• Nie Znaleziono Wyników

Strongly gamma-starlike functions of order alpha

N/A
N/A
Protected

Academic year: 2021

Share "Strongly gamma-starlike functions of order alpha"

Copied!
9
0
0

Pełen tekst

(1)

A N N A L E S

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXVII, NO. 2, 2013 SECTIO A 43–51

MAMORU NUNOKAWA and JANUSZ SOKÓŁ

Strongly gamma-starlike functions of order alpha

Abstract. In this work we consider the class of analytic functions G(α, γ), which is a subset of gamma-starlike functions introduced by Lewandowski, Miller and Złotkiewicz in Gamma starlike functions, Ann. Univ. Mariae Curie- Skłodowska, Sect. A 28 (1974), 53–58. We discuss the order of strongly starlikeness and the order of strongly convexity in this subclass.

1. Introduction. Let H denote the class of analytic functions in the unit disc D = {z : |z| < 1} on the complex plane C. For a ∈ C and n ∈ N we denote by

H[a, n] = {f ∈ H : f(z) = a + anzn+ . . . } and

An=

f ∈ H : f (z) = z + an+1zn+1+ . . . ,

soA = A1. LetS be the subclass of A whose members are univalent in D.

The classSα of starlike functions of order α < 1 may be defined as Sα =



f ∈ A : Rezf(z)

f (z) > α, z ∈ D

 .

2000 Mathematics Subject Classification. Primary 30C45, Secondary 30C80.

Key words and phrases. Strongly starlike functions of order alpha, convex functions of order alpha, strongly starlike functions of order alpha, gamma-starlike functions, Nunokawa’s Lemma.

(2)

The classSα and the class Kα of convex functions of order α < 1 Kα:=



f ∈ A : Re



1 +zf(z) f(z)



> α, z ∈ D



=

f ∈ A : zf ∈ Sα

were introduced by Robertson in [6], see also [2]. If α ∈ [0; 1), then a function in either of these sets is univalent, if α < 0 it may fail to be univalent. In particular we denote S0 = S, K0 =K, the classes of starlike and convex functions, respectively. Furthermore, note that if f ∈ Kα, then f ∈ Sδ(α) , see [9], where

(1.1) δ(α) =

 1−2α

22−2α−2 for α = 12,

2 log 21 for α = 12.

Let SS(β) denote the class of strongly starlike functions of order β, 0 < β < 2,

(1.2) SS(β) :=



f ∈ A :

Argzf(z) f (z)

< βπ

2 , z ∈ D

 , which was introduced in [8] and [1]. Furthermore,

SK(β) =

f ∈ A : zf ∈ SS(β)

denotes the class of strongly convex functions of order β. Analogously to (1.1), in the work [5] it was proved that if β ∈ (0, 1) and f ∈ SK(α(β)), then f ∈ SS(β), where

(1.3) α(β) = β + 2 πtan−1

 βn(β) sin(π(1 − β)/2) m(β) + βn(β) cos(π(1 − β)/2)

 , and where

m(β) = (1 + β)(1+β)/2, n(β) = (1 − β)(β−1)/2.

The class G(α, γ), γ > 0, 0 < α ≤ 1 of γ-strongly starlike functions of order α consists of functions f ∈ A satisfying

(1.4) Arg

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ < απ

2 , z ∈ D, and such that

(1.5) f (z)f(z)



1 +zf(z) f(z)



= 0, z ∈ D \ {0} .

Note that Lewandowski, Miller and Złotkiewicz, 1974 [3] have introduced the class of γ-starlike functions, denoted here by G(1, γ), which satisfy (1.5) and such that

(1.6) Re

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ

> 0, z ∈ D.

(3)

2. Preliminaries. To prove the main results, we need the following Nunokawa’s Lemma.

Lemma 2.1 ([4], [5]). Let p be an analytic function in |z| < 1 with p(0) = 1, p(z) = 0. If there exists a point z0, |z0| < 1, such that

|Arg {p(z)} | < πα

2 for |z| < |z0| and

|Arg {p(z0)} | = πα 2 for some α > 0, then we have

z0p(z0)

p(z0) = ikα, where

k ≥ 1 2

 a +1

a



when Arg {p(z0)} = πα 2 and

k ≤ −1 2

 a + 1

a



when Arg {p(z0)} = −πα 2 , where

{p(z0)}1/α=±ia, and a > 0.

Moreover, (2.1) Arg



1 +z0p(z0) p2(z0)



≥ tan−1

 αn(α) sin(π(1 − α)/2) m(α) + αn(α) cos(π(1 − α)/2)

 , where

m(α) = (1 + α)(1+α)/2 n(α) = (1 − α)(α−1)/2. 3. Main result.

Theorem 3.1. Let f (z) = z + a2z2+ a3z3+ . . . be an analytic function in D. Suppose also that 0 < α ≤ 1 and γ is a positive real number such that f satisfies

(3.1) Arg

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ < απ

2 f or |z| < 1.

If the equation, with respect to x, (3.2) x +

π tan−1

 xn(x) sin(π(1 − x)/2) m(x) + xn(x) cos(π(1 − x)/2)



= α, where

m(x) = (1 + x)(1+x)/2, n(x) = (1 − x)(x−1)/2, has a solution β ∈ (0, 1], then f is strongly starlike of order β.

(4)

Proof. Let us put

(3.3) p(z) = zf(z)

f (z) , p(0) = 1, (z ∈ D).

Then we have

f (z)f(z)



1 +zf(z) f(z)



= 0 for 0 < |z| < 1 because of the assumption (3.1). Moreover,

(3.4)

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ

= p(z)



1 +zp(z) p2(z)

γ . If there exists a point z0,|z0| < 1, such that

|Arg {p(z)} | < πβ

2 for |z| < |z0| and

|Arg {p(z0)} | = πβ 2 , then by Nunokawa’s Lemma 2.1, we have

z0p(z0)

p(z0) = iβk, where

k ≥ 1 when Arg {p(z0)} = πβ 2 and

k ≤ −1 when Arg {p(z0)} = −πβ 2 . For the case Arg{p(z0)} = πβ/2, we have from (3.4) and (2.1)

Arg

z0f(z0) f (z0)

1−γ

1 +z0f(z0) f(z0)

γ

= Arg{p(z0)} + γArg



1 +z0p(z0) p2(z0)



πβ

2 + γ tan−1

 βn(β) sin(π(1 − β)/2) m(β) + βn(β) cos(π(1 − β)/2)



= απ 2

because β is the solution of (3.2). For the case Arg {p(z0)} = −πβ/2, applying the same method as the above, we have

Arg

z0f(z0) f (z0)

1−γ

1 +z0f(z0) f(z0)

γ

< −απ 2 .

(5)

In both of the above cases we have

Arg

z0f(z0) f (z0)

1−γ

1 +z0f()z) f(z0)

γ απ

2

for z0 ∈ D, which contradicts hypothesis (3.1) of the theorem and therefore,

|Arg {p(z)} | < πβ

2 for |z| < 1,

which completes the proof. 

Theorem 3.1 says that a function in the class G(α, γ), see (1.4), of γ- strongly starlike functions of order α is strongly starlike function, see (1.2), of order at least β, where β is the solution of (3.2). Note that if f ∈ G(α, 0), then f is strongly starlike of order α. For a related result we refer to [7]. If α = 1, then Theorem 3.1 becomes the following result on the class G(γ, 1) introduced by Lewandowski, Miller and Złotkiewicz [3].

Corollary 3.1. Assume that f ∈ G(γ, 1) or that f satisfies (1.5) and (1.6).

If the equation x +2γ

π tan−1

 xn(x) sin(π(1 − x)/2) m(x) + xn(x) cos(π(1 − x)/2)



= 1, has a solution β ∈ (0, 1], then f is strongly starlike of order β.

In the corollary below there are examples of the choice α, γ and β which satisfies Corollary 3.1 or Theorem 3.1.

Corollary 3.2. If f ∈ G(γ(1;1/2), 1), then f ∈ SS(1/2), where

γ(1;1/2)= π

4 tan−1

1

34

4/3+1

≈ 3.378.

If f ∈ G(γ(3/4;1/2), 3/4), then f ∈ SS(1/2), where

γ(3/4;1/2)) = π

8 tan−1

1

34

4/3+1

≈ 1.689.

If f ∈ G(γ(3/5;1/2), 3/5), then f ∈ SS(1/2), where

γ(3/5;1/2)= π

20 tan−1

1

34

4/3+1

≈ 0.675.

If f ∈ G(γ(3/4;2/3), 3/4), then f ∈ SS(2/3), where

γ(3/4;2/3)= π

8 tan−1

63 3(5/3)5/3+681

≈ 1.481.

(6)

If α = β, then from (3.2) we get γ = 0, and G(0, α) ⊂ SS(α), but this case is trivial. In the next theorem we consider the order of strongly starlikeness for functions, in some sense, in the class G(α, γ) of negative order γ.

Theorem 3.2. Let f (z) = z + a2z2+ a3z3+ . . . be an analytic function in D. Suppose also that γ is a negative real number such that f satisfies (3.5)

Arg

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ < απ

2 f or |z| < 1, where 0 < α ≤ 1 and suppose that β is the root of the equation

(3.6) β + γ(1 − β) = α

in the interval (0, 1]. Then we have Arg

zf(z) f (z)

 < βπ

2 f or |z| < 1.

Proof. In the first part of the proof we apply the same method as in the proof of Theorem 3.1. Let us put

p(z) = zf(z)

f (z) , p(0) = 1, (z ∈ D).

If there exists a point z0 ∈ D such that

(3.7)

Arg zf(z)

f (z)

 < πβ

2 for |z| < |z0|

and

Arg

z0f(z0) f (z0)

 = πβ 2 , then by Nunokawa’s Lemma 2.1, we have

(3.8) z0p(z0)

p(z0) = iβk, where

k ≥ 1 2

 a +1

a



when Arg{p(z0)} = πα 2 and

k ≤ −1 2

 a + 1

a



when Arg{p(z0)} = −πα 2 , where

(3.9) {p(z0)}1/β =±ia, and a > 0.

(7)

For the case{p(z0)}1/β = ia, a > 0, we have from (3.8) and (3.9) Arg

z0f(z0) f (z0)

1−γ

1 +z0f(z0) f(z0)

γ

= Arg

 p(z0)



1 +z0p(z0) p2(z0)

γ

= Arg{p(z0)} + γArg



1 +z0p(z0) p2(z0)



= πβ

2 + γArg



1 + iβk (ia)β



= πβ

2 + γArg

 1 +βk

aβeiπ(1−β)2



πβ

2 + γπ(1 − β) 2

= απ 2 ,

because β is the solution of (3.6). For the case Arg {p(z0)} = −πβ/2, applying the same method as the above, we have

Arg

z0f(z0) f (z0)

1−γ

1 +z0f(z0) f(z0)

γ

≤ −απ 2 . The above cases show that

Arg

z0f(z0) f (z0)

1−γ

1 +z0f(z0) f(z0)

γ απ

2 , z0 ∈ D, which contradicts hypothesis (3.5) of the theorem and therefore,

|Arg {p(z)} | < πβ

2 for |z| < 1

which completes the proof. 

Theorem 3.3. Let f (z) = z + a2z2+ a3z3+ . . . be an analytic function in D. Suppose also that 0 < α ≤ 1 and 0 < γ ≤ 1 are such that f satisfies (3.1). If the equation (3.2) has a solution α0 ∈ (0, 1], then f is strongly convex of order {(1 − γ)α0+ α} /γ.

Proof.

Arg

1 +zf(z) f(z)

γ

Arg

zf(z) f (z)

1−γ

Arg

zf(z) f (z)

1−γ

1 +zf(z) f(z)

γ < απ

2 for |z| < 1.

(8)

Then by Theorem 3.1 we have Arg

1 +zf(z) f(z)

γ

Arg

zf(z) f (z)

1−γ +απ

2

< π(1 − γ)α0

2 +απ

2 , and so

Arg

1 +zf(z) f(z)

 < π {(1 − γ)α0+ α}

for |z| < 1. 

Theorem 3.4. Assume that the equation (3.2) has a solution α0, 0 < α0 <

α ≤ 1. If 0 < δ < γ, then G(α, γ) ⊂ G(α, δ).

Proof. Let us suppose that f is a member of G(α, γ) and let us put A =

B1−δCδ

γ/δ , where

B = zf(z)/f (z) and C = 1 + zf(z)/f(z).

Then we have

A = B1−γCγBγ/δ−1 and by Theorem 3.1 we obtain

|Arg {A}| = γ δ

Arg

B1−δCδ

= Arg

B1−γCγ + Arg

Bγ/δ−1

< απ 2 +

γ

δ − 1 α0π 2

< απ 2 +

γ

δ − 1 απ 2

γ δ

απ 2 . This shows that Arg

B1−δCδ < απ

2 z0 ∈ D.

Therefore, f ∈ G(α, δ). 

References

[1] Brannan, D. A., Kirwan, W. E., On some classes of bounded univalent functions, J.

London Math. Soc.1 (2) (1969), 431–443.

[2] Lewandowski, Z., Sur l’identit´e de certaines classes de fonctions univalentes, II, Ann.

Univ. Mariae Curie-Skłodowska Sect. A14 (1960), 19–46.

(9)

[3] Lewandowski, Z., Miller, S., Złotkiewicz, E., Gamma starlike functions, Ann. Univ.

Mariae Curie-Skłodowska Sect. A28 (1974), 53–58.

[4] Nunokawa, M., On properties of non-Carath´eodory functions, Proc. Japan Acad. Ser.

A68 (6) (1992), 152–153.

[5] Nunokawa, M., On the order of strongly starlikeness of strongly convex functions, Proc.

Japan Acad. Ser. A 69 (7) (1993), 234–237.

[6] Robertson, M. S., On the theory of univalent functions, Ann. Math.37 (1936), 374–

408.

[7] Sokół, J., On sufficient condition to be in a certain subclass of starlike functions defined by subordination, Appl. Math. Comp.190 (2007), 237–241.

[8] Stankiewicz, J., Quelques probl`emes extr`emaux dans les classes des fonctions α- angulairement `etoil`ees, Ann. Univ. Mariae Curie-Skłodowska Sect. A20 (1966), 59–75.

[9] Wilken, D. R., Feng, J, A remark on convex and starlike functions, J. London Math.

Soc.21 (2) (1980), 287–290.

Mamoru Nunokawa Janusz Sokół

University of Gunma Department of Mathematics Hoshikuki-cho 798-8 Rzeszów University of Technology Chuou-Ward, Chiba, 260-0808 Al. Powstańców Warszawy 12

Japan 35-959 Rzeszów

Poland

e-mail: mamorununo@doctor.nifty.jp e-mail: jsokol@prz.edu.pl Received August 3, 2012

Cytaty

Powiązane dokumenty

М,, Геометрическая теория функций комплексного переменного, Москва- -Ленинград,

We investigate, in this paper, the family J2a(A, J?J in terms of its coefficients, and then determine extreme points, radii of univalence, starlikeness, and convexity, and order

We shall give the geometrical interpretation of functions of this family and prove a theorem connected with the circular symmetrization of strongly starlike domains..

Współczynniki Grunsky’ ego funkcji meromorficznycłi gwiaździstych i wypukłych Коэффициенты Грунского мероморфных, звёздных и

Получил он теоремы об искажению, оценку коэффициентов, а также радиус звездообразности и

By fixing the exponents in our previous classes, we may vary the orders of starlikeness and convexity to obtain results analogous to the previous theorems. 8 —

Współczynniki funkcji odwrotnych do funkcji regularnych gwiaździstych Коэффициенты функций обратных к регулярным звездным функциям.. Except for rotations the

A simple secant method zero finding routine for functions of two variables was used to find simultaneous zeros of F(r, crj ,a2) and G (r, a,, q 2) for fixed atj.. Figure 5 shows