• Nie Znaleziono Wyników

The effect of the cell-Reynolds number in the numerical solution of the convection-diffusion equation

N/A
N/A
Protected

Academic year: 2021

Share "The effect of the cell-Reynolds number in the numerical solution of the convection-diffusion equation"

Copied!
24
0
0

Pełen tekst

(1)

Department of civil Engineering

Fluid Mechanics Group

The effect of the cell-Reynolds number in the

numerical solution of the convection-diffusion

equation

C.B. Vreugdenhil

March 1982

(2)

I. Introduction 2. 3. 4. 5. 6.

Central differences and the cell-Reynolds number

Alternative methods

3. I First-order upstream scheme 3.2 A monotone second-order scheme

3.3 Fromm's zero-average-phase-error scheme

3.4

QUICK 3.5 A characteristic scheme 3.6 Truncation error 3.7 Discussion Numerical tests 4.1 Analytical solution 4.2 Numerical results Conclusions References 3

4

4

5 6 7 7 9 10 12 12 13 15 16

(3)

1. Introduction

In the numerical solution of convection-diffusion equations a difficulty is commonly met in the occurrence of "standing waves" or spatial oscillations of a numerical origin. This has given rise to a considerable number of methods designed to avoid oscillations, often by means of upstream differencing or a similar approach in finite elements. In the present report, a short analysis of the phenomenon and some methods of remedy are given. The discussion is by no mea.ns complete, but it gives some general trends. For simplicity, the ana-lysis is restricted to steady-state solutions of a linear convection-diffusion equation with constant coefficients and in one space dimension :

where

dC

u dX

S'

c dependent variable (concentration) x space coordinate

u convection velocity (assumed positive) D diffusion coefficient

S' source term

( 1 • 1 )

Non-dimensionalizing the variables with the length L of the interval considered gives the basic equation for this report :

S ( 1 .2)

,\There

Re uL/D Reynolds number

x dimensionless distance

[0,1]

S S'L/u dimensionless source term

The phenomenon of spatial oscillations is observed in the numerical solution of this equation, as discussed in chapter 2. Similar oscillations ,\Till develop In transient conditions. Various possible ways of overcoming the difficulty are discussed in chapter 3 and tested for a simple case in chapter 4.

Although analysis is limited to finite difference schemes, similar results will apply to finite-element methods, as discussed, e.g. by Jensen and Fin-layson (1980). Different test cases can, of course, be considered (see, e.g. Huffenus and Khaletzky, 1981) but the conclusions will generally be similar to the present ones.

(4)

Methods can be distinguished of an "Eulerian" type,

i.e.

working on a fixed

grid, and of a "Lagrangian" or characteristic type. The latter can usually be

formulated as difference schemes on a fixed grid, as shown for one example

(section 3.5), so that there does not seem to be an essential difference

be-tw"een the two approaches. Some methods exist in which the Lagrangian aspect is

further exploited, such as the one by Egan and Mahoney (1972, see also Pedersen

and Prahm, 1974).

The latter method

~s

not so easily converted into a difference scheme and it

has not been investigated in this report.

Only linear problems are discussed here. It may be assumed that similar

pheno-mena will be observed in non-linear problems. Additional difficulties may be

met, such as those discussed by Kellogg et al (1980). They show that the

uniqueness of numerical solutions of a non-linear convection-diffusion equation

is related to the cell-Reynolds number.

(5)

C e n t r a l d i f f e r e n c e s and t h e c e l l - R e y n o l d s number F o r r e a s o n s e x p l a i n e d i n c h a p t e r 1, o n l y t h e s t e a d y s t a t e i s c o n s i d e r e d . A c e n t r a l - d i f f e r e n c e a p p r o x i m a t i o n o f Eq. ( 1 . 2 ) i s ; " (c,.,,-c,._,) - A ( c , , , - 2 c + r . _ , ) = S' ( 2 . 1 ) 2Ax

' k+1 k - r

Ax2

^"k+1

k k - r k

o r , i n d i m e n s i o n l e s s f o r m (c,., ,-c,._,) - -ïrri-y (c,.,,-2c,+c,.^,) = S,. ( 2 . 2 ) 2Ax ' k+1 k - r ReAx2 ^"k+1 k k-K k

w h e r e Ax = R/Re and R = uAx/D i s t h e c e l l - R e y n o l d s number.

A p a r t f r o m a p a r t i c u l a r s o l u t i o n r e l a t e d w i t h t h e s o u r c e t e r m S, E q . ( 2 . 2 ) has

s o l u t i o n s o f t h e f o r m

c^ = r*" ( 2 . 3 )

w i t h r j = 1 and r ^ = ( 2 + R ) / ( 2 - R ) ( 2 . 4 )

These c o r r e s p o n d t o t h e s o l u t i o n s o f t h e homogeneous E q . ( 1 . 2 ) w h i c h can be

w r i t t e n i n t h e same f o r m o f E q . ( 2 . 3 ) i f

r j = 1 and r ^ = e'^ ( 2 . 5 )

Two r e m a r k s can be made :

( i ) F o r s m a l l R ( i . e . f o r s m a l l A x ) , E q . ( 2 . 4 ) a p p r o x i m a t e s t h e c o n t i n u o u s s o l u t i o n ( 2 . 5 ) ( i i ) I f R>2, t h e n u m e r i c a l s o l u t i o n o s c i l l a t e s and c e r t a i n l y does n o t a p p r o x -i m a t e t h e c o n t -i n u o u s s o l u t -i o n . The l a t t e r o b s e r v a t i o n g i v e s r i s e t o t h e c e l l - R e y n o l d s - n u m b e r r e s t r i c t i o n R = ^ < 2 ( 2 . 6 ) t o a v o i d o s c i l l a t o r y s o l u t i o n s . I t w i l l be c l e a r t h a t t h i s c o n d i t i o n a p p l i e s o n l y i f t h e c o r r e s p o n d i n g s o l u t i o n o f t h e homogeneous e q u a t i o n s i s o f any i m p o r t a n c e i n t h e t o t a l s o l u t i o n . The p h y s i c a l i n t e r p r e t a t i o n o f t h e c o n d i t i o n ( 2 . 6 ) i s t h a t t h e m e s h - w i d t h Ax must be s m a l l enough t o a l l o w a r e s o l u t i o n o f v a r i a t i o n s w i t h t h e l e n g t h

s c a l e D/U. T h i s i s t o t a l l y i n d e p e n d e n t o f t h e t i m e d i s c r e t i z a t i o n and has

(6)

n o t h i n g t o do w i t h i n s t a b i l i t y . I t i s j u s t a m a t t e r o f a c c u r a c y as r e m a r k ( i ) i n d i c a t e s .

3, A l t e r n a t i v e methods

A g r e a t number o f n u m e r i c a l schemes, e i t h e r i n f i n i t e d i f f e r e n c e s o r i n f i n i t e e l e m e n t s , have b e e n p r o p o s e d t o c i r c u m v e n t c o n d i t i o n ( 2 . 6 ) , w h i c h can be r a t h e r a n u i s a n c e i n many a p p l i c a t i o n s . Some o f them a r e d i s c u s s e d b e l o w .

The f a v o u r i t e s o l u t i o n o f t h e " c e l l - R e y n o l d s p r o b l e m " i s t h e use o f u p s t r e a m d i f f e r e n c e s . A s s u m i n g u > 0 , t h i s means o r i n d i m e n s i o n l e s s f o r m

A i ^ v v i ) - R ^ ^ ^ k . r ^ w i ) = \ ^'-'^

S o l u t i o n s o f t h e homogeneous e q u a t i o n a r e now g i v e n by ( 2 . 3 ) w i t h r j = 1 and r ^ = 1 + R ( 3 . 3 ) w h i c h i s a l w a y s p o s i t i v e and t h e r e f o r e n e v e r p r o d u c e s o s c i l l a t i o n s . However, t h i s has b e e n o b t a i n e d a t t h e expense o f a c c u r a c y , w h i c h can be s e e n i n two ways : ( i ) t h e a p p r o x i m a t i o n o f e b y 1+R i s w o r s e t h a n f o r t h e c e n t r a l scheme ( i i ) E q . ( 3 . 1 ) a p p r o x i m a t e s t h e c o n t i n u o u s case w i t h a t r u n c a t i o n e r r o r u l . , 9 ^ c l . 8 ^ c / o / \ A Ï 2 9 Ï ^ = 2 ( 3 - 4 ) T h i s i n t r o d u c e s a n u m e r i c a l d i f f u s i o n t e r m s u c h t h a t t h e t o t a l ( e f f e c t i v e ) d i f f u s i o n c o e f f i c i e n t becomes D = D + 77 uAx e f f 2

(7)

w h i c h i s l e s s t h a n 2 f o r any R. T h e r e f o r e , t h e s u p p r e s s i o n o f o s c i l l a t i o n s can be e x p l a i n e d b y t h e a d d i t i o n o f a r t i f i c i a l d i f f u s i o n t o s u c h an e x t e n t t h a t t h e c e l l - R e y n o l d s c r i t e r i o n i s a l w a y s met. 3.2 A monotone s e c o n d - o r d e r scheme The f i r s t - o r d e r t r u n c a t i o n e r r o r , o c c u r r i n g i n t h e u p s t r e a m scheme, c a n be a v o i d e d by i n t r o d u c i n g s e c o n d - o r d e r v a r i a t i o n s t o t h e c e n t r a l - d i f f e r e n c e scheme. I n g e n e r a l , t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n c a n be a p p r o x i m a t e d by a t h r e e - p o i n t scheme : 9 9^ a c , + a, c + a, ^ ,c, ^ = u ^ - D + O(Ax^) ( 3 . 6 ) k-1 k-1 k k k+1 k+1 9x dx^ A s e c o n d - o r d e r a p p r o x i m a t i o n i s o b t a i n e d i f

V l ^ \ ^ \ + i

= Y^^"' A x ( - a ^ _ j + \ + ] ) = u +Y2Ax^ ( 3 . 7 ) A v a r i e t y o f schemes c a n be o b t a i n e d by s p e c i f i c c h o i c e s f o r Y i 2 3. As an

e x a m p l e , Yi=Y2=0 i s c h o s e n and Ys i s made d i m e n s i o n l e s s as Ya = Bu^/D.

S o l u t i o n s o f t h e homegeneous f i n i t e - d i f f e r e n c e e q u a t i o n t h e n f o l l o w f r o m t h e q u a d r a t i c e q u a t i o n

V i ^ ' ^

V ^ V l =

0 Due t o t h e f i r s t l i n e o f E q . ( 3 . 7 ) , t h e r e i s a r o o t r i = 1, t h e o t h e r one i s r - i = In . T h e l a t t e r 1's n n s i t n ' v p ^ ' w h i r h n r e o l n d p s n s n ' 1 1 a t i n n s " ) i f ry, k - 1 ' "k+1 " '

^

" k - 1

and Cij^^j h a v e t h e same s i g n , and c o n s e q u e n t l y a^^ has t h e o p p o s i t e s i g n . W i t h

t h e p a r t i c u l a r c h o i c e f o r Y i , 2 , 3 ) one f i n d s u D „ u^

\ + l -

2Ax Ax2 As ^ 0, t h e c o n d i t i o n f o r a v o i d i n g o s c i l l a t i o n s i s + " - ° _ r " ^ < n - 3R^+ ^ R - 1 < 0 T h i s i s t r u e f o r any v a l u e o f R i f 3 ^ 1/16. ( 3 . 8 ) ( 3 . 9 )

(8)

T a k i n g t h e minimum v a l u e , t h e e f f e c t i v e d i f f u s i o n c o e f f i c i e n t i s ,2 \ f f " ° ^ T6D R /16) ( 3 . 1 0 ) and uAx R e f f D 1 + R2/16 e f f ( 3 . 1 1 ) T h i s i s a g a i n a l w a y s l e s s t h a n 2. T h e r e f o r e , t h e e f f e c t i s n o t d i f f e r e n t f r o m t h e u p s t r e a m scheme: a d d i t i o n a l d i f f u s i o n i s added t o s a t i s f y t h e c e l l - R e y n o l d s c r i t e r i o n . The a d v a n t a g e o f t h e p r e s e n t a p p r o a c h i s t h a t i t i s more a c c u r a t e f o r s m a l l v a l u e s o f R. Some s i m i l a r schemes a r e g i v e n by S t o y a n ( 1 9 7 9 ) ; t h e y have s i m i l a r p r o p e r t i e s . 3.3 Fromm's z e r o - a v e r a g e - p h a s e - e r r o r scheme A s e c o n d - o r d e r u p s t r e a m scheme i s o b t a i n e d u s i n g f o u r b a s i c g r i d p o i n t s . Fromm ( 1 9 6 8 ) p r o p o s e d t h e f o l l o w i n g scheme ( i n d i m e n s i o n l e s s f o r m ) : { c , ^ . , - c , , _ , - a ( c , ^ - 2 r +c,,_,) - i ( l - a ) ( c , . ^ -3c + 3 r , _ - c , , _ J } + 2Ax ' k+1 k-1 ^ k+1 k k - r 2 '

^ ' k+1 k k-1

k-2' ( c , . ^ , - 2 c , + c , . _ J = S,. ( 3 . 1 2 ) ReAx2 ' k + 1 k k - r k

w h i c h i s a member o f a f a m i l y o f s u c h schemes (Van L e e r , 1 9 7 7 ) . A t t h e f i r s t

g r i d p o i n t f r o m t h e u p s t r e a m b o u n d a r y , a s e p a r a t e scheme must be u s e d . I n o r d e r t o s a t i s f y t h e d i s c r e t e m a s s - b a l a n c e e q u a t i o n , V r e u g d e n h i l ( 1 9 7 9 ) p r o p o s e d ^ {C3+2C2-3C1-0(C3-2C2 + C i ) } - (C3-2C2 + C i ) = S2 ( 3 . 1 3 ) The p a r a m e t e r O i s t h e C o u r a n t number O = ( 3 . 1 4 ) Ax w h i c h e v i d e n t l y p l a y s a p a r t even i n t h e s t e a d y - s t a t e s o l u t i o n . The r o o t s o f t h e c h a r a c t e r i s t i c e q u a t i o n s a r e r i = 1 V2 ( 3 . 1 5 ) -2(R+1) ± [ 4 ( R + 1 ) ^ + R ( l - a ) { R ( l - a ) - 4 } ] r 2 .3 = R ( l - a ) - 4 The d i s c r i m i n a n t i s p o s i t i v e - d e f i n i t e i f a ^ 1. The r o o t r 2 w i t h t h e m i n u s s i g n c o r r e s p o n d s w i t h t h e p h y s i c a l l y c o r r e c t one; i t i s e a s i l y shown t h a t i t i s p o s i t i v e i f R < 4 ( l - a ) ~ ^ ( 3 . 1 6 ) The s t r o n g e s t r e s t r i c t i o n R < 4 i s f o u n d f o r 0 = 0 and c o r r e s p o n d s w i t h t h e

(9)

s t a n d a r d r e s t r i c t i o n , t a k i n g i n t o a c c o u n t t h a t two u p s t r e a m p o i n t s a r e i n

-v o l -v e d . The t h i r d r o o t r s i s p a r a s i t i c , b u t i t i s o f t h e o r d e r R and t h e r e f o r e a t most i n t r o d u c e s s l o w o s c i l l a t i o n s .

3 . 4 QUICK

L e o n a r d ( 1 9 8 0 ) p r o p o s e d a n o t h e r s e c o n d - o r d e r u p s t r e a m scheme, named QUICK, vv'hich f o r t h e p r e s e n t case r e a d s i n d i m e n s i o n l e s s f o r m

' + c , _ , ) = S,, ( 3 . 1 7 )

ReAx2 ^ k+ 1 k k - r k

A t t h e p o i n t ( k= 2 ) a d j a c e n t t o t h e b o u n d a r y , a s p e c i a l scheme c a n be d e r i v e d i n t h e same way as f o r t h e Fromm scheme :

i ^ ^ ^ - ^ ^ ^ - 8^;^ ^^3- 2c2+ c O - ^ (C3- 2C2+ c i ) = S2 ( 3 . 1 8 ) The r o o t s o f t h e c h a r a c t e r i s t i c e q u a t i o n a r e r i = 1 and r2,3= [ - | R - 2 + { ( | R + 2) 2 + R ( | R - 2) } ^ / 2 j / ^ 3 ^ ^ ^ ^ ^ ^ o f w h i c h xz ( w i t h t h e m i n u s s i g n ) c o r r e s p o n d s t o t h e p h y s i c a l l y c o r r e c t s o l u t i o n . The d i s c r i m i n a n t i s p o s i t i v e d e f i n i t e so t h a t r 2 ^ a a r e a l w a y s r e a l . The r e l e v a n t r o o t r z i s p o s i t i v e u n d e r t h e c o n d i t i o n R < 8 / 3 ( 3 . 2 0 ) T h e r e i s a g a i n a p a r a s i t i c r o o t r s o f o r d e r R. 3 . 5 A c h a r a c t e r i s t i c scheme V i o l l e t e t a l ( 1 9 8 1 ) p r o p o s e d a h i g h e r - o r d e r u p s t r e a m scheme b a s e d on t h e method o f c h a r a c t e r i s t i c s f o r t h e c o n v e c t i v e p a r t o f t h e e q u a t i o n , w h i c h i s t r e a t e d i n an i n t e r m e d i a t e s t e p : c* = c''(kAx - u A t ) ( 3 . 2 1 ) K, where n i n d i c a t e s t h e t i m e l e v e l and t h e r i g h t h a n d s i d e i s o b t a i n e d , b y c u b i c i n t e r p o l a t i o n o f a s p l i n e t y p e : c " ( k A x - u A t ) = ( l- a) 2( l+ 2 a ) c^ + { 1 -( l- o ) ^ (l+ 2 a ) ) c^_^ + a( l- a) 2 Ax 4 ^ dx 2 A dc + (1-0)0-" Ax , k

(10)

w i t h O = u ( C o u r a n t number) The g r a d i e n t s a t t h e i n t e r n a l g r i d p o i n t s a r e o b t a i n e d b y c e n t r a l d i f f e r e n c e s ; t h o s e a t b o u n d a r y p o i n t s b y o n e - s i d e d d i f f e r e n c e s . F o r i n t e r n a l p o i n t s , t h i s r e s u l t s i n 4 a^ ( l- a) ( c ^ ^ , - 3 c ^ + 3 c ^ _ , - c^ _ P ( 3 . 2 2 ) and f o r p o i n t 2 : c f - C2 = - | - a( C 3 - C i ) + ^ 0^ ( 2- 0 )( C 3 - 2C2+Ci) The s e c o n d s t e p i s n + l _ ^* ^ DAt n+1 _ n+J. n+1 "^k ''k Ax2 ^''k k - r ^ D r o p p i n g t h e t i m e i n d e x f o r s t e a d y s t a t e and s u b s t i t u t i n g DAt/Ax^ = a / R g i v e s f o r i n t e r n a l p o i n t s - (c, ^,-2c,+c, _ , ) + 2Ax ' k+1 k - r 2Ax ' k+1 k k STId f o i r p o i n t 2 ï ( C 3 - C 1 ) - ( c 3 - 2 c 2 + c i ) - — i - ^ ( c 3 - 2 c 2 + c i ) = S2 ( 3 . 2 5 ) 2Ax 2Ax ' ' ReAx2

The r o o t s o f t h e c h a r a c t e r i s t i c e q u a t i o n a r e : r i 1 + 2 rz.B = 1 + 1 R ( l+ 3 a - 2 a ^ ) + d ^'-''^ 2 -

R

( l - 0

) 2

w h e r e t h e d i s c r i m i n a n t d i s g i v e n b y d = { 1 + ^ R ( 1+ 3 0- 2 0 ^ ) } ^ - 2aR ( 1- a ) { l - ^ R( l- a) 2 } I t c a n be shown t o be p o s i t i v e - d e f i n i t e as a f u n c t i o n o f R i f 0 ^ a ^ 1. The r o o t r 2 w i t h t h e p l u s s i g n i s t h e p h y s i c a l l y c o r r e c t one. I t i s p o s i t i v e i f R < 2

( l - 0

) ~ 2

( 3 . 2 7 )

(11)

w h i c h i n t h e most u n f a v o u r a b l e case 0=0 a g r e e s w i t h t h e s t a n d a r d r e s t r i c t i o n . F o r a n e a r 1 much l a r g e r v a l u e s o f R a r e a l l o w e d . I t s h o u l d be n o t e d t h a t t h e scheme i n p r a c t i c e i s a p p l i e d o n l y i f t h e g r a d i e n t o b t a i n e d f r o m c u b i c i n t e r p o l a t i o n does n o t d i f f e r by more t h a n a p r e d e t e r m i n e d r a t i o f r o m t h e one o b t a i n e d by l i n e a r i n t e r p o l a t i o n . I f t h i s c r i t e r i o n i s v i o l a t e d , l i n e a r i n t e r p o l a t i o n i s u s e d , w h i c h c o r r e s p o n d s t o t h e f i r s t - o r d e r up-s t r e a m up-scheme. T h i up-s m o d i f i c a t i o n haup-s n o t b e e n i n c l u d e d i n t h e p r e up-s e n t a n a l y up-s i up-s . 3.6 T r u n c a t i o n e r r o r A l l schemes d i s c u s s e d so f a r can be w r i t t e n i n t h e f o r m The t r u n c a t i o n e r r o r f o r t h e s t e a d y s t a t e can be d e t e r m i n e d f r o m t h i s e q u a t i o n . The t r u n c a t i o n e r r o r f o r t h e u n s t e a d y s t a t e i s a d i f f e r e n t one (Roache, 1 9 7 2 ) . I t depends on t h e d i s c r e t i s a t i o n i n t i m e and i s n o t d i s c u s s e d h e r e . F o r s t e a d y s t a t e , d e v e l o p i n g E q . ( 3 . 2 8 ) i n t o T a y l o r s e r i e s g i v e s

3x Re 9x2 Re 9x2 Re2 9 x 3 ' ^y. U . ^ y ;

w h e r e A2 = a i R e A3 = aaRe^

and t h e d i m e n s i o n l e s s mesh w i d t h Ax = R/Re. F o r t h e schemes d i s c u s s e d , a j a n d

0.2 a r e g i v e n b e l o w . The c o e f f i c i e n t A2 i s p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n .

scheme a i

u p s t r e a m Ax 0 c e n t r a l 0 0 2'^'^ o r d e r j g - ReAx^ 0 Fromm - ^ oAx - j {]-a)/\x^

Q u i c k 0 " 1 '^^^ c h a r a c t e r i s t i c - y aAx - a( l- a ) Ax^

(12)

3.7 D i s c u s s i o n

I n t h e f o l l o w i n g t a b l e , t h e p r o p e r t i e s o f t h e schemes have been c o l l e c t e d . Of c o u r s e , t h e l i s t o f p o s s i b l e schemes c o u l d e a s i l y be e x t e n d e d , see e.g. S t o y a n ( 1 9 7 9 ) . However, i t i s b e l i e v e d t h a t t h e most i m p o r t a n t p o s s i b i l i t i e s a r e c o v e r e d h e r e . M o r e o v e r , i t has been shown ( J e n s e n and F i n l a y s o n , 1980) t h a t f i n i t e e l e m e n t methods c a n be a n a l y z e d t h e same way and e x h i b i t a s i m i l a r c h a r a c -t e r . The b e h a v i o u r o f -t h e c h a r a c -t e r i s -t i c r o o -t r 2 has a l s o been i l l u s -t r a -t e d i n F i g . 1. c o n d i t i o n f o r no o s c i l l a t i o n s d i m e n s i o n l e s s Scheme c o n d i t i o n f o r no o s c i l l a t i o n s n u m e r i c a l d i f f u s i o n c o n d i t i o n f o r no o s c i l l a t i o n s c o e f f i c i e n t A2 e x a c t R e

-

-u p s t r e a m 1 + R any R c e n t r a l 2 + R 2 - R R < 2 0 2^^^ o r d e r T6 ^ any R R2 16 ^ 2^^^ o r d e r any R R2 16 ^ Fromm Eq. ( 3 . 1 5 ) any R - aR Q u i c k E q . ( 3 . 1 9 ) 0 c h a r a c t e r i s t i c Eq. ( 3 . 2 6 ) - ^ OR Some c o n c l u s i o n c a n be d r a w n : ( i ) t h e t h r e e - p o i n t schemes g e n e r a l l y e x h i b i t a n u m e r i c a l d i f f u s i o n t e r m o f s u c h a m a g n i t u d e t h a t o s c i l l a t o r y s o l u t i o n s a r e s u p p r e s s e d . ( i i ) t h e o s c i l l a t o r y b e h a v i o u r i s d i r e c t l y r e l a t e d t o t h e c h a r a c t e r i s t i c r o o t r 2 . No o s c i l l a t i o n s a r e f o u n d i f xz > 0. ( i i i ) f o r a c c u r a t e s o l u t i o n s t h e r o o t r 2 must a p p r o x i m a t e t h e e x a c t v a l u e e^. T h i s i s g e n e r a l l y a c h i e v e d o n l y i f R i s s m a l l , e v e n i f l a r g e r v a l u e s a r e a l l o w e d f r o m t h e p o i n t o f v i e w o f o s c i l l a t i o n s .

( i v ) F o r O = Y t h e Fromm and c h a r a c t e r i s t i c schemes a r e i d e n t i c a l ; t h e i r a c c u r a c y i n t e r m s o f r 2 i s m o d e r a t e . F o r d i f f e r e n t v a l u e s o f a, t h e p i c t u r e i s n o t e s s e n t i a l l y a l t e r e d .

(13)

The s e c o n d - o r d e r scheme i s a c c u r a t e f o r s m a l l R, b u t e x h i b i t s a v e r y l a r g e n u m e r i c a l d i f f u s i o n f o r l a r g e R.

(14)

4. N u m e r i c a l t e s t s 4.1 A n a l y t i c a l _ s o l u t i o n

The s o l u t i o n o f t h e homogeneous c o n v e c t i o n d i f f u s i o n e q u a t i o n has a b o u n d a r y -l a y e r c h a r a c t e r w h i c h c -l e a r -l y c a n n o t be a c c u r a t e -l y r e s o -l v e d u s i n g a c o a r s e mesh. However, L e o n a r d (1980) p o i n t s o u t t h a t i t i s a l s o i m p o r t a n t t o s t u d y t h e r e s o l u t i o n o f t h e " f o r c e d " s o l u t i o n , g e n e r a t e d by t h e s o u r c e t e r m S ( x ) . T h e r e f o r e a t e s t p r o b l e m i s s e l e c t e d w h i c h e x h i b i t s b o t h a s p e c t s : | ^ - ^ | ^ = S ( x ) ( 4 . 1 ) dx Re dx^ c ( 0 ) = 0

S ( x ) = s (l-3x) e"^"" ( 4 . 3 )

o The l a t t e r i s a v e r s i o n o f L e o n a r d ' s s o u r c e f u n c t i o n , t h e p r e s e n t one b e i n g m a n i p u l a t e d somewhat e a s i e r . The p a r a m e t e r 3 can be a d j u s t e d . The s t r e n g t h s^ i s r a t h e r a r b i t r a r i l y c h o s e n 1 3/2 % = 2 " i n o r d e r t o h a v e a r e a s o n a b l e m a g n i t u d e . S u b s t i t u t i o n o f -Re X 8c /•/ / ^ y = -e

^

( 4 . 4 ) g i v e s ^ = Re e ^^"^ S ( x ) . ( 4 . 5 ) dx dy -Re x ^ = Re e dx so w i t h an i n t e g r a t i o n c o n s t a n t y ^ : X + Re ƒ e"^''''' S ( x ' ) dx ^o o + [ ( R e H - 3 ) { l - ( l - 3 x ) e - ( ^ ^ " P ^ ^ } + ^o (Re+B): B{1 - e - ( ^ ^ " ^ ) - } ]

(15)

The s o l u t i o n can be s e p a r a t e d i n t o a r e g u l a r p a r t w i t h 8c/9x -> 0 f o r x o ° , and'a b o u n d a r y l a y e r p a r t needed t o s a t i s f y t h e b o u n d a r y c o n d i t i o n a t x = 1 . F o r t h e r e g u l a r p a r t , y s h o u l d n o t c o n t a i n a c o n s t a n t , as t h i s w o u l d l e a d t o p o s i t i v e e x p o n e n t i a l s i n c. T h e r e f o r e , „ o s Re T h i s g i v e s w i t h s Re s Re _ g ( x ) = - e {\ + ( R e + B ) x } ( 4 . 8 ) The b o u n d a r y - l a y e r p a r t can be d e r i v e d s i m p l y : s Re Re X

^(-) = ^' ^ TRiTgF^ g('>> " ' Re ^'-'^

1 - e so t h e c o m p l e t e s o l u t i o n r e a d s s Re s Re _ Re x 4.2 N u m e r i c a l r e s u l t s

I n F i g s . 2, 3 and 4 n u m e r i c a l r e s u l t s a r e shown f o r t h e s i x schemes c o n s i d e r e d , w i t h v a l u e s Re = 20, 100 and 1000, and v a r i o u s v a l u e s o f R. Where a p p l i c a b l e ,

a C o u r a n t number O = been u s e d . T h i s means t h a t t h e r e s u l t s o f t h e Fromm scheme and t h e c h a r a c t e r i s t i c scheme a r e i d e n t i c a l .

C o n c l u s i o n s can be d r a w n f o r t h e b o u n d a r y - l a y e r and t h e f o r c e d p a r t s o f t h e s o l u t i o n . The f o r m e r i s r e p r o d u c e d w e l l o n l y f o r s m a l l c e l l - R e y n o l d s numbers R (up t o a b o u t 2) i n a g r e e m e n t w i t h t h e b e h a v i o u r o f t h e c h a r a c t e r i s t i c r o o t V2 d i s c u s s e d i n c h a p t e r 3.

The s o u r c e t e r m does n o t depend on t h e R e y n o l d s number Re, b u t t h e c o r r e s p o n d i n g s o l u t i o n does. T h i s i s r e f l e c t e d i n an i n c r e a s i n g i n a c c u r a c y f o r i n c r e a s i n g c e l l - R e y n o l d s number R. R o u g h l y s p e a k i n g , t h e a c c u r a c y i s m a i n l y d e t e r m i n e d by

( d i m e n s i o n l e s s ) Ax = R/Re w h i c h s h o u l d n o t e x c e e d , s a y , 0.02 i f t h i s i s a l l o w e d f o r t h e b o u n d a r y - l a y e r p a r t .

(16)

The m o s t a c c u r a t e schemes a r e t h e c e n t r a l and Q u i c k schemes, i f no o s c i l l a t i o n s o c c u r . F o r s m a l l R, t h e s e c o n d o r d e r scheme i s a l s o q u i t e a c c u r a t e , b u t i t d e t e r i o r a t e s r a p i d l y f o r l a r g e r R. Among t h e schemes t h a t do n o t p r o d u c e ( s i g n i -f i c a n t ) o s c i l l a t i o n s a t l a r g e R, t h e c h a r a c t e r i s t i c and Fromm schemes a r e t h e most a c c u r a t e o n e s , t h o u g h t h e g a i n i n a c c u r a c y compared w i t h t h e f i r s t - o r d e r u p s t r e a m scheme i s n o t t o o g r e a t .

From t h e f i g u r e s , i t c o u l d be c o n c l u d e d t h a t t h e e r r o r s i n t h e f o r c e d s o l u t i o n a r e a c o n s e q u e n c e o f t h e p o o r r e s o l u t i o n o f t h e b o u n d a r y - l a y e r . To c h e c k t h i s , F i g . 5 g i v e s t h e R e = 100 case w i t h t h e b o u n d a r y - l a y e r r e m o v e d , i . e . w i t h E q . ( 4 . 7 ) as a n a l y t i c a l s o l u t i o n . The a n a l y t i c a l v a l u e was imposed as a b o u n d a r y c o n d i t i o n a t x = 1. The r e s u l t s a r e seen t o be o f a b o u t t h e same q u a l i t y as t h o s e o f F i g . 3 .

T h e r e i s s t i l l a t e n d e n c y o f b o u n d a r y - l a y e r d e v e l o p m e n t a t x = l . The i m p r e s s i o n i s , h o w e v e r , t h a t t h e i n a c c u r a c y i s n o t p r i m a r i l y c a u s e d b y t h e b o u n d a r y - l a y e r . S e g a l ( 1 9 8 1 ) s u g g e s t s t h e u s e o f a h i g h c e l l - R e y n o l d s number ( e x c e e d i n g 2) i n smooth p a r t s o f t h e s o l u t i o n , combined w i t h g r i d r e f i n e m e n t i n t h e b o u n d a r y -l a y e r . F o r t h e c e n t r a -l scheme, t h e r e s u -l t i s shown i n F i g . 6 (Re = 1 0 0 ) . I n t h e i n t e r v a l 0.9 < x ^ 1 a r e l a t i v e s t e p s i z e Ax = 0.02 (R = 2) h a s been used i n a l l c a s e s . I n t h e r e m a i n i n g r e g i o n , R v a r i e s b e t w e e n 2 and 10. A t t h e c o n -t a c -t p o i n -t X = 0.9 a m o d i f i e d c e n -t r a l scheme w i -t h u n e q u a l m e s h - w i d -t h s has been u s e d . C o m p a r i n g F i g s . 6 and 3 shows t h a t t h e s p u r i o u s o s c i l l a t i o n s h a v e i n d e e d d i s a p p e a r e d , w h i c h a g a i n s u p p o r t s t h e f a c t t h a t t h e s e a r e r e l a t e d w i t h t h e r e -s o l u t i o n o f t h e b o u n d a r y - l a y e r . The f o r c e d p a r t o f t h e -s o l u t i o n -s i n F i g -s . 6 and 3 i s p r a c t i c a l l y i n d i s t i n g u i s h a b l e . I t m u s t , t h e r e f o r e , be c o n c l u d e d t h a t g r i d r e f i n e m e n t i n t h e b o u n d a r y - l a y e r does s u p p r e s s t h e o s c i l l a t i o n s , b u t t h e a c c u r a c y o f t h e f o r c e d s o l u t i o n i s n o t e s s e n t i a l l y i n f l u e n c e d . C o n s e q u e n t l y , l i m i t a t i o n s o f t h e c e l l - R e y n o l d s number a r e u n a v o i d a b l e , a l s o f r o m a p o i n t o f v i e w o f a c c u r a c y .

(17)

n u m e r i c a l s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n , and more g e n e r a l l y t h e a c c u r a c y has b e e n s t u d i e d . T h i s r e p o r t i s by no means a c o m p l e t e r e v i e w o f t h e s u b j e c t , n o r i s v e r y much new m a t e r i a l i n c l u d e d . R a t h e r , some more o r l e s s w e l l k n o w n r e s u l t s have been c o l l e c t e d and a p p l i e d t o some t y p i c a l f i n i t e -d i f f e r e n c e schemes. O n l y s t e a d y - s t a t e s o l u t i o n s o f t h e l i n e a r c o n v e c t i o n - d i f f u s i o n e q u a t i o n i n one d i m e n s i o n a r e s t u d i e d . N u m e r i c a l s o l u t i o n s a r e o b t a i n e d by f i n i t e - d i f f e r e n c e m e t h o d s . S i m i l a r r e s u l t s a p p l y t o f i n i t e e l e m e n t m e t h o d s , w h i c h a r e n o t d i s -c u s s e d s e p a r a t e l y . I n t h e s t e a d y - s t a t e s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n a d i s t i n c t i o n m u s t be made b e t w e e n b o u n d a r y - l a y e r s due t o t h e b o u n d a r y c o n d i t i o n s , and f o r c e d

s o l u t i o n s due t o d i s t r i b u t e d s o u r c e t e r m s . I n t h e b o u n d a r y - l a y e r s o l u t i o n , s p a t i a l o s c i l l a t i o n s may o c c u r , w h i c h have n o t h i n g t o do w i t h i n s t a b i l i t y b u t r a t h e r w i t h a p o o r r e s o l u t i o n o f t h e b o u n -d a r y - l a y e r . T h i s i s -d e t e r m i n e -d m a i n l y by t h e s p a t i a l -d i s c r e t i s a t i o n an-d t h e phenomenon w i l l o c c u r b o t h i n s t e a d y and u n s t e a d y s t a t e s o l u t i o n s . T h i s b e h a -v i o u r c a n be a n a l y s e d i n t e r m s o f a f u n d a m e n t a l s o l u t i o n , c h a r a c t e r i z e d b y a p a r a m e t e r Vz w h i c h must be p o s i t i v e . T h i s i s u s u a l l y t h e case o n l y i f t h e c e l l R e y n o l d s number R i s s m a l l . I f o s c i l l a t i o n s do n o t o c c u r , t h i s does n o t n e c e s s a -r i l y mean t h a t t h e s o l u t i o n i s a c c u -r a t e ; t o t h i s e n d , R must u s u a l l y s t i l l be s m a l l .

S e v e r a l methods have b e e n p r o p o s e d t o i m p r o v e t h e a c c u r a c y and p r e v e n t o s c i l -l a t i o n s , o f t e n b y u s i n g ( f i r s t o r h i g h e r o r d e r ) " u p s t r e a m " schemes. Some o f t h e s e have b e e n a n a l y s e d and shown t o have t h e same d i f f i c u l t i e s , t h o u g h o f t e n t o a l e s s e r d e g r e e . I f no b o u n d a r y - l a y e r o c c u r s o r i f a b o u n d a r y - l a y e r i s p r o p e r l y r e s o l v e d by means o f g r i d - r e f i n e m e n t , l a r g e r s t e p s ( a n d l a r g e r v a l u e s o f R) may be a p p l i e d e l s e w h e r e w i t h o u t o s c i l l a t i o n s a r i s i n g . However, a c c u r a c y has s t i l l t o be c h e c k e d . I n t h e f o r c e d s o l u t i o n , t h e a c c u r a c y i s d e t e r m i n e d n o t o n l y by t h e c e l l - R e y n o l d s number R, b u t r o u g h l y b y t h e m e s h - w i d t h Ax = R/Re i n r e l a t i o n t o t h e l e n g t h s c a l e i m p o s e d b y t h e f o r c i n g t e r m s . G e n e r a l l y , t h e l a r g e r Re, t h e l a r g e r v a l u e s o f R a r e a l l o w e d , b u t no s t r i c t r u l e s have been d e r i v e d .

(18)

6. R e f e r e n c e s

Egan, B.A. and J.R. Mahoney, 1972 - N u m e r i c a l m o d e l i n g o f a d v e c t i o n and

d i f f u s i o n o f u r b a n a r e a s o u r c e p o l l u t a n t s , J . A p p l . M e t e o r o l o g y ,

J2, 312-322

Fromm, J.E,, 1968 - A m e t h o d f o r r e d u c i n g d i s p e r s i o n i n c o n v e c t i v e d i f f e r e n c e

schemes, J . Comp.Phys. 2» 176-189

Huffenus, J.P. and D. Khaletzky, 1981 - The L a g r a n g i a n a p p r o a c h o f a d v e c t i v e

t e r m t r e a t m e n t and i t s a p p l i c a t i o n t o t h e s o l u t i o n o f N a v i e r - S t o k e s e q u a t i o n s . I n t . J . Num. M e t h . F l u i d s , j _ , 4, 365-387

Jensen, O.K. and B.A. Fiy^layson, ^ 8 0 - O s c i l l a t i o n l i m i t s f o r w e i g h t e d r e s i d u a l

methods a p p l i e d t o c o n v e c t i v e d i f f u s i o n e q u a t i o n s . I n t . J . Num. M e t h . E n g i n e e r i n g , ^5^, 1681-1689

Kellogg, R.B., G.R. Shubin and A.B. Stephens, 1980 U n i q u e n e s s and t h e c e l l

-R e y n o l d s number, SIAM J . Num. A n a l . J_7, 6, 733-739

Van Leer, B, 1977 - Towards t h e u l t i m a t e c o n s e r v a t i v e d i f f e r e n c e scheme. I I I ,

U p s t r e a m c e n t e r e d f i n i t e - d i f f e r e n c e schemes f o r i d e a l c o m p r e s s i b l e f l o w , J . Comp. Phys. 2_3, 3, 263-275

Leonard, B.P., 1980 The QUICK a l g o r i t h m : a u n i f o r m l y t h i r d o r d e r f i n i t e

-d i f f e r e n c e m e t h o -d f o r h i g h l y c o n v e c t i v e f l o w s , i n : K. M o r g a n e t a l ( e -d s ) Computer methods i n f l u i d s , P e n t e c h P r e s s , L o n d o n , 159-195

Pedersen L.B. and L.P. Prahm, 1974 - A method f o r n u m e r i c a l s o l u t i o n o f t h e

a d v e c t i o n e q u a t i o n , T e l l u s _26, 5, 594-602

Roache, P.J., 1972 - On a r t i f i c i a l v i s c o s i t y , J . Comp. P h y s . _K), 2, 169-184 Segal, A,, 1981 A s p e c t s o f n u m e r i c a l methods f o r e l l i p t i c s i n g u l a r p e r t u r

-b a t i o n p r o -b l e m s . R e p o r t 81-08, D e l f t U n i v e r s i t y o f T e c h n o l o g y , D e p t . M a t h e m a t i c s and I n f o r m a t i c s

Stoyan, G., 1979 - Monotone d i f f e r e n c e schemes f o r d i f f u s i o n - c o n v e c t i o n p r o b l e m s ,

ZAÏ1M 59^, 361-372

Viollet, P.L., A. Keramsi and J.P. Benqué, 1981 - Modélisation b i d i m e n s i o n e l l e

d'ëcoulements en c h a r g e d'un f l u i d e i n c o m p r e s s i b l e non i s o t h e r m e , J. de M e c a n i q u e , 2£, 3, 557-589

Vreugdenhil, C.B., 1979 Fromm's z e r o a v e r a g e p h a s e e r r o r s c h e m e f o r a n o n

(19)

2 ^ o r d e r

Fromm

QUICK

S j o r d e r

e x a c t

F i g . 1 The c h a r a c t e r i s t i c r o o t rz as a f u n c t i o n o f t h e c e l l - R e y n o l d s number R

(20)

in O I I I I 1 I I I I I I I I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

i i n e c o d e

upstream —

c e n t r a l —

2^^ order

-Fromm

QUICK

3^ order —

e x a c t —

N u m e r i c a l s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n f o r Re

(21)

1 1 1 1 1 1 1 1 1 1 I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

1 ine c o d e

u p s t r e a m —

c e n t r a l

2^^ order

Fromm

QUICK

3 ^ o r d e r

e x a c t

F i g . 3 N u m e r i c a l s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n f o r Re = 100

(22)

O d ' - n L n d I — I 1 \ n 1 1 1 1 1 1 0.0 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1.0

X 1 ine c o d e

upstream —

c e n t r a l —

2'^order

-Fromm

QUICK

3 ^ o r d e r —

e x a c t —

N u m e r i c a l s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n f o r R e = 1000

(23)

L n d I I I I I 1 ~ 1 1 I 1 1 1 1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

1 i n e c o d e

u p s t r e a m — c e n t r a l 2d o r d e r F r o m m QUICK S j o r d e r e x a c t F i g . 5 N u m e r i c a l s o l u t i o n o f t h e c o n v e c t i o n - d i f f u s i o n e q u a t i o n w i t h o u t t h e b o u n d a r y - l a y e r , Re = 100

(24)

Cytaty

Powiązane dokumenty

The radius of the circle circumscribing this triangle is equal to:A. The centre of the circle

Let Z, N be the sets of integers and positive integers respectively. .) denote effectively computable absolute constants... In this note we prove the following

(It also states that the 2-class field tower of an arbitrary imaginary quadratic field with four or more prime divisors of discriminant never terminates in the class of CM-fields,

In this note we give a short proof of Lemma 2 by another method, which yields a significantly better estimate, and we considerably improve the estimates of our Theorems 1 and

Thus, given an L-isomorphism class C of elliptic curves defined over K, the map α → F (α) defines an injection from the set of pairwise distinct K-isomorphism classes belonging to

The proposed methods of the implementation of the Mo- ore finite-state machine using PAL macrocells and em- bedded memory blocks allow decreasing the cost of the logic circuit of

of the turbulent field existing in the wind tunnel. By comparing the bending moment spectra under various tur- bulence conditions, particularly with the vortex

sourees of strong acoustical fields were checked. Since close proximity of cylinders is known to couple the vortex shedding phenomena, it was of interest to