 0,0142 179 0,174 P3 0,01 1,000 0,000 0,000 0,000 0,000 –3,172 0,0143 207 0,201 P4 0,025 0,965 0,035 0,000 0,000 0,000 –2,837 0,0143 247 0,241 P5 0,05 0,93 0,04 0,03 0,000 0,000 –2,479 0,0139 279 0,272

long

P6 0,05 0,930 0,041 0,029 0,000 0,000 1,426 0,0139 323 0,315 P7 0,025 0,931 0,043 0,026 0,000 0,000 1,306 0,0139 271 0,264 P8 0,01 0,97 0,03 0,000 0,000 0,000 1,35 0,0143 210 0,205 P9 0,005 0,978 0,000 0,000 0,022 0,000 1,580 0,0139 172 0,168 P10 0,001 0,957 0,000 0,000 0,043 0,000 1,711 0,0135 111 0,108 Source: Own research.

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_DK1_ELIX

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_POLPX_HU

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_POLPX_ELIX

1 85 169 253 337 421 505 589 673 757 841 925 1009 -0,1

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

CORR_HU_ELIX

(16)

Alicja Ganczarek-Gamrot 22

Fig. 9 presented value of VaR0,001 for short and long position and value of P1. If we compare dynamic time series of VaR and P1 with means CVaR0,001 =

= –3,6875 for short position and CVaR0,999 = 1,82 for long one.

Fig. 9. VaR0,001 and P1 portfolio value Source: Own research.

Conclusion

Empirical results show that in neighboring markets, both distributions of electricity prices and absolute growth rates are characterized by similar distribu- tions. Time series of prices, as well as increments show stronger correlations in neighboring markets. Correlation among changing prices is also dynamic across all markets. For the optimization criteria of the task (16), the lowest risk with relatively higher profit can be achieved primarily on contracts issued in Sweden and Denmark. Nevertheless, taking into account absolute increases, due to the negative prices, worse fit was obtained in terms of the number of excesses of estimated quantiles than for the relative growth.

VaR 0,001

P 1 1 85 169 253 337 421 505 589 673 757 841 925 1009 -80

-60 -40 -20 0 20 40 60 80

(17)

Comparative analysis of electric energy risk changes… 23

References

Alexander C., Chibumba A. (1996), Multivariate Orthogonal Factor GARCH, University of Sussex Discussion Papers in Mathematics.

Artzner P., Delbaen F., Eber J.M., Heath D. (1999), Coherent Measures of Risk, “Math- ematical Finance”, No. 9, pp. 203-228.

Bollerslev T. (1990), Modeling the Coherence in Short-Run Nominal Exchange Rates:

A Multivariate Generalized ARCH Approach, “Review of Economics and Statistics”, No. 72, pp. 498-505.

Brockwell P.J., Davis R.A. (1996), Introduction to Time Series and Forecasting, Springer–

–Verlag, New York.

Engle R.F. (1987), Multivariate ARCH with Factor Structures-Cointegraation in Vari- ance, Discussion Paper, No. 87, University of California, San Diego.

Engle R.F. (2002), Dynamic Conditional Correlation – A Simple Class of Multivariate GARCH Models, “Journal of Business and Economic Statistics”, No. 20, pp. 339-350.

Engle R.F., Kroner K.F. (1995), Multivariate Simultaneous Generalized ARCH, “Econ- ometric Theory”, No. 11, pp. 122-150.

Engle R.F., Sheppard J.R. (2001), Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH, NAER, Working Paper, No. 8554.

Fiszeder P. (2009), Modele klasy GARCH w empirycznych badaniach finansowych, Wydawnictwo Naukowe UMK, Toruń.

Heilpern S.A. (2011), Aggregate Dependent Risks – Risk Measure Calculation, “Math- ematical Economics”, No. 7(14), pp. 108-122.

Jajuga K (2000), Ryzyko w finansach. Ujęcie statystyczne. Współczesne problemy badań statystycznych i ekonometrycznych, AE, Kraków.

Kraft D.F., Engle R.F. (1983), Autoregressive Conditional Heteroskedasticity in Multi- ple Time Series, Working Paper, UCSD, Department of Economics.

Krężołek D. (2015), Modele zmienności klasy GARCH oraz pomiar ryzyka – analiza porównawcza na rynku metali nieżelaznych i szlachetnych [in:] G. Trzpiot (ed.), Modelowanie wielowymiarowych struktur danych i analiza ryzyka, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, pp. 82-100.

Markowitz H.M. (1959), Portfolio Selection. Efficient Diversification of Investments, Yale University Press, New Haven.

Osińska M. (2006), Ekonometria Finansowa, PWE, Warszawa.

Rockafellar R.T., Uryasev S. (2000), Optimization of Conditional Value-at-Risk, “Jour- nal of Risk”, No. 2, pp. 21-41.

Trzpiot G. (2010), Wielowymiarowe metody statystyczne w analizie ryzyka in- westycyjnego, PWE, Warszawa.

Tse Y.K., Tsui A.K.C. (2002), A Multivariate GARCH Model with Time-Varying Corre- lations, “Journal of Business & Economic Statistics”, No. 20, pp. 351-362.

(18)

Alicja Ganczarek-Gamrot 24

Weron A., Weron R. (2000), Giełda energii, Centrum Informacji Rynku Energii, Wrocław.

Weron R (2006), Modeling and Forecasting Electricity Loads and Prices, Wiley, Chichester.

Zivot E., Wang J. (2006), Modeling Financial Time Series with S-PLUS, Springer, New York.

[www 1] https://www.tge.pl (access: 30.10.2016).

[www 2] https://www.epexspot/ (access: 30.10.2016).

[www 3] http://www.nordpoolspot.com/ (access: 30.10.2016).

ANALIZA PORÓWNAWCZA RYZYKA ZMIANY CENY ENERGII ELEKTRYCZNEJ W WYBRANYCH REGIONACH EUROPY

Streszczenie: W pracy opisano za pomocą wielowymiarowych modeli autoregresyjnych VAR-GARCH procesy zmienności cen energii elektrycznej na wybranych europejskich rynkach energii elektrycznej. Na bazie notowań z towarowych rynków natychmiasto- wych: polskiej Towarowej Giełdy Energii (TGE), European Energy Exchange (EEX), skandynawskiej Nord Pool oraz krajów Europy środkowej Czech, Słowacji, Węgier i Rumunii, korzystających z usług czeskiego operatora (OTE) w okresie od stycznia 2014 do października 2016, przeprowadzono analizę ryzyka zmiany średniej dziennej ceny energii elektrycznej oraz zaproponowano portfel kontraktów na energię elektrycz- ną, minimalizując ryzyko straty w badanym okresie. Ryzyko straty pojedynczych kon- traktów estymowano za pomocą wartości zagrożonej VaR. Do optymalizacji portfela kontraktów wykorzystano warunkową wartość zagrożoną CVaR.

Słowa kluczowe: VAR, DCC, VaR, CVaR, analiza portfelowa.

Cytaty

Powiązane dokumenty

We propose an efficient model for a chemical reactor where hydrodynamics of the solvent is determined by Stochastic Rotation Dynamics and a reaction occurs over a catalytic

Gietzelt 245 Die gasgefeuerte Gasturbine als Schiffshauptantrieb - eine Entwicklung zum sauberen Schiffsbetrieb. Gerbitz ^61 Schaden

A series of undrained cyclic direct simple shear (CDSS) tests on dense Toyoura sand has been performed with the aim to investigate the influence of the stiffness of the DSS device

Z kolei zainteresowani kompleksową terapią słuchową dla osób z za- burzeniami głosu mogą zapoznać się z tekstem na temat Stymulacji Słuchowej Głosu, terapii proponowanej

Obejmowała ona teren samego Wrocła- wia oraz ówczesnego województwa wrocławskiego, w które wchodziła również ziemia opolska, zielonogórska i część ziemi wałbrzyskiej.. W

following approaches have been employed: molecular biology methods (site-directed mutagenesis, construction of fusion proteins and their expression in eukaryotic cell system)

The most common processing route contains high temperature solution heat treatment and natural ageing of wire rod, then wire rod is subjected to drawing process and in the next

Taking into account the above findings about the role primary socialisation plays in people’s lives and further development, the authors of this study wanted to check if