• Nie Znaleziono Wyników

Standardized wind and wave environments for North Pacific Ocean areas

N/A
N/A
Protected

Academic year: 2021

Share "Standardized wind and wave environments for North Pacific Ocean areas"

Copied!
615
0
0

Pełen tekst

(1)

rARCH1EF

Lab. v.

Scheepsbouwkunde

Teehnische Hogeschool

DAVID W. TAYLOR NAVAL SHIP

RESEARCH AND DEVELOPMENT CENTER

July 1985

Bethesda, Maryland 20084

STANDARDIZED WIND AND WAVE ENVIRONMENTS

FOR NORTH PACIFIC OCEAN AREAS

by

W. T. Lee

S. L. Bales

and

S. E. Sowby

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT

(2)

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

OFFICER-IN-CHARGE CARDE ROCK 05 SHIP SYSTEMS INTEGRATION DEPARTMENT 12 SHIP PERFORMANCE DEPARTMENT 15 STRUCTURES DEPARTMENT 17 SHIP ACOUSTICS DEPARTMENT 19 SHIP MATERIALS ENGINEERING DEPARTMENT DTNSRDC. COMMANDER - 00 TECHNICAL DIRECTOR 01 .OFFICER-IN-CHARGE ANNAPOLIS AVIATION AND SURFACE EFFECTS DEPARTMENT 16 COMPUTATION, MATHEMATICS AND LOGISTICS DEPARTMENT 18 PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT 27 CENTRAL INSTRUMENTATION DEPARTMENT 29 GPO 866 987 NDW-DTNSRDC 5602/21 (2-80)

(3)

UNCLASSIFIED

PITY CLASSIFICATIONOF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION UNCLASSIFIED.

lb.RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) DTIORDC/SPD-0919-02

5.MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION David - W. Taylor Naval Ship

Research & Development Center

6b OFFICE SYMBOL (If applicable)

1561

7a. NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and ZIP Code)

Bethesda, Maryland 20084-5000

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING /SPONSORING ORGANIZATION

Naval Sea Systems Command

8b. OFFICE SYMBOL (If applicable)

63Ht34

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code)

-

\

e

Washington, D.C. 20362 ..

10 SOURCE OF FUNDING NUMBERS

PROGRAM I ELEMENT NO. 62759N. PROJECT. NO F59557695 TASK NO. WORK UNIT ACCESSION NO 1500-384 1500-385 &

it

TITLE (Include Security Classification)

STANDARDIZED WIND AND WAVE ENVIRONMENTS FOR NORTH PACIFIC OCEAN AREAS 12 Pt;RSONAL AUTHOR(S)

W. T. Lee, S. L. Bales dhd S. E. Sowhy I3a TYPE OF REPORT

Final

113b TIME COVERED

FROM TO 1

14. DATE OF REPORT (Year, Month. Day)

1985

July

Fs

PAGE COUNT 650 16 SUPPLEMENTARY NOTATION

17 _COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Wave Model (SOWN) Extreme Value

Spectrum

FIELD GROUP

Slit-0-00

Spectral Ocean

Idealized Wave Spectral Moment 19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report is a source document for specifying wind and wave conditions .for the North Pacific Ocean. . The data are derived from the U.S. Navy's Spectral Ocean Wave Model (SOWN) hindcaSt wind and wave climatology. Some initial efforts by the Navy to synthesize the hind casts into design tools are presented in this report-T

The report provides seasonal and geographic distributions of wind and wave parameters and specifies. Mathematical models by which wave spectra, required by any ship seakeeping performance Methodology, can be developed. Long-term extreme wave predictions for fatigue analysis are also discussed.

20 DiSTRIBUTION !AVAILABILITY OF ABSTRACT

ID UNCLASSIFiED/uNLIMITED Eg SAME AS

21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED

RPT.. III DTiC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL ' Wah T. Lee

22b TELEPHONE (Include AreaCode) 22c. OFFICE SYMBOL

202-227-1192 Code 1561

(4)
(5)

TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES iv ABSTRACT ADMINISTRATIVE INFORMATION INTRODUCTION 1

OPEN OCEAN NORTH PACIFIC 2

WAVE SPECTRAL FAMILIES 3

BRETSCHNEIDER 4

MODIFIED JONSWAP 4

SPECTRAL MOMENTS 5

COSINE-SQUARED SPREADING: FUNCTION 6

SPECTRALPARAMETERIZATION . . .

OOOOOOO

7

LONG-TERM WAVE HEIGHT EXCEEDANCES 7

EXTREME VALUE . 7

STRATIFIED SAMPLE 8

WIND AND WAVE MODEL 9

PRACTICAL APPLICATIONS 10

.ACKNOWLEDGEMENTS 12

REFERENCES 13

APPENDIX A - SEASONAL CLIMATOLOGY OF THE NORTH PACIFIC OCEAN . . . A,1

APPENDIX B - DATA FORMAT DESCRIPTION B-1

LIST OF FIGURES

1 - Definition of Representative Areas in the North Pacific Basin 2 - Comparison'of'Amnual Wave Height Exceedances of

Representative Areas

15

(6)

3 - Comparison of Winter Season Wave Height EXceedances of

Representative Areas

4 -

Comparisons of Annual and Winter Wave Height Exceedances

for the Ndrth Pacific and the North Atlantic Oceans 18

5 - Significant Wave Height Exceedance Diagram 19

LIST OF TABLES

1

1 - Locations Defining North Pacific Ocean Areas 20,

2 - Recommended Cosine-Squared Spreading Weights 21

Page

17

3 -

S2/72

Values as a Function of B .

. ...

22

4 - Comparison of Calculated and Measured Extreme Wave Heights 23.

5 -

Coefficient to Calculate the B and 0 Values for Open Ocean

and Coastal Areas 241

(7)

ABSTRACT

This report is a Source document for specifying wind and wave conditions for the North Pacific Ocean. The

data are derived from the U.S. Navy's Spectral Ocean

Wave Model (SOWM) hindcast wind and wave climatology.

Some initial efforts by the Navy to synthesize the

hind-casts into design tools are presented in this report. The repott provides seasonal and geographic

distribu-tions of wind and wave parameters and specifies mathematical models by which wave spectra, required by any ship seakeeping

performance methodology, can be developed. Long-term extreme wave predictions for fatigUe analysis are also discussed.

ADMINISTRATIVE INFORMATION .

This tepott was 13repared under the sponsorship of the Naval .Sea Systems'

Command (NAVSEA), Code: 63R-34 Surface Wave Spectra. for Ship Design (SWSSD) Program

under Progtam Element 62759N and Project Number SF 59 557 695. It

is

identified by

Work Unit Numbers 1500-384.and 1500-385 at the David W. Taylor Naval Ship Research

and Development Center (DTNSRDC).

INTRODUCTION

Until recently, the-wind and wave environment has played a very:minor role in

the designand,evaluation Of Ships and offshore platforms. The consideration of

ship performance

in

the prevailing environment has focused primarily on

optimiza-tion Of calm water resistance and other factors related to the

ship

propulsion

system. The effort to develop-reliable open ocean wind and wave statistics was

greatly advanced with the introduction of the Spectral Ocean Wave Model in 1975.

Briefly, archived Wind data are used by Fleet Numerical Oceanography Center (FNOC)

to hindcast the resulting wave fields for approximately 1500 locations (grid

points) throughout the Northern Hemisphere. The wind fields are updated at six

hour intervals over a period 'of 17 years. Thus, the resulting wave directional

Spectra are really a hindtast time history of wave conditions throughout the

Northern Hemisphere over

a

period of years. Some initial efforts

by

the Navy to

synthesize the hindcasts into design tools are reported in References 1* to 6 and

summarized in Nefetence

7.

These reports generally develop techniques for

parameterizing the spectra and developing

joint

freqUencie8 of occurrence of .

(8)

critical wave and Wind parameters for a.few particular locations, Additionally,

the occurrence:of extremes, the persistence of sea severity,

and

the characteristic spread and shape of spectral directionality are examined.

At present, design decisions may be bitted by existing techniques which are

essentially rePtedeptatiVe of only North Atlantic conditions. This-report it

intended to accelerate ongoing effottt-to take the Navy North. Pacific hindcast-data available in

a

usable form to the entire naVal engineering community.

OPEN OCEAN NORTH PACIFIC

The open Ocean areas identified on Figure 1 span the North Pacific from the

latitude of the Northeast Trade Winds (up to about 300 N) through those of the

prevailing-WeSterlies (30-0° N) and into the Polar Easterlies (above 500.N).

Additionally, the influence of land mass, currents, continental shelf, and local

- I

storm tracks each cause

a

different climatology Variation with longitude. Table 1, identifies the location of the Points currently included on Figure

1.

The

para-meter sets that are developed are

Significant wave height' versus modal wave period

Significant wave height versus wind speed at 19.5 meters

Significant wave height' versus primary wave. direction. Wind 'speed versus kind diredtion

Significant wave height Versus wind speed at 10 meters

Significant wave heightt versus zero crossing period Significant Wave height. versus average mean- period

h.. Modal wave period versup zeto crossing period.

i. Modal wave period versut avetage mean period

-e. Persistence Of wave height

'f. Persistence- of wind 'speed at 19.5 meters

The data distributions are developed for the 17-year period from 1959 to 1975.

Appendix A provides the data base of open ocean wind and wave conditions

derived fromthe 17-year hinddast wind and wave climatology. Wind and wave data

tables are provided for areas identified in the North Pacific open ocean region.

Both annual and seasonal distributions are provided. The seasons are defined by:

Winter - Decemloer-to February Spring - March to May

(9)

Summer - June to August

Fall - September to November

A few words are in order with regard to the quality of hindcast data. Since

the SOW hindcasts are based on the localized barometric pressures and resulting wind velocity fields, the wave observational biases of other wave models are

excluded, see Reference

8.

The SOWM is best used by statistically averaging wave

conditions over

a

period of years for a specific location and season. The

hind-casts generally provide greater occurrences

of

higher sea states and Show less

occurrences of lower sea states than visual observations. With regard to wave

periods, the hindcasts generally indicate longer wave periods for given heights

than for visual,observations. This is not Surprising as it is difficult to Observe

wave periods at sea and the codes used to record observed occurrences Onboard ship

are confusing to some observers.

Very

often the naval architect uses the most probable modal or peak wave period for several varying waVe heights. In this work,

the modal periods, being longer, will cause larger responses to be calculated for

the longer ships. It is noted that the modal periods developed in this work are reflective of the peak of the entire (density) spectrum. Very often this coincides with the peak of the primary direction.

Figures 2 and 3 provide detailed comparisons of annual and winter season

occurrences respectively for the locations defined in Table. 1. These data are based on the occurrences provided in Appendix A. Generally, more severe conditions

prevail between 50 and 607 N with the north-western region indicating 8lightly

Worse conditions. However, during the winter season the emphasis shifts slightly to the north-eastern longitudes. For the annual comparison of significant WaVe

height occurrences for the grid points under consideration, the most consistently

Severe wave conditions occur in the north portion of the Pacific. Annual

occurrence comparisons of modal wave periods and wind speeds for these same grid

points also conform to the above specifications. Figure 4 provides comparisons of

the annual and winter significant wave height exceedances for the North Pacific and

the North Atlantic oceans. In general, annual data compares well for both oceans but winter.data does not.

(10)

WAVE SPECTRAL FAMILIES

BRETSCHNEIDER

In keeping with the recommendations of

the'

International Ship Structures

Congress (ISSC) and the International Towing Tank Conference (ITTC), as well as current U.S. Navy design practice, the two-parameter Bretschneider spectral

formulation is recommended for use for the open ocean areas. Bretschneider spectra represent the less common fully, developed as well as the usual partially developed seas that persist most of the time throughout the world oceans. The spectral den'-sity can be written in the form'

S(03) A w-5

expl-g

1/3

where A -

483.5

- (

Where the two defining parameters Of

the

spectrum

(average of one-third highest dOuble amplitudes),

wave period (peak Of the

wave

Spectrum), To, in se

sec

sec'4

(2)

(1)

are the significant wave height

(Z77,74/3, in meters and the modal conds. The parameters can be

taken from the data bSse provided in Appendix A, see Appendix B for data format

description. As indicated in APpendik A, the frequency distribution, being fixedl

in SOW, permits only certain modal period valtes

in

the parameterization of the

spectra.

MODIFIED jONSWAP,

, When the odean areas are relatiVely shallow, and at least partially surrounded

by land, the Bretsdhneider spectral formulation is not recommended for use.

Instead, the mean Modified JONSWAP Spectrum is recommended. This formulation was

developed by Hasselmann in order to model fetch-limited, shallow water wave

con-ditions, see Reference 9.

The resulting function is

a

generalization of the Pierson-Moskowitz form by

inclusion of fetch as an additional parameter to wind speed. As it is usually

To4

and B 1944,5 sec 4 3 )

(11)

written, the mean JONSWAP spectrum is dependent on the two parameters wind speed and fetch. However, for simplicity as well as consistency with the current

state-of-the-art in seakeeping performance assessment, a JONSWAP expression

which is dependent only on the two parameters, significant wave height and modal

wave period, is desirable. Such an ,expression is derived in References 10 and

11 and written in the form

exp

[-dr

-4

S( 0)) = Bg2ar5 exp [- 1.25(T-1 -r°) where a = 0.07 for IL 4 2w To

a = 0.09 for

> 2w To B -

319.43(Zw)1

g2To4 2 3

(6)

y = 3.3

for the mean JONSWAP spectra

If y = .1 and B,.= 0.0081, the JONSWAP spectrum

will

reduce exactly to the Pierson-Moskowitz spectrum.

As with the Usual JONSWAP formulation, the modified expression given in

Equation

(4)

is for long-crested seas. While there is limited experimental

verification, the cosine squared spreading function is recommended for use with

the JONSWAP spectral fortulation at this time.

SPECTRAL MOMENTS

Due to the randomness of ocean waves, two records measured at different

times having the Same height and period generally would not have the same

spectrum. For the spectrum to remain the same, all moments must also remain the same. The various moments of the spectrum are defined as

tao

2

M2 sec

(4)

(12)

Average Mean Period

Energy Average Period

2n m,

T,=

1 mi 2n m-1 T-1 -m

Average Zero Crossing Period T2 =

6 COSINE-SQUARED SPREADING FUNCTION

Since ocean waves are usually multi-directional, a cosine-squared spreading

function is recommended to represent wave directionality. The function can be written as

1

s(w,v) cos2

cv

u) 3( w)

(8)

= w

sh,o

(9)

where v represents the secondary wave directions, u is the predominant wave

direction, and S(w) is the point lwave spectrum, see Reference

13.

In applying

Equation (8), it is assumed that-energy is constant across direction bands equivalent to the increment across successive v's, and that it is constant for

all wave frequencies. The spreading function is generally applied to +90 degrees and at 15-degree increments from the predominant wave direction for the

wind-wave

spectrum. Table 2 provides the weights, W, that can be applied to achieve spreading of the Spectral components.

S(L:J) dco (7)

1

The following are the most commonly used expressions using various combinations 1

of the moments in describing wave spectra, see Reference 12.

(13)

SPECTRAL PARAMETERIZATION

With regard to the estimation of the long-term wave data for design purposes, two factors which may seriously affect the magnitude of predicted values have to

be taken into consideration. These include the sea severities and sample size.

Calculations of extreme waves and ship response for long-term predictions and

fatigue analysis are also discussed in this section.

LONG-TERM WAVE HEIGHT EXCEEDANCES

Long-term prediction provides valuable wave data to evaluate the extreme ship

motion response expected to occur in the lifetime of a marine vehicle. It may also be used to evaluate the possible fatigue failure due to repeated loadings.

In connection with extreme load analysis, the 100 year return period of

significant wave height is generally used. Ftlr fatigue analysis, a return period is normally 10 years. In general, the 1-year return period is taken as the basis for accidental loads or damage analysis, see Reference 14.

Figure 5 provides the combined annual significant wave height by return period

for different ocean areas of the world. The maximum wave height corresponding to a

specific return period may be Obtained from this wave exceedance graph.

This.faci-iitates selecting a reasonable maximum design value and also helps in making

fati-gue calculations.

EXTREME VALUE

The most probable extreme value of a random process can be calculated by applying order statistics and the Weibull probability distribution to the wave

data, see Reference 15. Then, the largest value in the ordered sample, kn, with 'a return period factor R can be expressed as

kn

= e

(2.n BN)1/B ( 10 )

B is the Weibull slope known as the slope factor and

e is

the scale parameter or

characteristic value. B i8 dimensionless and e has the same units as kn. N is

the sample size. The return period factor R, defined as the average waiting

time between exceedances of the extreme value, is used as a safety factor to minimize the probability that the extreme value will exceed the predicted

(14)

predicted extreme value will be exceeded is 0.01, see'Reference

15.

If the samples

are sufficiently large, derivaiion of the Weibull parameters based on the mean and

the variance of the data set are simple to accomplish and can provide an objective

estimate of the parameters. Tie procedure for this method is as follows. The mean

value for the Weibull distribution can be defined as

7

= er

+

where

r

is the gamma function and X is the mean,value. The sample variance S2

given as S2 = e2

[r(

+ 1

1)1

(12) Dividing S2 by R yields

r(1

4- 1) s2 5t2 1

Table 3 lists S2/12 values as a !function of B and can be used to obtain the value of B by interpolation.

Table 4 shows a comparison of actual and predicted extreme wave heights for

various ocean.areas over a 10 year period (R = I).- Also included

in

the table are

the predicted extreme Values for: R = 10, 25, 50 and 100. When the sample Size is

very large, i.e., North Pacific Ocean in Table

4;

the agreement between the

pre-dicted and Observed extreme values

is

within 2 percent, On the other hand, for a. 1

smaller sample size, such as Station India, the difference between the predicted

and actual extreme value for R is about 9 percent.

STRATIFIED SAMPLE

Unpublished work. by Outminsjat DTNSRDC defines a family of "stratified" directional wave spectra for the 'period

1959-69

that has been developed for the North Atlantic. -The primary stratification is with regard to significant wave height variations and the secondary is with regard to geographic location.

(15)

Seasonal variations are also included in the resulting approximately 2000 spectra.

The wave height strata are 0 to 1, 1 to 2, 2 to 3, 3 to

5, 5

to

8,

and greater than

8 meters. The Stratified Sample has no bias due to the fixed family shape of the

commonly applied idealized spectra. It provides an unbiased sample of directional spectra representative of all sea severities and North Atlantic Ocean areas. An

analogous data set is being constructed for the North Pacific.

WIND AND WAVE MODEL

AS wind data are generally available for many open and coastal ocean areas, the following method is developed in Reference 16 for deriving the probability distributions of significant wave height or modal wave period from wind speed

statistics. The procedure depends on the application of a two-parameter Weibull

distribution. In brief, given a wind speed distribution from any data source, a

o

corresponding significant wave height distribution or a modal wave period

'distribution can be developed. The procedure of this model is summarized by the following steps.

Using the appropriate a, b, c, and d values from Table 5 for Equations (14) and (15), determine B and 8 values for various wind speed intervals.

B = aB + cBW2 +

dB0

(114)

ae + c W2 + d W-

(15)

=

where B is the Weibull slope known aS the shape factor. e is called the scale

,parameter or characteristic value. B is dimensionless and e has the same units qad X in Equation (16).

Substituting the appropriate sets of B and e values into the following

equation

f(XIB,e)

=2421))3"1

exp[-

05]

(16)

e e

to derive the significant wave height frequency of occurrence distributions for

different wind speeds. For best results the Values.for X as listed in Table. 6 are recommended. These correspond to the interval mid-points of the data

(16)

3. Then, using the existing Wind speed percentage distributions and

substi-tuting into the equation as follows:

f(X)

' [f(XJ 1131, f

f(Xj IB'2.9O.) is a conditional probability density function

height or modal wave period for given wind speed. Bi and

wind speed. Where

r(w1)

is the probability of wind speed

wind .speed oC.purrences, Xj is the significant wave height

modal wave period in seconds.

10

(17)

of significant wave ei are functions of derived from available

in meters or the

PRACTICAL APPLICATIONS

The .recommended use of this wind and wave data

is

by utilizing

a

probabilistic approach to identifying the encountered environment of a maritime or naval mission!.

Many ocean activities can benefit through ascertaining and understanding the geographic and time (season, annual) tpecific environmental conditions Which are

to be expected. Conversely, one can use the data to select a time and area with

the best likelihood of encountering a specified environmental condition. Ocean

activities which pay be enhanded'or in which the safety of operation may be enhanced include: .ship design, ship performance assessment, sea trials, naval

warfare Missions, offensive and defensive mining,, amphibious operations, and salvage/rescue activities. Each activity would utilize the atlas in the same rudimentary fashion but with activity-specific algorithms to find the best

fore-cast based on,c1,imatology.

I. Naval ship designers can follow four steps when applying wind and wave clima-,

tologies, as contained in this atlas toward improving the fleet.

Thoroughly define the mission of the ship and the limiting environmental factors, in Which the mission must be performed, at specIfied levels of efficiency

Identify the area(s) of operation.

Extract the percent of Occurrence of the limiting enviromental factors

from the appropriate time and area specific table. This can be done either

seasonally or annually.

TO Calculate ship response, derive the percent of time of successful, limited, and unsuccessful mission operation by using the percent frequencies of

(17)

occurrence of the environmental parameters. If the resultant percentages are

not

acceptable, the designer must fine:tune-the ship's hull configuration to meet the

desired operating envelope.

II. Wind and wave data can be used to assess how the environment may have been

a contributing factor in the failure or damage of a System, operation, or

equip-ment. Failure in this context refers to losses Which result from fatigue over a significant portion of the ship's lifespan and not to a specific single

environ-mental episode.

Identify the area( s) and season of operation prior to the "failure" of interest.

Identify the environmental conditions which, if exceeded (modal wave

period, significant wave height, wind speed), would probably cause the damage or

failure.

Derive the percent of occurrence of conditions exceeding those conditions

of step b above, for the operational areas and time.

III. Sea trial and naval Warfare planning can be enhanced. through the use of this

atlas by following a procedure of identifying areas of the ocean most likely to provoke the desired seaway and resulting Ship motions for a given time of year.

The first step is to define the seaway (upper and lower wave height

limits) best suited for specific tasks of the sea trial or mission. Identify the general geographic area of interest.

From the climatology, identify the time (season) which has acceptable probabilities of occurrence (e.g., 50 percent, 75 percent, 80 percent, etc.) of

encountering the desired wave heights. Probabilities of occurrence can be

extracted by area and time directly from Appendix A.

The basic underlying factor of each of the above uses is that one can obtain a good understanding of the general environmental conditions for a given time and

location prior to the commencement of an activity or mission at sea. Armed with

this knowledge one can have onboard contingency plans which will likely reduce mission reaction time in the event of encountering severe weather conditions as well as maximize mission effectiveness in all non-threatening environmental conditions'.

(18)

ACKNOWLEDGMENTS

-The authors gratefully acknowledge the continuing assistance of Ms. Dana M.

Gentile and her staff, of ORI,

Inc., in

developing the climatology data presented

herein. Additionally, the assistance of Mr. Gregory Neuschafer, formerly of DTNSRDC, and Mrs. Beverly Simon ofDTNSRDC is appreciated.

(19)

REFERENCES

1. Cummins, W.E. and S.L. Bales, 7Extreme Value and Rare Occurrence

Statistics for Northern Hemispheric Shipping Lanes," Proceedings, 5th SNAME Ship

TOOhnology

and ,Research (STAR) Symposium, Coronado, California (Jim 1980).

- 2. Cutmins, W.E., S.L. Bales and D.M. Gentile, "Hindcasting Waves for

Engineering Applications," Proceedings of the International Symposium on

Hydrodynamics in Ocean Engineering, Trondheim (Aug1 1981).

3. Bales, S.L., W.E. Cummins and E.N. Comstock, "Potential Impact of

Twenty Year Hindtast Wind and Wave Climatology," Marine Technology, Vol. 19, No.

2 (Apr 1982).

4,

Bales, S.1., W.E. Cummins and W.T. Lee, "Advances in Environment

SPecification for Seakeeping Analyses," 20th ATTC (Aug 1983).

Bales, S.L., W.T. Lee and J.M. Voelker, "Standardized Wave and Wind Environments for NATO Operational Areas," Report DTNSRDC/SPD,0919-01 (Jul 1981).

Bales; S.L., "Designing Ships to the Natural Environment," Naval

Engineers. JOurnal, Vol.

95,

No. 2, (Mar 1983).

7.

Bales, S:L., "Development and Application of a Deep Water Hindcast Wave

and Wind Climatology," Royal Institute Of Naval Architects Wave and Wind Climate World Wide Symposium, 1984.

Piersdn, W.J., "The Spectral Ocean Wave MOdel (SOWM), A Northern Hemisphere Model for Spedifying and Forecasting Ocean Wave Spectra," DTNSRDC

Report 82/011 (Jul 1982).

Hasselmann, K. et al., "Measurements Of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAR)," Deutsdhen

HY-drographischen Zeitschrift, A8, No. 12 (1973).

10. Lee, W.T. and S.L. Bales, "A Modified jONSWAP Spectrum Dependent Only

on Wave Height and Period," DTNSRDC Report SPD-0918-01 (May'1980).

' 11. Miles, M.D., "A Note on the Use of Standard ITTC Wave Spectra at

AymRi," National Research Council Canada, Arctic Vessel and Marine Research Institute,MTB-147 (Jan 1984).

Bhattacharyya, R., "Dynamics of Marine Vehicles," John Wiley and Sons, (1978)..

Bales, S.L., E.N. Comstock, R.T. Van Eseltine and E.W. Foley, "Ship Seakeeping Operator Guidance Simulation," Proceedings of the Summer Simulation

(20)

Odland, J., "Response and Strength Analysis of Jack-Up Platforms," Lee, W.T. and S.L. Bales, "Environmental Data for Design of Marine

Vehicles," Ship Structures Symposium (1984).

Lee, W.T., S.L. Bales and W. E. Cummins, "Joint Occurrence of Environment Disturbances," Ship Structure Committee Report SR-1287 (1985).

(21)

60° 30 °

Figure 1 - Definition of Representative Areas in the North Pacific Basin

I .... i i

1,3

i ..,

( Jo.

,,,,,,, ,

,.,,

v1), 1"..\...

111.91-4 Irk

k '

s'' .", "'s SI . %.,.../s.7 .,31

i

'V "... io . s %, . . . .. ... '.... 0 . . 1.6 . . Pi; Jdo

*

. . 4 . . 1 P. , . 4., ,,,, . 40. 43 -I, 6 . . J3

s.

!

al,

. .3 . . . , -z- ..,. . . il Lod": \ ks, 44 .

It

..-i.., . t...1 6 its . , . . Ai . 1 ;0 . 1 Nlibili. .* . . aij . 1..3 I

r

.

\

1,5

1 I

\

\

de I . . .. , . .

a

. 105 120' 135' 150' 165 E 180' W 165' 150' 135" 120'

(22)

100 80 70 20 10 6 8 10 12

SIGNIFICANT WAVE HEIGHT (M)

Figure 2 = Comparison; of Annual Wave Height Exceedances of Representative Atea.s

(23)

6 8 10 12 14 16 SIGNIFICANT WAVE HEIGHT (M)

Figure 3 - Comparison of Winter Season Wave Height Exceedances

(24)

18

1 6 8 10 12

14 16

SIGNIFICANT WAVE HEIGHT (M)

Figure

4 -

Comparisons of Annual and Witter Wave Height Exceedances for the North paclfit and the North Atlantic Oceans

(25)

30

25

5

NUMBER OF EXCEEDANCES PER YEAR

Figure 5 - Significant Wave Height Exceedance Diagram

(Figure 3 of Reference 16)

(26)

TABLE 1 , LOCATIONS .DEFINING NORTH PACIFIC OCEAN AREAS

20

Subprojection Grid Point

1 Latitude, N, Longitude, W

255

26.0°

148.2°E

239

26.5°

135.8°E

294

36.3°

148.5°E

233

20.6°

163.1°E

102

24.8°

162.5°

1

165

25.2°

179.8°E

2

152

34.2°

163.8°E

85

34.5°

174.2°

93

42.8°

159.0°E

93

24.6°

135.6°

88

34.9°

145.6°

,

188

I

36.2°

127.4°

39

37.5°

158.0°

3

148

43.2°

141.4°

202

43.7°

128.7°

561

0.0°

178.9°

164

50.9°

1145.6°

1214

51.3°

158.8°

1 28

51.3°

162.5°E

121

56.4°

171.7°

4

121

24.2°

116.3°

(27)

TABLE 2 RECOMMENDED COSINE-SQUARED SPREADING WEIGHTS (TABLE 2 OF REFERENCE 13) v* 90° ?5° 600 45° 300 150

-90° 0.000 -- -- -- --

--75° 0.011 0.000 -- -- -- --

--6o0 0.042 0.019 0.000 -45° 0.083 0.069 0.037 0.000 __

---30° 0.125 0.131 0.125 0.083 0.000 -150 0.156 0.181 0.213 0.250 0.250 0.000 0.000 Es; 0 ,-1 _ , <0

I.

0

o°(u)

0.167 0.200 0.250 0.333 0.500 1.000 1.000 0 15° 0.156 0.181 0.213 0.250 0.250 0.000 0.000 30° 0.125 0.131 0.125 0.083 0.000 --145° 0.083 0.069 0.037 0.000 --

--600 0.042 0.019 0.000 75° 0.011 0.000 -- -- -- -- --. 9o° 0.000 -- -- -- -- --

(28)

--00'.000000100

E ii. S. a I. E iA M. .1' at' ta

Iv

;1*-eslitiesikNagtingovi

nisacawcn

PPPPPP,PPPPPPPPoPP.

. .

..

. . . .111EMI2!.§13...11,Egi'118.1 g El

sa" Ess

..., ...a

°

Cl) sa X'...61 NJ

fa 14 ta (4

f'42 ga P*1 "

N "

!19 " " " r9 " NI

1.9

" r9

r`a

" "

!9 !42 rb -1 bi i'l "VI

"-iScaliptli;"'N'Itaa'aii'MAaii'llamill"'S°814',

PPPF$PPPPPPPPPPPFAPPPPPPoPPPPP

7.1 a ti It kl kl. al A & t it c al l'

al c-a

4-I 1 2 -4 12

i436

bil Y. g g il

cn,,, ;-il

al Ul

CTI A :lb A :lb A:PAA :Ps A :Ita

ca ca cAl 6.1 pa ca ca ca pa Ce) cis co ea

b

in

b in & ..s.

IA i...,

N.J.) 'ili . a 0 800 800 Di :4 a in m in m :ik

bi id

co

000P000000000PPPPPPP'f2PPPPPPP

EIME11119.2233§1V§§§111'iiiiial

mr. i

(29)

TABLE 4 - COMPARISON OF CALCULATED AND

MEASURED EXTREME WAVE HEIGHTS

(TABLE VII OF REFERENCE 15)

ACTUAL EXTREME

PREDICTED EXTREME VALUE,

Itn, M R 1 R =10 R =25 R = 60 R = 100 10 YEAR HINDCASTS X. an 62. PA2 N 13 9 VALUE, M N. PACIFIC 2.9 4.65 176599 1.36 3.17 19.5 19.8 22.4 23.2 24.3 25.0 N. ATLANTIC 2.6 4.11 133088 1.29 281 19.6 19.0 21.8 22.9 23.7 24.6 STATION INDIA (58.9°N, 18.39N) 3.26 4.90 13303 1.50 3.60 17.8 16.1 18.6 19.6 20.3 21.0 STATION PAPA (50.9°N, 145.6°W) ,, 3.69 6.53 13576 1.60 4.12 18.1 16.8 19.2 20.2 20.8 21.6

(30)

TABLE

5 - COEFFICIENT TO CALCULATE THE B AND

0

VALUES FOR OPEN OCEAN AND COASTAL AREAS

(TABLE D-1

OF

REFERENCE 16)

SIGNIFICANT WAVE HEIGHT

,

MODAL WAVE PERIOD

OPEN OCEAN . ANNUAL WINTER ANNUAL WINTER . B 0 B e B 0 B

e

a

c d

1.118

-0.0066

0,00276

0.0000067

1.09

-0.0226

0.00954

-0.00011

1.072

0.121

-0.008

0.00022

2.1355

-0.0457

0.0095

-0.00011

3.581

-0.0309

0.000715

0.000065

11.934

-0.1074

3.995

_o.Ica5

-0.00323

0.000057

13.44

-0.0225

---0.0000265

0.000056

0.00865

-0.000092

SIGNIFICANT WAVE HEIGHT

MODAL WAVE PERIOD

COASTAL AREA ANNUAL WINTER ANNUAL WINTER B B 0 B 0 B

e

J

a

b

c

d

0.6617

0.0779

0.000936

-0.0000215

0.7472

-0.0183

0.0071

-0.000078

0.7523

0.08035

0.000877

-0.0000245

0.6889

0.0456

0.00355

-0.0000228

3.11

-0.1056

0.0093

-0.00011

12.132

-0.2313

0.0096

-0.000072

4.666

-0.1897

0.010556

-0.000121

13.68

-0.139

0.00178

0.0000426

(31)

TABLE 6 RECOMMENDED VALUES FOR CLASS INTERVALS X

(TABLE D-.2 OF REFERENCE 16)

SIGNIFICANT WAVE HEIGHT, M

-MODAL WAVE PERIOD SEC 0.5 3.2 1.5 4.8 2.5 6.3 3.5 7.5 4.5 8.8 5.5 9.7 6.5 10.9 7.5 12.4 8.5 13.8 9.5 15.0 11.0 16.4 13.0 18.0 15.0 20.0 18.0 22.5 22.0 25.7 26.0 30.0

(32)

THIS PAGE INTENTIONALLY LEFT BLANK.

(33)

APPENDIX A

(34)

24 20 16 6 5 4 3 2 1 0 TOTALS 0

A-2

mum TOT 3.2 4.8 8.3 7.5 8.8 9.7 10.9 12.4 13.8 15.0 SA 11.0 .

MODAL WAVE PERIOD (SEC)

Figure A-Pac-1-1 Significant Wave Height vs.

Modal Wave Period

4 7 11 17 22 28 34 41 48 55 TOTALS

W943 51,TED AT 19.5 IA (KNOTS)

Figure A-Pac-1-2 Significant Wave Height vs.

Wind Speed at 19.5 M (Knots)

I 6666&14 'WM POICOIT A 70 20 4. 4 4. 16 4 4 12 10 9 a a 5 4 3 2 1 0 OA 1 0.1 4 0.5 0.2 02 03 0.6 + 0.2 0.4 0.2 0.2 + + 0.2 03 03 0.3 + OA 0.7 0.6 0.4 0.2 + I OA ta 0.9 0.0 0.3 0.3 + 4.7 moemes + 0.4 1.9 2.1 ti 0.7 0.3 2.13 2.5 . 13 . U 1.1 119 « us 17 2.7 15 0.8 0.1 0.2

3.2 5.84-

1.73.0 111 2.3 17 0.9 0.2 20.4 9....Aref..0 -2.7 t7 1.9 1.1 15 0.11 02

203

me-

0.3 0.5 721019.1 13.0 12.0 9.1 9.8 7.5 3.1_ 0.9 0.1 _ 0.1 __ _____ 1004 4 + i 4 4 4 4 4 4 0.1 0.2 0.1 r 03 * 4 4 0.2 0.2 0.1 0.2 OA 0.2 4. 4 10 4 0.1 0.1 0.3 0.4 0.6 0.2 0.2 0..3 0.4 0.9 0.7 19 0.2 03 0,7

12 0 02

0.1 0.2 0.4 1.2 2.6 1.3 + 7.4 0.3 0.5,1.1 2.111

12 le 0

11.9 0.5 U 2.5 .9 7 1.2 1.9 3.6 7.9 14.1 11.8 + 29.4 3.3 5.0 1 66 + + 20.1 62 11251212 .5 ogLe A 2.4 10.9 0.3 0.1 100.2 a

a

14 /2 10 9 a

(35)

24 20 12 10 9 TOTALS P*c,rsc Tork. SA4fRES 211300S 2, 100 4 4 + + + + + 4 + + 4 4 4 + + 4 _ 4 0.1 4 4 4 + 0.1 + + 0.5 * 4 0.1 4. 0.1 0.8 4 + 4 + 0.2 0.1 0.2 0.1 1.0 0.1 0.2 0.2 0.4 0.2 0.4 0.2 1.8 0.2 0.3 0.1 0.2 0.8 0.3 0.7 0.4 2.9 0.4 0.3 0.2 0.3 0.8 0.8 1.1 0.7 4.7 0.7 0.7 0.4 0.5 11 0.8 1.7 1.3 7.4 1.4 14 09 0.7 14 1.3 2.4 2.2 11.9 2.8 2.8 2.1 1.2 1.8 1.7 3.0 .3.7 19.5 36 4.8 4.6 2.1 2.0 2.0 3.3 -1 94 ,

MI 5111111111

0.1 12

!I II !I

a !111111

. PERCENT so too + 4 + 4 4 + 4. + + + + + 0.3 + 4 4 0.1 0.2 0.1 0.1 0.1 09 0.1 0.1 . 0.1 0.3 0.5 0.5 0.4 0.3 2.4 0.3. 0.3 0.4 02 to OS. 0.6 4.8 0.9 0.8 0.8 0.7 1.4 1.9 1.6 9.8 1.5 t8 16 1.0 1.7 2.4 1.7 14.5 3.1 4.9 5.0 2.1 2 .5 44 3.7 28.3 2.4 3.7

,,veic

2.0 2.4 2.3 2.5 21.2 1.3 8 1.8 1.3 1.2 1.3 1.2 1.3 11.5

j.

9 10.5 4.3 06 B 0.7 34.5 .6 .4 .9 6 119 .0 N NE E SE S SW W NW TOTALS

PRIMARY WAVE DIRECTION

Figure A-Pac-1-3 Significant Wave Height vs. Primary Wave Direction

L. Immo rots, sANPLES 293003

N NE E SE S SW W NW TOTALS

WI ND DIRECTION

Figure A-Pac-1-4 Wind Speed at 19.5 M (Knots) vs. Wind Direction 7 5 5 4 3 2 55 48 41 34 28 22 17 11 7 4 0 TOTALS

(36)

14.00 9.00 6.00 8-4.00 2.50 125 .56 0 0 10 15 21 27 47 55 63 TOTALS

WIND SPEED AT 10 M (KNOTS)

Figure A-Pac-1-5 Significant Wave Height vs.

Wind Speed at 10 M (Knots)

141

33

TOTALS 0

0.0 2.0 4.0 6.0 6.0 10.0 120 140 160 160 20.0 22.0 24.0TOTALS ZERO CROSS INC PERIOD (SEC)

Figure A-Pac-1-6 Significant Wave Height vs.

1Zero Crossing Period N 4 N 4 4 4 4 4 0.6 03 i 0.1, 0.4 0.6 1.1 13 + 5.6 0.4 0.7 1.9 2.5 4.4 2.2 12.1 2.4 6.1 "._ 7.2 3.5 0.1. 20.5 4.2 i 7.3 16.5 42 + 4 32.4 6.7 10.3 5.5 4 + 221 12 5.4 ' . PA 23.0 30.5 14.7 9.2 6.5 02

t

100.01 . - .4 I 4 4 4 , -0.1 0.3 0.1 + + 13.5_ 4.' 0 S 0.6 #0.9 + + + 4- + 1.0 033 . 0.9 4 +

r

4 4 + I 1 2.3 0.5

r

+ r 2.9 4.2 0.6 r 4.7 22_ 4.5 0.5 0.1 + 7.4 &J. 2.7' 0.7 0.2 s + i. 11.9 2.4 'r2.31 .0 09 0.3 4 4 19.5 14.5 9.4 3.6 1.3 0.5 0.1 4 _, 29.4 L9 6.7 6.6 3.3 1.1 0.3 4 4 4 20.1 IS 123.7 39.4 24:4_13.0 t9 d3.5 _0.1

.

.

.

100.0., 0.00 TOTALS 24 20 15 14 12 10 9 8 7 5 5 4 3 2

(37)

24 20 16 14 12 10 a 7 6 4 3 2 TOTALS 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14 0 160 AVERAGE WE PERIOD

Figure A-Pac-1-7 Significant Wave Height vs.

Average Wave Period

YS Is ISO 20.0 22.0 24.0 TOTALS (SEC) 4 4 1 + 4 0.1 * 0.4 s + + 0.5 + 0.3 0.2 4 + 4 0.6 as 0.1 4 4. 4. to « 1.5 0.1 « « 4 1.6 1.1 1.7 6.1 2.9 3.4 1.1 02 + 4.7 0-2 6.0 0.9 0.2 + + 4 + 7.4 5.6 4.8 .0 0.3 0.1 + r 11.9 0.5 13.0 4.0 .4 0.5 0.2 + 61.5 10.0 113 4.7 1.6 0.7 02 + + 294 L3 111.1 .1 3.7 1.4

t.

. 0.1 20., 1.3 ,17.3 37.1 27.7 2.0 3 k3.6 .0; 4. + 100.0 + 4 4 + 4

-+ 4 4. 4 4-+ 4 + 4 + + 4. 4 + + + + 0.1 +

t

r 01 0.2 0.1 4 0.5 4. 0.1 0.3 0.5 0.5 0.4 0.2 L

t

tg + 0.1 0.4 1.2 1.2 2.1 19 0.9 0.2 + 6.0 02 to 2.0 3.4 7.1 42 3.4 2.1 0.8 02 4 4 244 2.0 .3.8 67 8.3 8.7 4.6 2.3 2.4 19 0.6 02 + 39.4 04 4.0 6.4 32 2.4 1.5 15 10 13 0.8 0.2 4 + + 23.7 0.3 + 0.3 0.2 02 0.3 0.1 0.1 0.1 + 4 tg 0.3 0.5 7.2 10.6 11.1 13.0 12.0 14.6 9.1 9.8 7.5 .11 0.9 0.1 0.1 100.0

-

. 3.2 4.8 6.3 7.5 8.6 9.7 10.9 12.4 13.8 15.0 16.4 18.0 20.0 22.5 25.7 TOTALS

MODAL WE PERIOD (SEC)

Figure A-Pac-1-8 Zero Crossing Period vs.

Modal Wave Period

ANNUAL FIC TOTAL SUIPLE.3 283003

24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 TOTALS

(38)

Figure A-Pac-l-9 Average Wave Period vs.

Modal Wave Period

A-6 1 TA ES 243005 1T1 rMIIIVIS. . ... . + 4 4 + 4 4. + + + 4. + + 4. + 4. 4 + + + + + 4. + + + + 4 4 +

40.2

r

+ 0.1 03 0.2 _ 0.1 + + 0.8 + 0.2 0.4 0.7 1.1 0.8 0.2 + _ 4 3.3 r 0.2 0.6 2.1 2.6 3.3 2.2 0.9 0.2 12.0 + 0.3 1.3 3,0 5.7 6.2 3.6 28 1.9 0.6 02 27.7 2.3 5.3 7.8 8.2 4.7 3.2 VI 1.9 15 0.4 0.1 + + 37.1 04 4.8 4.6 1.9 1.5 0.9 10 0.6 06 0.5 4. 4 173 0.3 + 02 0.2 0.1 0.2 q. $ 4. + r + 1.3 0.3 0.5 7.2 10.6 11 13.0 12.0 14.8 9.1 9.6 73 .3.1 0.9 0.1 0.1 100.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0

0

w 6.0 4.0 2.0 0.0 TOTALS 3.2 4,8 6.3 7.5 8.6 9.7 10.9 12.4 13.8 15.0 16.4 18.0 20.022.5 25.7 TOTAL

(39)

.3.2 4.13 6.3 7.3 66 9.7 10.9 12.4 13.6 13.0 e.4 WO 20.0 22.5 25.7TOTALS

MODAL WAVE PERIOD (S(C)

Figure A-Pac-2-1 Significant Wave Height vs. Modal Wave Period

77851

TOTALS

0

1111.

4 7 11 17 22 26 .34 41 45 55 TOTALS RIND SPEED AT 19.5 U (KNOTS)

Figure A-Pac-2-2 Significant Wave Height vs. Wind Speed at 19.5 M (Knots)

.-...-1411211T e le a

0

0 . 0.1 03 le 0.4 0.1 0.2 4 4 VI 4 4. 4 0.3 OA 0.5 0.3 04 05 tO 0.7 0.4 * 1.4 L3 1.3 05 05 0.1 3.0 te t4 0 05 0.1 0.5 24 3.2 IA L5 L3 02 * 8.6 9.5 2.7 3.0 3.2 t7 1.8 0.7 12 3. 2.11 2.1 2-3 22 115 02 200 11 2.3 2.0 2.1 2.8 L1 25 2.4 OA 0.3 211 1.2 OA 0.11 13 0.7 11 OA 1.4 05 0.3 01 +

0.2 0.2 2.3 4.1 11 0.3 ILl 113A Mb 14.0 fl.O 3.0 US 0.3 01 1001

+ + + + 0.2 0.3 0.2 + LO 4 4 4 +0.10.30.40.4 4 U + 0.1 0.2 0.4 0.7 0.4 2.0 4 0.2 0.2 0.3 0.13 1.2 0.3 4 4 3.4 + 0.2 0.4 OA 1.1 1.4 13 0.1 I. 03 04 MI 27 D3 +

9

51,1 0.4 0.0 2.0 2.4 4.0 L4 0.1 + 18 OA 1.8 4.0 42 9.3 0.3 AA MI

917

L7 32 32 1...1 151- 1.0 4.

99 2

14

215 S

,

SI

!IS 5 EP, 'I M S SS

El!

24 20 to 14 12 9 7 6 5 4 3 2 TOTALS 24 20 5 4 2 re

(40)

-24 20 9 7 6 5 4 3 2 0 TOTALS PAC NE E SE S SW W NW TOTALS

PRIMARY 1INFE DIRECTION

Figure A-Pac-2-3 Significant Wave Height vs. Primary Wave Direction

77081 ss 45 41 34 213 22 17 11 7

A-8

IS TOTALS N NE E SE S SW V/ NW TOTALS 16 ND DIRECTION

Figure A-Pac-2-4 Wind Speed at 19.5 M (Knots)

vs. Wind Direction * 4 4 SI03

M

o1 0.2 0.1 U 0.11

!SSW,

0.2

5

at to

11104 !I

014 is 5.5

5

02 0.4

52

10 1.9 L4

MI

14

1

s

si

sLI 1.5

13 21 I

II

Pismo

15

L4 2.7&I

sw s

1!5/53

SOMME*

21

all

M MIS

919151555515151

4 0.1 + + 0.5 03 0.2 0.4 0.3 0.2 0.3 0.9 0.7

5

4.4 0.3 00 0.7 1.4 1.7 1.4

4i

1.2 I.1 19 2.7

ma

t3.5 LS 2.1 16 t2 ta

nal

2.1

no

3.1 4.3

mirt23.1

3.3 3.0 252 24

mis

12 15 1.7 2.0 21 19.9 mi AgEr 1.U4 LIU 12 09

1135121535151

ile215951M211M2

3

LO LI LI 9.1

(41)

0.0 2.0

0 6 10 le 21 27 47 55 63 TOTALS NM SPEED AT 10 21 (KNn)

Figure A-Pac-2-5 Significant Wave Height vs. Wind Speed at 10 M (Knots)

I

4.0 6.0 6.0 10.0 12.0 14.0 ILO 16.0 20.0 22.024.0107A1.5 ZERO CROSSING PFA 100 (SEC)

Figure A-Pac-2-6 Significant Wave Height vs. Zero Crossing Period

IIl

4. + 01 L7 a L4 02 0.3

au

22 62

+ 511 tO L3 3.4 4.9 7.1 lllm 3.5 6.0 6.0 31 0.1 253 4.3

119 02 P

5.4 21 + 12.4 IA LO 12.5 113 2116.7 133 MI10.3 + 4 +

+02

0.3 0.7 02 + tO + + Li IS + 4 4 4 4.

12.0

U III

I.5 L7 4. 4 + 4 1

t

3.4

4.2 1.1

0.1 7.3 0.5 0.2 s

t

13.3

Ill

14

Sal

4.

u.

19

mai

DJ

t II

113 5 alms !I

20.0 7.7 72

mi 3 CO S

2L1

S!!!!!IMIS

12.0

ni El m !ri

02 14.00 9.00 6.00 4.00 2-50 L25 .50 A) 0.01) TOTALS 24 20 14 12 10 9 S 7 4 3 2 0 TOTALS 76

(42)

24.0 22.0 20.0 18.0 4.0 2.0 0.0 TOTALS TOTALS

MOIL SONIUM TONI

0.0 2.0 4.0 5.0 8.0 10.0 12.0 14.0 15.0 18.0 20.022.024. AVERAGE WAS PERIOD (SEC)

Figure A-Pac-2-7 Significant Wave Height vs.

Average Wave Period

3.2 4.5 5.3 7.5 BA 9.7 1031 12.4 13.1 .0 16.4 MODAL WE PERIOD (S(C)

Figure A-Pac-2-8 Zero Crossing Period vs.

Modal Wave Period

A-10 _ v

II

+ + + + +

liii.

+ 0.3 tO

0.6'

e 07 me e L1 L7 0.3 + + + + 0.3 + +

t

+

t

3.4 UUIUs2. LB 3.3 1

3

OJ + 4 LS /121 0.4 0.1 4 +

Ii

1L6 6.0

a 911

03 +

Sus-

a s a

.3

.

11121

20.0 4.11 7.11

a a

to 0.3 24

al

!I II s

.2

.

7.6

!Emma sin

PtiCirtt /GM 77.61 4 4 4 4.

;

4 4 + 4 4 4. 4 , 4 4 4 40.2

I+ +

02 02

0.2 01 0.11 0.1 OA OA 0.11 OJ + 3.1 + 0.1 0.4 1.3 1.9 3.7 3.6 1.6 0.4 p * 01 0.6 1.4 &a EL3SS 5.6 3.6 1.6 0.3 4. 341.6

,

0.6 1.5 4.3 OA 85 -5.1 2.0 3.1 3.0 If OJ + 35.1 12 Ilk 13 1.1 0.6 1.1 0.6 1.3 10 0.3 01 4 a U.0 0.1

.

t

0.1 0.2 0.2 2.3 4.1 6.4 63 11.6 15.0 12.6 14.6 VA SI_1.4 0.3 0.1 24 20 18 14 12 10 9 8 7 .5 4 3 2

(43)

24.0 22.0 20.0 18.0 U 16.0

8

14.0 12.0 .r> 10.0 at 8.0 6.0 1.0 2.0 0.0 TOTALS 3.2 4.8 6.3 7.5 8.6 9710.9 12.4 13.8 15.0 16.4 18.0 20.0 22.5 25.7TOTALS MODAL WAfE PERIOD (S(C)

Figure A-Pac-2-9 Average Wave Period vs.

Modal Wave Period

* 4. 4 + 4 + * + + 4 + 4.

4 4+3

0.2 0.4 0.4 0.3 1.4 + 8.2 0.5 1.1 19 1.6 0.4 + 5.7 + 0.1 0.5 2.11 1.3 5.9 4.1 1.8 0.3 19.9 + 0.2 0.9 2.5 6.6 114 5.4 45 3.4 1.2 0.3 * 0.7 2.3 4.7 8.0 3.9 3.1 18 2.3 2.2 0.7 0.2 + + + 0.2 1.6 1.6 0.7 0.6 0.3 0.5 0.4 0.8 05 0.1 + + 7.6 0.2 + + + + 0.6 0.2 0.2 2.3 4.1 8.4 _5.3 U 18.05 145 12.6 5.9 1.6 8.1 MCA ON= Meal

(44)

TABLE A23911

-SURFACE NATURAL ENVIRONMENT SUMMARY

, SEASON: ANNUAL; LOCATION:

26.51', 135.84°E

Natural Environment Mininum (5 Percentile) Median (50 Percentile) Maximum (95 Percentile) Mean Most Probable Sea Surface

Sig. Wave Height, m. Wave Period, sec Direction

0.25

6 , 1.25

9.5

-3.5 17.5

-1.5 11

-0.5

8.6

E Winds

Speed, knots Corresponding Mean Sig. Wave Height, m. Direction

2

0.5

-9 1.25

-2o 2.5

-10

1.5

V

-9 1.25 NE-E

Visibility, nautical miles

1 18 25

-Cloud Cover

Total clouds, in eights of

sky

obscured

Low clouds, in eights of sky obscured

0.5

o

6.5

1

-.

Precipitation (Occurrence) All precipitation -13% of the time Relative Humidity, % 63 85 98

-V

-Air Temperature, 'C 19 22 25

-Sea Surface Temperature, °C

22.5

24

25.5

-Sea Level Pressure, millibars

, 1006 1015 1025

.

-Ice None Refractivity

Mean Surface Refractivity

V

Sub-Refraction (1 km, Annual) Super-Refraction or Ducting (1 km, Annual)

- - -V _

--

_

-312

-1% 3%

(45)

3.2 4.8 6.3 7.5 8.6 97 190 12.4 13.8 15.0 16.4 18.0 20.0 22.525.710TALS MODAL WAVE PERIOD (SEC)

Figure A-239-1-1 Significant Wave Height vs. Modal Wave Period

10 1ALS

0

taw. 104PLES 0333

7 II 17 22 28 34 41 48 55 TOTALS

WIND SPEED AT 79.5 M (KNOTS)

Figure A-239-1-2 Significant Wave Height vs. Wind Speed at 19.5 M (Knots)

PERCENT 00 70 co .... * +

i

I 4 I 0.1 0.3 0.1 0.7 0 0.4 0.3 0.2 0.1 4 1.3 MI-.

,.

0.3 1.3 0.8 0.6 0.2 0.3 0.3 0.3 0.1 .2 1.4 3.1 2.1 1.7 10 0.6 0.8 1.3 0.9 0.3 132 0.4 4.1 6.9 13.2 4.3 3.3 3.5

.

.5 1.6 0.6 .3112 0.4 5.5 6.3 3.9 3.4 2.1 3.5 1.7 11 04 41.9 0.4_ 04 10.0 16.0 110.1 14.0 10.2 9.3 6.0 74 8.1 4.2 14 0.2 130.6 -- -.

+4

0.2 4 0.3 0.1. 0.2 0,3 0.7 r e 0.2 0.2 0.5 0.2 + 0.1 0.3 1.0 1.3 1.3 4.2 0.3 0.6 1.9 4.9 4.7 0.7 13.2 2.5 5.1 11.0 17.8 1.0 38.2 19.3 13.7 16.1 34 * 4t9 11.2 13.7 24.3 7.7 8.4 ' A OM 40.2 + WU 2.4 20 16 12 10 9 8 7 6 tit 5 4 .5 2 1 0 101ALS 24 20 16 IL 7 6 4 3 2 a 0 10

Si

(46)

24 20 IS 14 12 to 7 .71 5 4 .5 2 10MLS

am 2.te CIR TOTAL RANN.E1 13233 _

N NE E SE

PR I MARY WAVE

SW W NW TOTALS 0 I RECTI ON

Figure A-239-1-3 Significant Wave Height vs. Primary Wave Direction

1

A-1 4

Figure A-239-1-4 Wind Speed at 19.5 M (Knots)

vs. Wind Direction __--y 1

f

4. + + + + 4 + 4 0.2 + +

i

0.3 + 0.2 0.1 0.t +. 0.1 0.7 0.3 0.2 0.2 0.2 0.1 0.1 13 1.2 1.5 0.1 0.2 0..3 0.3 02 4.2 OA 3.3 4.0 01 0.9 11 0.6 0.11 13.2

-2.0

-7.5 131 2.0 1.9 2.3 2.1 1.5 _35.2 41.9 2.5 ,5.1 1.7 5.9

r

1.9 2.0 1.7 1 3.1 IV./ 35.8 5.1 12.11 [10 10.1 14.0 111110.E --...x.

-r

PERCENT oo to + + 4-+ 4 4 + 4 * 4 0.2 0.2 0.1 4 01

i

01 0.8 0.4 0.2 0.3 0.2 0-2 0.4 2.0 1.9 0.7 0.5 1.3 0.4 0 5.4 .3.4 5.9 5.8 2.7 2.2 3.6 2-2 27.7 3.8 5.6 4.6 2. 3.6 2.2 21 29.3 2.4 3. 9 2.6 2.8 2.3 t9 t4 9.7 IA .0 til 1.4 1.3 3 tO 112 We 18.13 7.7 10.9

10 MG I

7.9 00.0 N NE E SE S SW VI NW TOTALS WI ND DIRECTION Sb 48 41 ia. 28 22 17 11 4 0 101ALS

(47)

20 16 14 12 10 9 a 7 5 14.00 1.00 6.00 4.06 2.50 1.25 .50 0.00 IOTALS 4 3 2 1

WIND SPEW AT 10 M (KNOTS)

Figure A-239-1-5 Significant Wave Height vs. Wind Speed at 10 M (Knots)

0.0 2.0 4.0 8.0 8.0 10.0 12 0 14 0 X 0 18 0 20.0 22.024.0TOTALS ZERO CROSSING PERIOD (SEC)

Figure A-239-1-6 Significant Wave Height vs.

Zero Crossing Period

7$

14011.144 ab779 Sin TOTAL 13333

_ 0.3 0.5 0.1 0.3 0.4 0.8 0.4 2.1 0.4 0.11 2.1 3.8 11 19 4.4 7.9 17.7 3.8 + + 33.9 14.4 19.7 9-3 I. 42.4 OA &I * 123 27.8 32.4 262 7.9 2.1 0.8 z30.0 o 8 10 18 21 27 47 55 83 TOTALS . A--

-+ 02 0.2 + + 0.3 ,11 + + + 0.7 _ 10.5 0.9 + + 3.3 .5 0.2 0.1 + + 4.2 2.3 6.3 1:5 o.s 0.3 0.2 13.2 12.1_ T2.2 4.4 LS OA 0.3 32.2 3.2 riS 15.1 _ 15.6 _.5

[

OA 0.3 4. e12 3.2I33.0,305 TOTALS

(48)

2.0 0.0 1 01ALS 24 20 12 10 9 6 7

9

In 5 4 3 2 1 0 TOTAL SAMPLES 13533 T 01A1.3 0.0 2.0 4.0 0.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 TOTALS AVERAGE WAVE PERIOD (SEC)

Figure A-239-1-7 Significant Wave Height vs. Average Wave Period

TOTAL MAPLES 13333

3.2 4.8 8.3 7.5 6.6 9.7 V.812.4 13.6 15.0 16.4 16.0 20.022325.7701AL. MODAL WAVE PERIOD (S(C)

Figure A-239-1-8 Zero Crossing Period vs.

Modal Wave Period

A-1 6 e + + + 0.1 0.1 0.1 4 + 0.3 _ I/0.6 + + 0.7 tO 0.1 + 2.8 to 0.2 0.1 0.1 + i 4.2 01 8.0 2-0 -0.8 0.4 0.4 4 112 13J 14.6 0.0 2.2 0.9 0.4 2.1 0.318.5 OA 41 OA 0.3 4 Ate 2.1 124.8 2.0 20.3 6.7 2.4 11.3 0.3 + 100.0 ..-0.2 0.3 0.2 0.2 1.0 02 0.2 0.3 0.4 0.3 0.2 1.7 + 0.2 0.6 It 0.8 MP 0.7 0.11 0.2 5.0 2.0 3.8 2A IA tO 0.3 16.8 4.1 8.4 7.7 6.3 4.8 2.6 13 2.2 2.0 1.4 0.3- 365 01 6.2 7.7 5.0 3.3 24 2.3 1.1 2.0 1.3 0.8 0.3 33.0 0.4 0.15 0.4 0.5 0.2 0.2 0.2 0.3 0.1

r

3.2 , OA 0.8 10.6 15.0 15.1 14.0 10.2 0.3 5.0 71 6.1 4.2 1.4 0.2 1001

(49)

22.0 20.0 18.0 164 14.0 12.0 10.0 8.0 64 4.0 2.0 0.0 1431A1 S 2.4.0 TOTAL SAZS 11133 .9.2 4.8 6.3 7.5 8.6 9.7 10.9 12.4 13.8 18.0 16.4 MO 20.0 223 25.770TALS 1100AL WAVE PER 100 (SEC)

Figure A-239-1-9 Average Wave Period vs. Modal Wave Period

0 6 12 18 24 JO 36 42 43 34 50 135 72 70 84 10 96 102 1013 114 120 TOTALS

DURATION (HOURS)

Figure A-239-1-10 Persistence of Wave Height

+

+0.2

+ 0.3 0.2 0.5 0.3 0.2 1.3 + 0.3 0.3 03 OA 0.5 0.2 + 1.4

r

9.3 OA 14 0.9 t4 OS 0.7 0.2 6.7 0.6 2.3 43 3.5 3.0 1.5 2.1 14 0.9 0.3 4. 20.3 4.5 5.0 9.2 6.6 4.3 2.8 1.3 2.1 1.7 t2 0.2 42.0 0.6 53 6.1 3.2 L4 1.4 1.6 0.8 1.4 0.9 0.4 0.1 24.8 0.4 0.2 0.4 0.2 0.3 0.1 0.2 0.1 +

r

+ 2.1 0.4 0.6 10.6 15.0 18.1 14.0 10.2 9.3 8.0 7.9 6.1 4.2 1.4 0.2 1004

,1:11141A1 0P2'4 Tri 0146.1NO.Li 14337

- ...-' I 6 6 9 3_ U 19 5 1 1 1 _ 22 29 9 9 1 1 44 33 7 2 1 1 95

58532416107111 121

I I I 168 ,122 220 OD 03 49 30 38 14 II ID 0 6 1 5 3 1 3 au 161 119 107 62 80 Si 32 30 20 17 26 17 14 12 11 8 2 8 3 12 992 U2 Oa /14I9 -73 -72

II

54 SO 48 31 30 21 22 20 AI 17 12 9 13 3 7 4. 49 741 3111

i

7 - -MI 135 7 71 ill2 Pt 144 §7 127 27 pi p Is 7 6 20 14 12 10 9 7 6 3 2 1 101ALS

(50)

2 55 48 34 28 22 17 7 4 0

A 18

loz 'Is 410444 ' 4

12 31

35

14 43

1 1 ' 56 114 61 15 6 II 1 208 297 115 56 24 13 Ô 6 B 1 I 577 579 149 65 38 29 4 I sem 55Ø43 1 215 145 ._32_ 10 2 4 1 041 769 142 16-7 le 31 13 13 3 3 I 1 1 1427 93.

a

irs ee 144 .' 20 H -9 2 3 1 4 2 1 664 ..71 46

kw 6

41 2e 413 .12 2 -5 $ 4 1 1 62513 6 72 15 24 30 36 42 48 54 80 66 72 90 DURATION (HOURS

Figure A-239-1-11 Persistence of Wind Speed

(51)

3.2 1.8 8.3 7.5 8.6 9.7 13.9 12.4 13.0 15.0 10.4 10.0 20.022.525.7TOTALS NODAL WAVE PERIOD (SEC)

Figure A-239-2-1 Significant Wave Height vs. Modal-Wave Period .I0I. $ACS 3664 21 20 14 10 9 8 7 6 4 2 1 0 'I 0141S 0 4 . 7 11 17 22 26,34 41 48 55 TOTALS WIND SPEED AT 19.5 Al (KNOTS)

CO

Is

Figure A-239-2-2 Significant Wave Height vs. Wind Speed at 19.5 M (Knots)

t---- PERCENT se a

a

*a -+ _ + 4. 0.1 4. 9. 1 I. el 0.5

-19 0.2 0.1 cu_

6

...,

.-,-0.4 0.7 ea 0.5 0.2 0.4 0.4 0.6 0.3 .2 + OA 3.0 1.2 0.9 1.1 OA 16_ 26 2.3 03 al 14.6 0.6 .1.3_ 7.2 116 34 3.0 _ 4.5 40 OA 0.1 44.4 0.2 4 3.0 44 3.0 13 14 46 22 2.4 1.2 343 0.2 0.5 7.2 112 12.0 SA 6.0 9.6 U _ no 10.4 9.7 3.5 0.3 0.1 1004 _ 4. _ . 4. -1. 0.2 4._ 0.2 4. _ 0.5 4. 0.2 0.4 0.2 0.4 0.1 02 0.4 0.9 1.1 1.4 4 4.2 _ 0.4 1.1 2.6 5.4 4.4 0.7 14.6 13 5.7 L1.9 20.7 1.7 44A 5.0 10.0 14.7

i

4.1 4 348 7.7 i7.9 1.9 31.7 1.7 2.5 0.5 sio.0 1&1L11 3614 24 20 16 14 12 10 9 7 3 3 2 1 0 101ALS

(52)

2 24 20 16 12 6 5 4 3 ' 2 1 48 41 34 28 22 17 11 4 0 'I01ALS VIALS N NE E SE S SW W NW TOTALS

PRIMARY WAVE DIRECTION

Figure A-239-2-3 Significant Wave Height vs. Primary Wave Direction

.c239 SAILIS 3M4

NEE SE

S SW W WIND DIRECTION

A-20

as NW TOTALS ANT

Figure A-239-2-4 Wind Speed at 19.5 M (Knots) vs. Wind Direction ._ _ 4 4. 4. + 0.1 0.2 4. 4. 0.1 0.5

r

0.7 0.1 *

r

*

0.3t3

0.1

tt

+ 0.3 0.0 42 _

3.2 2 0.2

0.3 0.5 0.8 14.8 3.7 9.6 15.6 1.1 0.4 0.3 1.7 3.0 444 -44 _ 0.6 0.6 1.3 1.9 34.8

" MI 11111.11.11

...-... PERCENT so 01 _ + 0.1 1 0.2 0.5 0.7 0.1 -. 030.3 0.6 2.6 0.9 1.7 1.2 0.1 0.4 0.7 0.5 1.9 7.7 6.5 7.9 4.7 te 0.9 t5 4.9 31.7 76 7.9 13 2.0 2.5 4.4 31.9 3.4 0 1.6 1.0 12 1.7 2.4 17.9 0.7 OA 1.0 20.2 AA SALII 3il4

(53)

14.00 9.00 6.00 Pti 4.00 2.50 1.25 (.4 .50 jo 0.00 TOTALS 24 20

1

Map 10T41. WPM 3144 0 6 10 18 21 27 47 55 83 TOTALS WI ND SPEED AT id 14 (KNOTS)

Figure A-239-2-5 Significant Wave Height vs. Wind Speed at 10 M (Knots)

_ * ., 0.3 0.2 0.5 0.3 0.5 0.2 1.8 0.5 13 2.3 57 to + 9.1 4.4 10.3 21.0 3.4 0.1 39.3 12.0 20.1 6.9 4- 41.1 -5.332 8.5 22.3352 33.0 7.5t7

-0.6 MC 9 a 7 5 4 3 2 0 1 OIALS I. 0.2 0.3 0.1 0.3 0.1' 92 22 0.3 0.2 4.2_ 1.6 9.3 2.5 14 0.4 0.9 u.6 21.3 15.1 LI 0.6 0.2 I. 44.4 3.1 - 91.6 ILO 7.0 0.7 341_ 3.1 p3.7 356 11316.5 3 I.5 0.1 0.0 2.0 4.0 8.0 8.0 10.0 12.0 140 6.0 180 20.0 22.0 24.0 TOTALS -ZERO CROSSING PERIOD (SEC)

Figure A-239-2-6 Significant Wave Height vs. Zero Crossing Period

j013a. ;MMUS 3434 *INT*

(54)

14 20 is 14 12 10 9 a 7 5 5 2 1 TOTALS

AVERAGE WAVE PERIOD (SEC)

Figure A-239-2-7 Significant Wave Height vs.

Average Wave Period

loTaL 3664 74.0 22.0 204 18.0 16A MA 124 10.0 CO

(0

2.0 MO

A-22

rs ALS IcnALs' 3.2 4.8 8.3 7.3 8.8 9.7 10.9 12.4 U.B 13.0 18.4 18.0 20.0 22.3 25.7707ALS MODAL VIRIE PERIOD (SEC)

Figure A-239-2-8 Zero Crossing Period vs. Modal Wave Period

*KW OP231 11P1 OM JAMPtp 3/414 1 -4 0.2 0.2 0.1 0.3

0.3 02I

_ 2.2 t2 0.3 0.3 0.1 0.1 4.2

03 82 3.0L3 01 0.6

0.2 14.5 i0.1 7.2, .9 12 0.4 44.4 -La 11.1 13.7 7.7 .3 t2 013 4. 34.0 t924.1 30.2 20.1 131 104 0.1

r

100.0 10 2.0 4.0 5.0 80 10.0 120 140 180 180 20.022.0 24.0T01

---

_ _ r

-

4. 0.i 0.4 0.4 0.3 0.4 15 0.2 0.4 0.9 0.3 + 2.1

r

0.3 11 0.6 14 0.7 L5 0.4

r

0.2 L4 2.4

2.1 LOU 2.6t3

17 0 6 + 16.3 2.2 8.7 4.3 3.4 3.2 3.4 4.0 ai 0.1 .38.6 05 4.11 7.0 &I 2.4 2.0 3. tO 3.4 2.7 1.5 0 4 + 33.7 0.2 -. 0.2 0.2 0. 2 0.6 0.1 0.3 0.3 0.4 0.3 0-.3 +

r

. 3.1 0.2 AA 7.2 10 DA 8.6 8.0 , 8.8 5.6 III 13.4 9.7 2.6 0.5 0.1 100.0

(55)

24 .0 2 2.0 20.0 18.0 16.0 14.0 12.0 uj, 10.0 8.0 5 6.0

4

4.0 2.0 0.0 10IALS S 3694 'MLR -_ _ 0.1 0.1 0.1 0.2 0.5 0.4 . 04 . 07 . 04 4. 0.2 0.3 0.7 0.8 t4 0.3 + 3.8 0.7 1.2 1.0 1.6 t1 te_ 0.6 6.2 11.3 ta 3.0 3.0 2.8 2.8 2.5 21. 0.6 20.1 2.6 3.5, 7.9 4.0 3.1 3.7 1.5 3.5 3.8 2.9 0.4 0.1 39.2 0.5 4.5, 54 2.5 1.7 1.2 18 2_5 1.7 0.1 0.1 24.1 0.2 0.1 0.2 0.1 0.4 p 0.2 0.1 0.1 0.2 0.2 1.9 0.2 0.6 7.2 11.3 12.5 9.6 6.0 _11.8 5.6 11.6 10.4 9.7 _2.8 0.3 0.1 100.0 12 4.8 6.3 7.5 15.6 9.7 10.8 12.4 13.8 15.O 16.4 18.0 20.0 22.5 25.7 TOTALS

MODAL V/AVE PERIOD (SEC)

Figure A-239-2-9 Average Wave Period vs. Modal Wave Period

(56)

.3.2 4863 7.5 6.6 9 7 MA 12.4 13.8 15.0 111.4 1.0 20.022.525.7TOTALS 110DAL WAVE PERIOD (SEC)

Figure A-239-3-1 Significant Wave Height vs. - Modal Wave Period

0

TOTALS

WIND SPEED AT 195 IA (KNOTS)

Figure A-239-3-2 Significant Wave Height vs.

Wind Speed at 19.5 M (Knots)

A-24

PERCENT II so vs r ,-, + I 0.1 0.2 0.4 e999m*. 0.1 0.3 0.4 0.3 0.1 0.2 + 13 1.6 3.3 MI 1.1 01 03 0.7 011 0.3 0.7 a 92 ' 0.3 42 6.6 6.1 5.7 43 4.7 .1 0.9 0.1 42.3 0.2 .9 II 0.2 4.2 3.0 4.3 1.9 12 0.2 442 0.2 OA 0.3 14.6 15.4 13.9 9.4 10.3 52 7.7 0.2 , SO. . 9.231 en 70141. IMILCII 0200 CC 70 _ 01 0.! _ * 0.1 0.1 + + 0.4 0.1 0.4. 33 03 3 0.4 02 1.7 3.5 4.1 03 4' 112 3.1 15.3 12.4 111 2.3 + 42.3 14.2 17.1 14.4 44.3

r.

12.1 21.2 31.31203./.07.0 0.3 + 100.0

_ - . .... .i. gam D 411 TATA, C

7a 20 14 12 10 9 7 5 4 0 i01ALS 24 20 IS 12 7 6 3 2

(57)

24. 20 16 14

2

a

8 7 6 5 4 2 01ALS a N NE E SE 5 SW W NW TOTALS

PRIMARY WAVE DIRECTION

Figure A-239-3-3 Significant Wave Height vs. Primary Wave Direction

SA bb 48 41 20 22 17 11 4 /0 20 10 71 N NE E SE 5 SW W NW TOTALS WI ND DIRECTION

Figure A-239-3-4 Wind Speed at 19.5 M (Knots) vs. Wind Direction . , 0.2

r

0.1 *

r

v

t

0.4 0.5 0.7 + + 0.1 0.2 0.3 2.6 4.2 0.3 0.3 tO LO 10 113 1.4

6..37J 2.2

3J 2.6

42.3 24 6.4 19.9

[

6.2

4 16

2.0 19 44.3 110 2.2 0.7 .5 62 5.9 ._._ 4.9 100.0 [ PERCENT AP s4 + + 4. + 0.1 h

+0.3

,

0.3 04 02

0.4 0.2 PI 1.5 + 11 1.6 0.6 0.4 tO 0.7 0.7 7.0 2.3 4.2 19 2.3 2.6 62 1. 7 26.6 27 4.5 5.3 3.4 42 2.5 2.1 31.3 2 1 2.9

12 10

2.1 16 212 16 1.7 I 1.5 t?

J

14

LI

12.1 19 SA.6 17.0 10.7 12.9 17.0 6 7.7 1100.0

(58)

24 20 16 14 12 10 9

I

7 5 qfl 5 4 2 1 0 TOTALS 0.0 A-2 6 a

Figure A-239-3-5 Significant Wave Height vs. Wind Speed at 10 M (Knots)

Ps

2.0 4.0 8.0 8.0 10.0 12.0 14.0 150 18.0 20.0 22.0 24.0 TOTAL ZERO CROSS INC PERIOD (SEC)

Figure A-239-3-6 Significant Wave Height vs.

Zero Crossing Period 1117/176

7

1P1 143TA1/4.11041U).1 3538 ,.., 0.1 02 0.2 0.6 0.3 0.11 13 2.1 0.7 5.2 5.7 ILO 16.8 4.4 + 35.7 16.1 21.0 12. + 46.4

1.11!

12.1 .. .._ .-30.2 34.4 27.7 5.1 10.1 0.2 130.0 0 8 10 11 21 WIND SPEED 27 47 55 63 TOTALS AT 10 14 (KNO15) wmm 1 0.1 .

,

. 0.1 0.3 + 0.4 t4 0.1 + + + 13 2.7 8.0 12 05 0.5 0.3 4 15.8 133 5.5 2.1 0.1 0.8 42.3 3.4 12.3 14.1 10.1 23 0.11 0.2 + 46.3 3.4 pciLato,le.1 1_

5.5 Its ILO 0.3 loo.c

14.00 9.00

it

6.00 4..00 2.50 1.25 .50 0.00 10TALS

(59)

12.0 10.0 8.0 6.0 4.0 2.0 0.0 10IALS 14 20 16 14 12 to 9 a 7 5 4 3 2 0. TOTALS ?4.0 22.0 20.0 18.0 ISO 0.0 2.0 4.0 6.0 6.0 10.0 12.0 14.0ia.o91.0 20 0 22.0 24.0 TOTALS

AVERAGE WE PERIOD (EEC)

Figure A-239-3-7 Significant Wave Height vs. Average Wave Period

,

14

Is

4.2 4.8 6.3 74 8.8 13.7 10.9 12.4 MO 15.0 16.4 18.0 20.0 22.5 25.7TOTALS MODAL WAVE PERIOD (SEC)

Figure A-239-3-8 Zero Crossing Period vs. Modal Wave Period

01,1

ilia

-- i _ - -, 0.1 4 5 0.2 0.4 + + -0.4 OA .8 .9. +

r

r

W ,. 0.6 7.2 1.5 OS CIA 0.5 03 9.2 14.4 10.8 7.3 3.0 1.1 04 42.3

En

2.1 Ill 14.1 11.9 39 OA 0.3 44,3

E 11111

2.4 1.4- 0.5 s 100.0 -0.1

#+

02 0.2 OA 0.1 0.1 1.0 0.3 0.9 0.3 04 + 0.3 + 1.9 0.2 0.9 1.11 _ 0.6 03 0.7 0.4 0.2 0.5 2.0 4.2 2.9 2_6 18

17 U 10

04 IIII _ 3.3 6.4 7.7 5.0 3.7 2.9 t2 L8 t4 10 0.5 35.0 0 5 5.9 7.4 5.1 4.1 3.5 2.5 10 2.5 0.9 1.0 0.3 0.1 343 0.2 0.1 0.2 0.5 0.5 0.4 0.3 0.2 0.3 04 3.4 0.2 , OA 9J 14A 15.4 13.9 11.4 10.3 5.2 7.7 5.5 3.5 1.11 0.2 100.0

(60)

24.0 22.0 20.0 18.0 16.0

8

14.0 o: 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10 WS" aloe on T TA 3136

Figure A-239-3-9 Average Wave Period vs.

Modal Wave Period

A-28

+ 0.2 + 0.2 + 0.5 04 0.7

r

0.3 1.4

-+ 0.4 0.6 0.3 0.7 0.2 03 2.4 0.3 1.2 2.2 0.9 1.4 011 0.13 0.2 7.6 tO 2.7 &I 31 3.1 t6 2.1 t4 0.9 10.4 21-1.1 7.5 9.0 5.4 4.0 2.7 1.2 t7 t1

tl

0.4 0.1 37.9 0.6 54 6.0 3.4 2.9 2.2 1.6 0.6 1.7 0.7 0.5 + 28.1 0.2 02 0.3 0.2 0.3 0.1 0.2 0.2 * 2.1 _ 0.2 0.6 9.3 142 15.4 132 11.4 tO.J 5/ 7.7 5.5 3.6 1.8 02 100.0 3.2 4.8 6.3 7.5 8.6 9.7 10.9 12.4 13.8 15.0 16.4 18.0 20.0 22.5 26.7 TOTALS MODAL V/AVE PERIOD (SEC)

(61)

12 4.6 6.3 7.5 6.6 9.7 10.9 12.4 13. . . .

MODAL WAVE PERIOD SEC)

Figure A-239-4-1 Significant Wave Height vs. Modal Wave Period

24 20 16 14 12 10 9 8 7 6 4 3 2 0 101ALS 0 memo VW/ sin ._._ .._ PEACEN1 m J?

-_ r 0 1_1_ _ 4. ____ 02 0.1 4. + 02 03 0.1 0.2. 0.4 + t7 0.1 0.8 ELS 0.3 0,3 + 02 tO 0.7_ no... 0.1 oa em u 3.3

Li to

0.6 OA 10.0 _ 0.0 6.2 7.6 0.2 2.0 14, 2.0 tO 29.3 i 0.7 72 3.3. 2.8 12 US 12 515 I 0.7 01 111.7 20.2 63 14.4 0.8 81 3,6 48 2.9 0.2 _ *p.p. r-.--.--1 .. -+ 0.1

-0i 113 -+ 0.2 0.2 0.5 0.1 0.2 0.2 0.9 0.1' 17 0.1 0.2 0.3 t2 0.4 2.5 4. 0.2 0.1 12 0.11 3.3 0.2 0.3 0.8 4.6 4.1 0.7 10 8. 1.0 2.8 7.2 313 tei _ 29.3 11.0 17.4 19.5 3.4 513 12.1 210

I

22.1 25.11 7.8 3.0 117 am, 1110.0

04 7

11 17 22 26 34 41 48 65 TOTAL

WIND SPEE0 AT 19.5 M (KNOTS)

Figure A-239-4-2 Significant Wave Height vs.

Wind Speed at 19.5 M (Knots) 20 16 14 12 10 6 7 TOTAL

(62)

24 20 14 14 12 2 8 7 4 3 2 1 0 TOTALS mat we 101m. SAilkil 1922 4.11E E PR I MARY WAVE SW W .NW DIRECTION I TOTALS

Figure A-239-4-3 Significant Wave Height vs. Primary Wave Direction

2 55 41 34 28 22 17 11 7 4 0 TOTALS N NE

A-30

E SE S SW. W NW TOTALS WI ND DIRECTION

Figure A-239-4-4 Wind Speed at 19.5 M (Knots)

vs. Wind Direction . 4 0.i 0.1

-0.3

0.1 0.10.2

0.5 0.3 0.4 0.3 03 0.1 t7 + 0.419.51.0 0.3 0.2 2.5 0.1

t00.2 0.5

LO 0.5 3.3 + Q3 Le 22 te 3.0 0.7 104 0.2 2.0 10.4 3.2 _ 4 5.2 33 0.2 29.3 0.5 3.1 20.0 .0 150 4.6 1 7.4 11 51.6 0.7 135.015.7 4.2 14A 2J 1.3 ,100 PERLF.+11 SO es + 0.1 _+ 4. 4. 03 0.7 0.5 + 1.7 + 0.0 1.1 0.3 04 U. 2.0 1.3 2.3 0.2 7.9 0.4 14 4.0.. 4.8 7.1 ---25.8 OS _ 21 4.6 . . 6.6 2.5 i0.3 28.1 L2 L0 ' 1 4.0 3.4 0.3 21.0 10 1.1 2.2 13 5 0.4. 0.1

(63)

24 20 16 14 12 10 9 6 7 8 5 4 3 2 TOTALS M40 -9.00 6.00 4.00 2:50 1,25 .50 .10 0.00 101ALS TOTAL SUMAS 6 10 16 21 27 47 55 63 TOTALS WINO SPEED AT 10 14 (KNOTS)

Figure A-239-4-5 Significant Wave Height vs. - Wind Speed at 10 M (Knots)

ZERO CROSSING PERIOD (S(C)

Figure A-239-4-6 Significant Wave Height vs. Zero Crossing Period

ALS

Q29.20.3

0.9 0.2 0.4 0.7 16 tO 4.1 0.4 0.5 3.3 0 7.9 2.1 4.0 113 3.1 29.3 14.9 20.2 7.0 42.5 12.0 5.5 15.3 ._ . 90.3 30.0 274 7.1 2.7 t5 100.0

Per11P1 OT/L),MNX3 cam

7

_ . 4. 4. 0.1 _ 0.2 0.3 0.5 0.5

-Ito t7 %1 1.; al 2.5 2.5 0.5 01 3.3 2.1 71 0.7 a. 0.2 1111 tat ILO 16 .4 0.2 29.3 *!J &6I24 0.4 # ' Ste 1*2 41.3 144 4 0.9 .0.1 190.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 140 16.0 18.0 20022.024.0TO'

(64)

Z4.0 2 2.0 20.0 18.0 16.0 14.0 12.0 104 8.0 8.0 4.0 2.0 0.0 TOTALS 24 20 le 14 12 I0 9 a 7 tro 5 4 3 2 TOTALS 0.0 2.0 4.0 8.0 8.0 10.0 120 14.0 180 AVERAGE .WAVE PERIOD

A-32

180 20.0 22.0 24.0 TOTALS (SEC)

' Figure A-239-4-7 Significant Wave Height vs. Average Wave Period

6.3 7.5 11.5 9.7 119 12.4 13.11 15.0 16.4 10.0 20.0 22.5 25.7TOTAL

MODAL V/AVE PERI 00 (SEC)

Figure A-239-4-8 Zero Crossing Period vs. Modal Wave Period

-4. 0.1 0.2 I. 0.3 0.3 03 10 0.1 1.7 0.1 21 0.1 0.1 2.5 1.7 1.1 - 0.4 0.4 BA IA 0.1 (LI 4 10.1 1 4.11 ILI 0.4 0.3 29.3 3.8 13.3 22. .7

[1

23 OA + 51.8 2.6 pt. 7 444 M3 4.1 11.4 e0.2 + 100.0

-...--t

0.1 0.2 0.1 0.4 0.2 + 0.17 0.3 0.1 0.7 0.4 0.7 0.7 3.4 0.2 2.5 3.7 2.0 3,1 1.3 14 09 0.1 6.9 9.1 5.1 62 4.5 2.0 1.3 1.4 41.3 0.8 9.1 9.8 6.5 3.6 13 11 03 0.11 07 35.2 0.7 0.1 0.5 1.1 0.5 0.7 0.1 0.3

t

_ 4.2 0.7 0.9 11.7 20.2 MA 14.4 8.8 8.1 3.8 4.8 23 0.2 100.0 .4.2 43

(65)

24.0 22.0 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 10 PALS TOTAL S _ + + 0.2 -0.2 0.2 0.5 0.4 t4 0.4 0.7 OA 0.7 0.9 03

r

4.1 0.5 2A 43 33 17 1.5 OA 18.5 7.5 10.7 11.3 IA 3.11 1.8 t2 03 - 44.1 06 5.9 5.1 4.3 L7 10 1.4 0.4 9.9 0.9 25.7 0.7

t

0.3 0.8 0.2 0.4

r

0.2

t

2.8 0.7 0.9 19.7 20.2 18.8 14.4 8.0 11.1 33 4.8 2.9 0.2 100.0 12 4.8 6.3 7.5 GA 9.7 10.9 12.4 13.8 15.0.18.4 X.0 20.0 22.5 25.7 TOTALS MODAL WAVE PERIOD (SEC)

Figure A-239-4-9 Average Wave Period vs.

(66)

:11 20 16 14 12 10 9 7 5 a 2 0 TOTALS 3.2 4.8 8.3 7.3

Figure A-239-5-1 Significant Wave Height vs. Modal Wave Period

-317 4 3 2 0 OTALS 5.8 9.7 10.9 12.4 138 15.0 15.4 130 20.022.525.7TOTALS mooAL VANE PERIOD- (SEC)

A.-34

4 7 11 17 22 28 34 41 48 55 TOTALS YAW SPUD AT T35 PA (KNOTS)

CO

Figure A-239-5-2 Significant Wave Height vs.

Wind Speed at 19.5 M (Knots)

a) PERCENTco ro al - -0.2 0.1 0.3 rs + 0.4 6 + 0..1 t4 rommp- 0.5 0.3 0.1 0.2 + 0.6 .t2 L4 OA 0.4 0.3 0.4 0.4 0.2

_ii.7

?A ILI 342 12 2.8 3.9 &I 13 0.9 OA t1 0.6 3.3 6.3 IA 5.2 3.9

II

OA 0.3 Ola 4.9 0.9 ...----i7 36 ao 0.0 0-3 tu oi no na 0.4 , OA VA 141 145 MA VLF ILO 51 8.1 4.7 2.0 0.7 0.1 100X 0.2

.

0_2 0.2 0.4 4 0.3 0.3 4 0.7 * 0.3 0.3 0.4 0.4 L4 1.11 2.7 2.7 7.8 0.3 0.7 2.3 016.3 0.6 V.1 39 5.0 11.3 15.1 2 346 6.2 13.1 13.1 38.4 13.1

.

2.9 26.4 20.1 jiu 12[0.8 0.3 VO.0 20 15 14. 12 10 2

(67)

.24 20 14 6 6 VI 6 4 3 2 1 0 101ALS

Figure A-239-5-3 Significant Wave Height vs. Primary Wave Direction

ir11! 3179 40 lOW. SMUI 317 79 TOTALS 0 N NE E SE S SW W NW TOTALS WI ND DI RECTI ON

Figure A-239-5-4 Wind Speed at 19.5 M (Knots) vs. Wind Direction f 0.1

0.2+

_ +0.1 . 0.1 0.4 0.3 0.1 0.7 0.4 0.3 02 0.2 4. t4 2.9 3.5 0.3 0.3 0.2 0.4 + 7.6 0.0 5.4 5.11 0.7 1.4 0.3 0.4 0.3 15.1

-2.0 0.1 143 1.0 1.4. 1.0 1.0 0.9 34.6 1.7 _13.4 17.3 3.0 1.5 1.5 1.2 1.9 38.4 4.5 1124.5 41.5 I. ..4 13.4 113.1 .3.1 1100.0 15 - -PERCENT 1 ea_ se 4. Oa + + D.3 + 0.2 0.2 0.2 4- + 0.9 0.1 1.6 1.3 0.2 0.3 + 0.2 + 4.2 0.7 &O 3.7 0.3 0.5 0.3 0.3 91 11.2 3.5 11.7 7.0 17 0.11 la . 261 3.5 7.1 3.3 2 4 1.4 13 1.4 254 2.1 2.0 1.6 1.9 1.7 t3 19.9 1 1.7 2.2 1.13 1.3 1.5 1.3 12 13.1 11.9 1

29a 23.3 &7 17.2 1&2 115.5 15.2 1100.E

S

TOTALS N NE E 'SE S SW W NW

PR !MARY WAVE DIRECTION

a ;61 7 4 22 17 11

(68)

MOO 9.00 6.00 4.00 2.50 us 1.25 .50 . 0.00 TOTALS 24 .20

4

tO a 7 6 5 4 3 2 TOTALS 0.0

A-36

2.0 4.0 6.0 8.0 10.0 12.0 140 180 18.0 20.0 22.0 24.0 TOTALS ZERO CROSSING PERIOD (SEC)

Figure A-239-5-6 Significant Wave Height vs. Zero Crossing Period

+ 0.2 0.5 0.8 0.1 0.2 0.6 10 0.2 2.1 OJ 1.3 4.4 5.8 2.1 13.13 5.0 7.1 ILI 4.2 32.4 1&91727.27.2 38.4 II II -*---Le- + 11.5 20.0 28.5 28.1 10.5 3.3 0.8 100.0

-, 4 4 0.2 0.3 0.3 0.2 0.4 .5 0.7 0.7 0.5 + 1.4 A 0.7 + 02 0.3 + 7.8 2.7 0 A 1.8 es + 18.1 18.0 0 5 5.1 3 01 0.4 34.8 2.3 e.6 110 8.0 A 1.3 0.7 0.3 38.4 2.3 128.1 _.1 18.8 .0 t8 61.1 + 100.0

FALL 10TAL SWU5 317S

06

18 21 . 27 47 55 63 TOTALS WI ND SPEED AT 10 M (KNOTS)

Figure A-239-5-5 Significant Wave Height vs. Wind Speed at 10 M (Knots)

Cytaty

Powiązane dokumenty

In dit rapport wordt de invloed onderzocht van het aantal schotten en de uitvoeringsvorm van deze schotten. De berekeningen zijn uitgevoerd met het Eindige Elementen

Prokopiusz opisał pierwszą wersję (532 r.) kościoła Mądrości Bożej fundacji Justyniana I, choć w jego tekście znajduje się pewna wzmianka, którą niektórzy badacze

Publisher’s Note: “Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer” [Appl..

Teoria poznania w ujęciu bpa Jana Stepy. Studia Philosophiae Christianae

As inspection data on the condition of lateral house connections are scarce, this study adopts a statistical procedure to support proactive strategies by analysing spatial

Nierzadko też napadali na ziemie Mieszka. Oprócz tego – jak wiadomo – ksią- żę Polan dość często znajdował się w konfliktach z innymi plemionami słowiań-

6 K. Bilica, Muzyka w obozie według Szymona Laksa i innych [Music in the Camp According to Szymon Laks and Others], “Muzykalia” nr 11, s. 1–19 [online], access:

The accuracy of the model is evaluated by analysis of studies that used spacecraft radar altimeter measurements of significant wave height and by comparison of predicted and