• Nie Znaleziono Wyników

Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential

N/A
N/A
Protected

Academic year: 2022

Share "Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential"

Copied!
27
0
0

Pełen tekst

(1)

DOI 10.1007/s11228-011-0198-4

M ultiple Solutions for Nonlinear Coercive Problems with a N onhom ogeneous Differential Operator and a N onsm ooth Potential

L eszek G asm sk i • N ik o la o s S. P a p a g e o rg io u

Received: 30 August 2011 / Accepted: 30 September 2011 / Published online: 18 October 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

A b stra c t W e c o n sid er a n o n lin e a r elliptic p ro b le m d riv en by a n o n lin e a r n o n ­ h o m o g e n e o u s d iffe ren tia l o p e ra to r an d a n o n sm o o th p o te n tia l. W e p ro v e tw o m u ltiplicity th e o re m s fo r p ro b lem s w ith co ercive energy fun ctio n al. In b o th th e ­ o rem s w e p ro d u c e th re e n o n triv ia l sm o o th solutions. In th e seco n d m ultiplicity th e o re m , w e p ro v id e p recise sign in fo rm a tio n for all th re e so lu tio n s (th e first positive, th e seco n d n e g a tiv e an d th e th ird n o d al). O u t a p p ro a c h is v aria tio n a l, b ased o n th e n o n sm o o th critical p o in t th e o ry . W e also p ro v e an auxiliary resu lt re la tin g sm o o th an d S obolev local m in im izer for a larg e class o f locally L ipschitz functionals.

K eyw ords L ocally L ip sch itz fu n ctio n • G e n e ra liz e d su b d iffe re n tia l • P alais-S m ale c o n d itio n • M o u n ta in pass th e o re m •

S econd d e fo rm a tio n th e o re m • N o d a l solutions

M a th e m a tic s S u b jec t C lassifications (2010) 35J20 • 35J70

This research has been partially supported by the Ministry of Science and Higher Education of Poland under Grants no. N201 542438 and N201 604640.

L. Gasinski (B )

Faculty of Mathematics and Computer Science, Institute of Computer Science, Jagiellonian University, ul. Tojasiewicza 6, 30-348 Krakow, Poland

e-mail: Leszek.Gasinski@ii.uj.edu.pl N. S. Papageorgiou

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

e-mail: npapg@math.ntua.gr

Ö Springer

(2)

1 In tro d u c tio n

L e t ^ c R N b e a b o u n d e d d o m a in w ith a C 2-b o u n d a ry 3 ^ . In this p a p e r w e study th e follow ing n o n lin e a r elliptic p ro b le m w ith a n o n sm o o th p o te n tia l (h em iv ariatio n al in equality):

i - d i v a ( V u ( z ) ) 6 3F ( z , u( z)) in ( )

j u ^ = 0 . ( . )

H e re a : R N — > R N is a C*-m ap, w hich is strictly m o n o to n e and satisfies ce rtain o th e r re g u la rity co n d itio n s (see h y p o th e se s H '0). T w o im p o rta n t special cases o f the m a p a are th e following:

a(y) = ||y ||p- 2y V y 6 R N w hich c o rre sp o n d s to th e p -L ap lace d iffe re n tia l o p e ra to r

A pu = div ( ||V u ||p -2V u ) Vu 6 W0’p (Q) and

a(y) = llyllp -2y + mIIyllq -2y V y 6 R N ,

w ith n ^ 0, 2 ^ q ^ p < + r o , w hich c o rre sp o n d s to th e (p , 9 )-d ifferen tial o p e ra to r A pu + f i A qu, w ith u 6 W0’p ( ^ ) .

A lso F : ^ x R — > R is a m e a su ra b le p o te n tia l w hich is only locally L ip sch itz and in g e n e ra l n o n sm o o th in th e seco n d v aria b le. B y 3 F ( z , Z) we d e n o te th e g en eralized (C la rk e ) su b d iffe re n tia l o f Z -— > F ( z , Z) (see S ection 2 ).

W e are in te re ste d in th e existence o f m u ltip le n o n triv ia l so lu tio n s for p ro b lem (1.1), w h en th e en e rg y fu n ctio n al o f th e p ro b le m is coercive. W e p ro v e tw o such m u ltiplicity th e o re m s (“th r e e so lu tio n s th e o re m s ” ). In th e first, we p ro d u c e th re e n o n triv ia l sm o o th solu tio n s, tw o o f w hich h av e c o n s ta n t sign (o n e p ositive an d th e o th e r n eg ativ e). In th e seco n d m u ltiplicity th e o re m , by stre n g th e n in g th e h y p o th e ses on th e p o te n tia l F ( z , ■), we show th a t th e th ird so lu tio n is n o d a l (sign changing).

T o th e b e s t o f o u r k n o w led g e this is th e first re su lt (ev en for sm o o th p ro b lem s, i.e., w h en F ( z , ■) 6 C : (R )), w hich p ro d u ces a n o d al so lu tio n for p ro b lem s w ith a n o n h o m o g e n e o u s d iffe ren tia l o p e ra to r.

O u r a p p ro a c h is v a ria tio n a l b ased o n th e n o n sm o o th critical p o in t th e o ry (see G a sin sk i-P a p ag e o rg io u [18] and M o tre a n u -R a d u le sc u [31]). W e m e n tio n th a t th re e so lu tio n s th e o re m s for co ercive e q u a tio n s w ere p ro v e d by A m b ro se tti-L u p o [2 ], A m b ro se tti-M a n c in i [3 ], Ia n n iz z o tto [24], S tru w e [34] for c e rta in p a ra m e tric se m i­

lin e ar e q u a tio n s (Ia n n iz z o tto [24] deals w ith h em iv a ria tio n a l in e q u alitie s, w hile the o th e r c o n sid er “ s m o o th ” p ro b lem s) an d by A v e rn a -M a ra n o -M o tre a n u [4 ], L iu-L iu [27], L iu [28], P a p a g e o rg io u -P a p a g e o rg io u [33] for p ro b lem s d riv en by p -L a p la c ia n (A v e rn a -M a ra n o -M o tre a n u [4 ] d eal w ith p a ra m e tric h e m iv a ria tio n a l ineq u alities, w hile th e o th e rs ex am in e “ s m o o th ” p o te n tia ls). O u r w o rk h e re is closer to th o se o f L iu -L iu [27] an d L iu [28], since n o p a ra m e te r a p p e a rs in (1.1) an d o u r th e ­ o rem s ex ten d th e resu lts o f [27] and [28] in m a n y d iffe ren t ways. In th e next th re e p a p e rs o f F ilip p a k is-G a sirisk i-P ap a g eo rg io u [14] an d G a sin sk i-P a p ag e o rg io u [16, 17] we also find m u ltiplicity resu lts fo r h em iv a ria tio n a l in e q u alitie s in th e case

^ Springer

(3)

o f v ario u s b o u n d a ry v alu e conditions: D irich let, p e rio d ic an d N eu m a n n . Finally, w e m e n tio n th a t h e m iv a ria tio n a l in e q u alitie s arise n a tu ra lly in p ro b le m s o f n o n ­ sm o o th m echanics. F o r se v eral such ap p licatio n s, w e re fe r to th e b o o k o f N aniew icz- P a n a g io to p o u lo s [32].

In th e n e x t section, for th e co n v e n ie n ce o f th e re a d e r, w e recall som e basic facts fro m th e n o n sm o o th critical p o in t th e o ry , w hich is b ased o n th e n o tio n of su b d iffe re n tia l o f a locally L ip sch itz functional. W e also p ro v e an auxiliary re su lt of in d e p e n d e n t in te re s t re la tin g sm o o th an d S obolev local m inim izers for a larg e class o f n o n sm o o th locally L ipschitz functions.

2 M a th e m a tic a l B a ck g ro u n d — P re lim in a ry R esults

L e t X b e a B a n a c h sp ace an d X * its to p o lo g ica l dual. B y {•, •) we d e n o te th e duality b ra c k e ts for th e p a ir (X * , X ) . F o r a given locally L ip sch itz fu n ctio n al y : X — > R, th e g e n e raliz ed d ire c tio n a l d eriv a tiv e y 0(z; h) o f y a t x e X in th e d ire c tio n h e X , is d efin e d by

of , ^ d/ y y ( x + th) — y (X) y (x; h) = lim s u p --- .

x' ^ x t

t \ 0

It is easy to see th a t th e m ap x i— > y0(x; h) is su b lin ea r co ntinuous. T h erefo re, it is th e su p p o rt fu n ctio n o f a n o n em p ty , convex an d w *-com pact se t d y ( x ) c X*, d efin e d by

d y ( x ) = {x* e X* : {x*, h) ^ y°(x; h) fo r all h e X }.

T h e m u ltifu n ctio n x i— > d y ( x ) is called th e g e n e raliz ed (or C lark e) su b d iffe re n tia l of y . I f y : X — > R is co n tin u o u s convex, th e n y is locally L ipschitz an d th e g en eralized su b d iffe re n tia l o f y coincides w ith th e su b d iffe re n tia l in th e sen se o f convex analysis, given by

dcy ( x ) = {x* e X* : {x*, h) ^ y ( x + h) — y ( h ) fo r all h e X }.

M o reo v e r, if y e C x( X ) , th e n y is locally L ipschitz an d d y ( x ) = {y ' ( x )}.

If y , ^ : X — > R are locally L ipschitz fu n ctio n als an d X e R , th e n d ( y + f t ) ( x) c dy ( x ) + 3 ^ ( x ) Vx e X and

d( Xy)(x) = Xdy( x) Vx e X , X e R.

T h e g e n e raliz ed su b d iffe re n tia l h as a v ery rich calculus, w hich ex ten d s th a t o f sm o o th an d o f co n tin u o u s con v ex fu nctionals. F o r m o re details, w e re fe r to th e b o o k of C la rk e [9].

L e t y : X — > R b e a locally L ip sch itz fun ctio n al. W e say th a t x e X is a critical p o in t o f y , if 0 e dy( x ) . If x e X is a local e x tre m u m o f y (i.e., x is e ith e r a local m inim izer o r a local m ax im izer o f y ), th e n x e X is a critical p o in t o f y.

F o r a given locally L ipschitz fu n ctio n al y : X — > R , w e set m y (x) = in f{ ||x * ||* : x* e d y ( x )}

<?) Springer

(4)

(h e re || • ||* d e n o te s th e n o rm o f th e dual sp ace X *). W e say th a t y satisfies the P alais-S m ale co n d itio n , if th e follow ing holds:

E v e ry se q u e n c e [xn}n^ i c X , such th a t { y ( x n) }n>l c R is a b o u n d e d seq u en c e and

m v (Xn) — > 0 ad m its a stro n g ly co n v e rg e n t su b se q u en c e.

U sin g th is c o m p ac tn ess-ty p e co n d itio n , we c a n hav e th e follow ing n o n sm o o th ex ten sio n o f th e w ell k n o w n m o u n ta in pass th e o re m .

T h e o re m 2.1 I f X is a B a n a c h space, y : X — > R is a locally Li pschi t z f unc t i onal whi ch satisfies the Palais-Smale condition, x 0, x l e X are suc h that | x l — x 0|| > r > 0,

max { y ( x 0), y ( x \ ) } < inf{ y ( x ) : ||x — x 0| | = r } = n0 an d

c = inf max y ( y ( t ) ) . Y eT 0<t<l V where

T = {y e C([0, l]; X ) : y(0) = x 0, Y (l) = xi}.

then c ^ n0 an d c is a critical value o f the f unc t i onal y.

T h e n o n sm o o th critical p o in t th e o ry w as in itia te d w ith th e w o rk o f C h a n g [6].

D e ta ile d p re se n ta tio n s o f th e th e o ry w ith ex ten sio n s an d g en e ra liz a tio n s can be fo u n d in th e b o o k s o f G asm sk i-P a p a g e o rg io u [18] an d M o tre a n u -R a d u le sc u [31].

L e t y : X — > R b e a locally L ipschitz fu n ctio n al and c e R . W e define y c = {x e X : y ( x ) < c} .

K y = {x e X : 0 e d y( x )} . K y = {x e K y : y ( x ) = c}.

T h e n ex t re su lt is d u e to C o rv ellec [10] an d it is th e n o n sm o o th c o u n te rp a rt o f th e so called seco n d d e fo rm a tio n th e o re m (see G asirisk i-P ap a g eo rg io u [19, p. 628]).

T h e o re m 2.2 I f X is a B a n a c h space, y : X — > R is a locally Li pschi t z f unc t i onal whi ch satisfies the Palais-Smale condition, a e R , b e R U [+c»}, K y O y —l (a, b ) = 0 a n d K yc is f i n i t e a nd cont ains onl y local mi n i mi z e r s o f y, then there exists a cont i nuous d e f ormat i on h : [0 , l ] x y b — > y b, such that:

(a) h(t, •) |Ka = id\Ka f o r all t e [0 , l];

(b) h ( l , y b) c y a U"Ky

(c) y ( h( t , x)} ^ y (x) f o r all (t, x) e [0 , l] x y b.

I n particular y a U K ay is a w e a k de f ormat i on retract o f y b .

ff) Springer

(5)

In th e analysis o f p ro b le m (1.1) , in a d d itio n to th e S o bolev space W0’p (Q), w e will also use th e B a n a c h space

C0(Q) = {u e C \ Q ) : u |3q = 0 }.

T his is an o rd e re d B a n a c h sp ace w ith p ositive cone

C+ = {u e C 1^ ) : u( z) ^ 0 for all z e Q}.

T his co n e h as a n o n e m p ty in te rio r, given by

in t C+ = j u e C+ : u( z ) > 0 fo r all z e Q , — ( z ) < 0 for all z e 3Q j ,d u

w h ere n(-) d e n o te s th e o u tw ard u n it n o rm a l o n 3Q.

F o r th e n e x t auxiliary resu lt, w e ca n b e m o re g e n e ra l an d allow th e m ap a(-) to be z -d e p e n d e n t. M o re precisely, w e in tro d u c e th e follow ing h ypotheses:

H 0: G : Q x R N — > R is a ^ - f u n c t i o n , such th a t G( z , 0) = 0, V y G( z , y) = a(z, y) an d a(z, 0) = 0 fo r alm o st all z e Q and

(i) a e C 1(Q x (R N \{ 0 }); R N);

(ii) th e re exist c0 > 0 an d n ^ 0 , such th a t for every z e Q an d every y e R N \ {0}, w e have

c0(n + lly l)P—2ll£I2 < ( Vya(z, y)£, £ )RN V£ e R N;

(iii) th e re exists ci > 0 , such th a t for every z e Q an d every y e R N \ {0 }, w e have

\\x ya(z, y) || < c i(n + llyll)p—2, w ith n as in (ii);

(iv) fo r every q > 0 , th e re exists c2 = c2 (q) > 0, such th a t

\a(z, y) — a(z', y )| < c2( i + ||y ||) p—1| z — z'|| Vz e Q, z' e dQ, ||y|| < q. E x a m p l e 2.3 T h e follow ing m ap s satisfy h y p o th e se s H 0:

(a) L e t

G i ( z , y) = - & (z )||y ||p , p

w ith & e C 1 (Q), &(z) > 0 for all z e Q an d 1 < p < + r o . T h en ai ( z , y) = & (z )||y ||p—2y.

T his p o te n tia l fu n ctio n c o rre sp o n d s to a w eig h ted p -L a p la cia n d iffe ren tia l o p e ra to r.

(b) L e t

r- i \ &1(z \ lip , &2 (z) q

G2 (z, y) = llyllp + HyHq,

p q

w ith &1 , &2 e C - (Q), &1(z) > 0, &2 (z) > 0 fo r all z e Q an d 2 ^ q ^ p < + ro . T h e n

a2 (z, y) = &1(z)Nyllp—2y + &2 (z)llyllq—2y.

Springer

(6)

T his p o te n tia l fu n ctio n c o rre sp o n d s to a w eig h ted (p , gO -differential o p e ra to r.

P ro b le m s w ith such p o te n tia ls w ere stu d ie d re c en tly by C in g o lan i-D eg io v an n i [7 ], F ig u eire d o [13], M e d e iro s-P e re ra [29].

(c) L e t

Gs ( z , y) = ( ||y ||p + ln ( 1 + ||yHp)),

w ith û e C 1 (fi), û ( z ) > 0 for all z e an d p ^ 2. T h en p—2y ' a3 ( z , y) =

^(j1

y | p—2y + i t

i

t p

O

F ro m h y p o th e se s H 0 and using th e in te g ra l fo rm o f th e m e a n valu e th e o re m , we o b ta in th e follow ing auxiliary result.

L em m a 2.4 I f hypot heses H0 hold, then f o r all z 6 ^ , a(z, ■) is strictly m o n o t o n e and f o r all (z, y) 6 ^ x R N, we have

(a(z, y), y ) KN > p — i llyllp an d \ a( z , y ) | < c i(^ + ||y ||) p-1.

A n easy c o n seq u e n ce o f this le m m a are th e follow ing gro w th e stim a tes for th e p o te n tia l G( z , ■).

C o ro lla ry 2.5 I f hypot heses H0 hold, then f o r all z 6 ^ , G( z , ■) is strictly co nv ex and Co ii„up ^ nr . , ^ £ .(i i ii,,ii)p \it„ ,a o t»N

p ( p - 1)

p < G( z , y) < ci(1 + ||y ||) p V(z, y) e Q x R N.

T h e n ex t re su lt re la te s local C0(&) an d W p (Π)-m inim izers for a la rg e class of locally L ip sch itz fu nctionals. Such a re su lt was first p ro v e d for

G ( y) = 2 II yll2

an d sm o o th (i.e., C 1) fu n ctio n als by B réz is-N iren b erg [5]. It w as e x te n d e d to th e case

G( y ) = 1 ||y ||p , P

w ith 1 < p < and sm o o th fu n ctio n als by G a rc ía A z o re ro -M a n fre d i-P e ra l A lo n so [15] (see also G u o -Z h a n g [21], w h ere p ^ 2). F o r a n o n sm o o th v e rsio n we re fe r to G asin sk i-P a p a g e o rg io u [18, p. 655]. T h e n ex t p ro p o sitio n e x ten d s all the a fo re m e n tio n e d w orks. M o re o v e r o u r p ro o f is sim pler.

So, le t F 0 : Œ x R — > R b e a m e a su ra b le function, such th a t for alm o st all z e th e fu n ctio n Z -— > F0( z , Z ) is locally L ipschitz and

|u| ^ a(z) + c\ Z|r - 1 for a.a. z e all Z e R , all u e d F0( z , Z ), w ith a e L œ ( Q) +, c > 0 an d 1 < r < p*, w here

N p

p * = N — pN if p < N , if p ^ N.

Springer

(7)

L e t ty0 i w 0 ’p ( £ ) — > R b e th e fu n ctio n al, defin ed by

f o ( u ) = í G ( z ’ V u( z ) ) d z - Í F o ( z ’ u( z )) d z Vu e W¿’p ( £) .

J £2 J £2

E v id e n tly ty0 is L ip sch itz co n tin u o u s o n b o u n d e d sets, h e n c e it is locally Lipschitz.

P ro p o sitio n 2.6 I f hypot heses H o h o l d a n d u0 e W0’p ( £ ) is a local C ^ ( £ ) - mi n i m i z e r o f f 0, i.e., there exists $ 0 > 0, such that

foo(uoo) < tyo(uo T h) Vh e C 0 ( £ ) ’ I h C o ® < $0’

then u0 e C ^ ^ f ä ) f o r s o m e ß e (0 ’ 1) an d it is also a local W0’p ( £ ) - mi n i m i z e r o f ty0, i.e., there exists $1 > 0, such that

f o( uo) < t o( uo T h) Vh e W¿’p ( £ ) ’ ||hy < $1 .

P r o o f L e t h e C¿ ( £ ) an d c o n sid er t > 0 sm all. T h e n by h y p o th esis f o( uo) < f o( uo T th) ’

so

0 < ^0 (uo; h). (2.1)

Since h e C ¿ (£ ) is arb itra ry , 00(u0; •) is co n tin u o u s and C ¿( £ ) is d ense in W0’p ( £ ), fro m (2 .1) , w e in fer th a t

0 ^ ty0o(u0; h) Vh e W0’p ( £ ) ’

0 e df o( uo) an d th u s

V (u0) = u*, (2.2)

w h ere V : W ^ ’p (Q) — > W -1, p' (Q) = W0’p (Q)* (w ith p + p = 1) is th e n o n lin e a r m ap , d efin e d by

( V( u) , y) = i (a(z, V u), V y ) RN d z Vu, y e W0’p (Q) Jq

an d u*0 e L r (Q) (w ith 1 + 1 = 1), u*(z) e dF 0(z, u0(z)) for alm ost all z e Q (see C la rk e [9, p. 83]). F ro m (2.2) , it follow's th a t

- d i v a(z, V u0(z)) = u*0(z) e d F ^ z , u()(z)) in Q, ( )

u 0|3Q = 0 . (2 3 )

In v o k in g T h e o re m 7.1 o f L a d y z h e n sk a y a -U ra ltse v a [25, p. 286], we h av e th a t u 0 e L X (Q). T h e n o n (2.3) w e can use T h e o re m 1 o f L ie b e rm a n [26] an d co n clu d e th a t u0 e C1’^(Q ) fo r so m e f e (0 , 1).

<?) Springer so

(8)

N e x t we show th a t u 0 is also a local W ^ ’p (Œ )-m inim izer o f ft 0. W e arg u e by c o n tra d ictio n . So, su p p o se th a t u 0 is n o t a local W^’p ( Q) -m inim izer o f ^ 0. F or ë > 0 , let

%ë = {u g W0’p (Œ) : \\u\\r < ë}

an d co n sid er th e follow ing m in im izatio n p roblem :

inf ÿ0(u0 + h) = m Ë0 > —œ . (2.4)

he %

Since u 0 is n o t a local W0’p (Q) -m inim izer o f f t 0, w e have

m0 < f ü ( u0)- (2.5)

L e t {hn'}n> 1 c B s b e a m inim izing se q u en c e fo r p ro b le m (2.4). U sin g C o ro lla ry 2.5 an d th e g ro w th h y p o th e sis o n d F0(z, •), we see th a t th e se q u en ce {hn}n >1 C W 1 p (Q) is b o u n d e d . So, passing to a su b se q u e n c e if n ecessary, w e m ay assum e th a t

h n — > h s w eakly in W0’p (Q), (2.6)

h n — > h s in L r (Q). (2.7)

C learly f 0 is se q u en tially w eakly low er se m ic o n tin u o u s. So, fro m (2.6) , we have

^0(u0 + h s) < lim in f f 0(u0 + hn),

h en ce

f0(u0 + h s) = m;S an d th u s h e = 0 (see (2.5)).

So, th e infim um in p ro b le m (2.4) is rea lize d a t som e h s e B s \ {0} (see (2.6) ).

In v o k in g th e n o n sm o o th L a g ran g e m u ltip lie r ru le o f C la rk e [8], we can find Xs ^ 0, such th a t

0 G d ^0(u0 + hs) - Xs\hs\r hs, so

V(uo + hs) = u* + Xs\hs \ 2hs,

w h ere u* g L r' (fi), u*s (z) G d F 0(z, (u0 + h s) (z)) fo r alm ost all z G fi. T h en

i - d i v a( z, V(uo + hs) ( z ) ) = u*s (z) + Xs\hs( z) \r -2hs(z) in fi, 1 h s \afi = 0 .

F ro m (2.3) and (2.8) , for alm o st all z G fi, we have

(2.8)

- d i v ( a(z, V ( u0 + hs) (z)) - a(z, V u 0(z)j)

= u*(z) - u*0(z) + Xs\hs(z)\r - 2hs(z) (2.9)

Ô Springer

(9)

Case 1 S u p p o se th a t Xe 6 [ - 1, 0] for all e 6 (0, 1].

W e set

We(z) = (u0 + he)(z),

Oe(z, y) = a(z, y) - a(z, V m ( z ) ) . T h e n fro m (2.9) , fo r alm o st all z 6 f l,w e have

- d i v Oe (z, V We(z)) = u*s (z) - u*0 (z) + Xe \ (We - u0) ( z ) \ r 2(We - m ) ( z ) . (2.10) O n (2.10) w e apply T h e o re m 7.1 o f L ad y z h e n sk a y a -U ra ltse v a [25, p. 286] and p ro d u c e M 1 > 0 , such th a t

IIwe||TO < M i Ve 6 (0, 1]. (2.11)

C learly o e (z, y) satisfies h y p o th e se s H 0. T his fact an d (2.11) , p e rm it th e use of T h e o re m 1 o f L ie b e rm a n [26] an d so we ca n find y 6 (0, 1) an d M 2 > 0, such th a t

w e 6 C0’y (&) an d I W ^ ^ n ) ^ M 2 Ve 6 (0, 1]. (2.12)

Case 2 S u p p o se th a t Xen < - 1 for all n ^ 1, w ith en \ 0, en 6 (0, 1] for all n ^ 1.

In th is case w e set

We„ = u0 + hen

Oen(z, y) = T7— r(a(z, V u 0(z) + y) - a(z, V u 0(z))).

\^en 1

T h e n for alm o st all z 6 n an d all n ^ 1, we have

- d i v °en (z , V h en (z ) ) = -TT^T ( ul (z ) - u0 (z )) - \h e„ (z ) . (2.13)

\^en \ F o r ev ery Z 6 W0’p ( n ), w e have

( V ( u0) , Z ) = f u0Z d z (2.14)

Jn (see (2.3) ) and

[ V ( u Sn) , Z ) = f u*nZ d z + Xen f \Wen - u0\r - 2(Wen - ^ ) Z d z (2.15)

J n J n

(see (2.9) ).

L e t p ^ 1 and c o n sid er th e fu n ctio n |Wen - u0\p (Wen - u0) . T h en V ( \ Wen - u0)\P{We„ - u0)) = (p + 1) \ Wen - u0\^V (Wen - u0) ,

\wSn - uo\P( wSn - Wq) G WQ’ p (Q) 'in > 1 (recall th a t w Sn, wq g C j ( ^ ) ) .

Ö Springer so

(10)

So, we can use this fu n ctio n as th e te st fu n ctio n £ in (2.14) an d (2.15) . W e do this an d th e n su b tra c t (2.14) fro m (2.15). U sin g L e m m a 2.4, fo r all n ^ 1 we o b ta in

0 ^ {(z + 1 ) (a(z, VwSn) — a(z, V u ) , V w Sn — V u ) r n \wSn — u \ d z

Jq

= (u*n — a * ( w Sn — u0) \wSn — dz J Q

+ x j \wSn — u0\r+lxdz. (2.16)

Q

B e ca u se o f (2.11) , recalling th a t u 0 e C1!(Q) an d using H o ld e r in e q u ality w ith e x p o ­ n e n ts X+1 ’ r—1 ’, we hav e

/ « _ u0) ( w s„ _ u0) \w sn _ uo\P dz Jq

^ M 3 i \wSn — u 0|X+1 d z Q

-1

< M3 IQINp | w Sn — u0 1 Vn > 1, (2.17)

for som e M 3 > 0. H e re | • In sta n d s for th e L eb e sg u e m e a su re o n R N. W e r e tu rn to (2.16) an d use (2.17) . T h e n

r—1 1

— XSn \\W£n — u 0 \ r+l^ M 3\Q \N+ \\W£n \\ , so

1 r—1

— Xsn \\w en — u 0 | r+X ^ M 3IQInX x 1, n x 1 W e le t x ^ + ^ an d o b ta in

II || r_1

_ ^ s n \\w e„ _ M0 I ^ M3 Vn ^ 1,

I w s — u0 |r 1 ^ — — Vn ^ 1. (2.18)

II «n 0 I I ^ 1 ' ^ >

W e r e tu r n to (2.13) and d e n o te th e rig h t h an d side by ns„ (z, Z). If M 4 = || u 0| + M1 > 0 (see (2.11)), th e n for alm ost all z e Q and all Z e [—M 4, M 4], w e have

\nSn( z , Z ) \ < 77—| [M 5 + M 3] Vn > 1,

\XSn \

for som e M 5 > 0. T his fact an d since aSn (z, y) satisfies h y p o th e se s H 0, p e rm it th e use o f T h e o re m 1 o f L ie b e rm a n [26] an d so w e can find y0 e (0, 1) and M 6 > 0, such th a t

h Sn e C 10'r° (Q) an d \\hSn ||Ci,T O < M6 Vn > 1. (2.19) so

^ Springer

(11)

R e ca ll th a t fo r every y ' e (0, 1) th e sp ace Cp’Y (Q) is e m b e d d e d co m p actly in C1(Q). So, fro m (2.12) an d (2.19) and by passing to a su ita b le su b se q u e n c e if necessary, we hav e

u0 + h Sn — > u0 in Cp(Q)

(recall th a t en \ 0). B e ca u se u 0 is a local C0(Q )-m inim izer o f ^ 0, w e c a n find n0 ^ 1, such th a t

f '0(u0) < f ' 0(u0 + h Sn) Vn > (2.20)

O n th e o th e r h a n d since h Sn are so lu tio n s o f (2.4) an d b ec au se o f (2.5) , w e have

^0(u0 + h Sn) < ^ 0(u0) Vn > 1. (2.21) C o m p arin g (2.20) an d (2.21) , we re a c h a co n tra d ictio n . T his p ro v es th a t u 0 is a local

W0’p (Q )-m inim izer o f f i0.

R e ca ll (see th e ab o v e p ro o f) th a t V : W ° p (Q) — > W -1,p' (Q) is th e n o n lin e a r m ap, d efin e d by

( V(u) , y) = i (a ( z , V u), V y ) d z Vu, y e W0’p (Q). (2.22) Jq

F ro m L e m m a 3.2 o f G a sirisk i-P ap a g eo rg io u [20, p. 562], we hav e th e follow ing result.

P ro p o sitio n 2.7 I f hypot heses H0 h o l d a n d V : W0’p (Q) — > W 1’p' (Q) is d e f i n e d by (2.22), then V is continuous, b o u n d e d (i.e., m a p s b o u n d e d sets to b o u n d e d sets), strictly m o n o t o n e a n d o f type (S)+, i.e., i f u n — > u weakl y in W f p (Q) and

lim sup ( V ( u n), un — u ^ 0,

then u n — > u in W0’p (Q).

L e t k1 b e th e first eigenv alu e of ( — A p, W ° p ( Q) ) . W e k n ow th a t k 1 > 0 is isolated, sim ple and

IIVu||p > M IN Ip Vu e W0’p (Q) (see G asirisk i-P ap a g eo rg io u [19]).

F ro m A izico v ici-P ap ag eo rg io u -S taicu [1, L e m m a 12], we have

P ro p o sitio n 2.8 I f & e L p (Q)+, &(z) ^ p— \ f o r al most all z e Q, & = p—1, then there exists %0 > 0, suc h that

I V u ||p - f &|u |p d z > ^ I M I p Vu e W01,p (Q).

p - 1 Jq

Ö Springer

(12)

F inally we m e n tio n th a t th ro u g h o u t this w ork, for every u 6 W0’p ( n ), we set l|u|| = ||V u|| p

(by v irtu e o f P o in c a re in e q u ality ) and

u+ = max{0 , u}, u~ = max{0 , - u } .

W e k n o w th a t u+, u - 6 W0’p ( n ) an d u = u+ - u - , \u\ = u+ + u - . W e m e n tio n th a t th e n o ta tio n || ■ || will also b e u sed to d e n o te th e R N-norm . N o co n fu sio n is possible, since it will alw ays b e clear fro m th e co n te x t w hich n o rm is used. A lso, as in d ic ated in th e p ro o f o f P ro p o sitio n 2 .6, \ ■ \n d e n o te s th e L eb e sg u e m e a su re o n R N.

3 F irst M u ltiplicity T h e o re m

In th is se ctio n w e p ro v e a m u ltiplicity th e o re m , w hich p ro d u c e s th r e e n o n triv ia l sm o o th solutions, tw o o f w hich hav e c o n s ta n t sign (o n e positive, th e o th e r n eg ativ e).

T o do this w e n e e d to d ro p th e z -d e p e n d e n c e on th e m a p a . F o r easy refe re n c e , we s ta te in d e ta il th e hypotheses:

H 0: G : R N — > R is a C 1-function, such th a t G (0) = 0, V G( y ) = a(y) = a 0(||y ||) y, a0(t) > 0, a ( 0) = 0 and

(i) a 6 C 1(R N \{0}; R N)

(ii) th e re exist c0 > 0 and n ^ 0 , su ch th a t fo r every y 6 R N \ {0}, we have

o ( n + llyll)p -2 llZII2 < ( Va(y)Z, Z)RN VZ 6 R n ; (iii) th e re exists c 1 > 0 , such th a t for every y 6 R N \ {0}, w e have

|| V a( y ) \ < c 1(n + \ \ y l l ) p- 2, w ith n as in (ii);

(iv) th e re exists t 6 (1, p) , such th a t

G( y ) l i ^ — ^— = 0 . y ^0 II>'It

R e m a r k 3.1 C learly, h y p o th e se s H0 are a p a rtic u la r case o f h y p o th e se s H 0. T he re a so n w e h av e d ro p p e d th e z -d e p e n d e n c e is th a t w e n e e d an ex ten sio n o f th e n o n lin e a r stro n g m axim al p rin cip le o f V a z q u ez [35], valid fo r th e p -L a p la c ia n , to m o re g e n e ra l n o n h o m o g e n e o u s d iffe ren tia l o p e ra to rs, like th e o n e in this p ap e r.

T h e only such re su lt fo r z -d e p e n d e n t o p e ra to rs is th a t o f Z h a n g [36], w ho th o u g h re q u ire s th a t n = 0 in h y p o th e se s H0(ii) an d (iii). Such a co n d itio n excludes from c o n sid e ra tio n ( p , q ) -d iffe re n tia l o p e ra to rs. N o te th a t th e exam ples p re s e n te d a fte r h y p o th e se s H 0, satisfy h y p o th e se s H0 (of c o u rse w ith d = d1 = d 2 = 1).

T h e h y p o th e se s o n th e n o n lin e a r p o te n tia l F ( z , Z) are th e following:

H 1: F : n x R — > R is a m e a su ra b le function, such th a t for alm o st all z 6 n , we h av e F ( z , 0) = 0, 0 6 3 F ( z , 0), F ( z , ■) is locally L ipschitz and

^ Springer

(13)

(i) th e re exist a 6 L ^ ( n ) + and c > 0, such th a t

\u*\ ^ a(z) + c\Z \p -1 for alm o st all z 6 n , all Z 6 R , all u* 6 3F ( z , Z ) ; (ii) th e re exists d 6 L™( n ) +, d ( z ) < p - i for alm o st all z 6 n , d = j - 1 , such th a t

lim sup —— ZZ ^ d ( z ) unifo rm ly for alm o st all z 6 n ; Z^±<x, \Z \p

(iii) if t 6 ( 1, p ) is as in hyp o th esis H 0(iv), th e n th e re exists f 0 > 0, such th a t

lim in f t F ^:1, ZZ > ff0 uniform ly for alm o st all z 6 n ;

f ^ 0 \z\t h y

(iv) fo r every q > 0 , th e re exists ye > 0 , such th a t, if

o ( z , Z ) = m in {u* : u* 6 3F ( z , Z ) \ , th e n

o ( z , Z ) + Yq \Z \p -2Z ^ 0 fo r alm ost all z 6 n , all Z 6 [—q, q].

R e m a r k 3.2 H y p o th esis H1 (ii) im plies th a t for alm o st all z 6 n , th e fu n ctio n F (z , ■) is p -(su b )lin e a r n e a r ± r o . H y p o th esis H 1 (iii) im plies th e p re se n c e o f a “ co n c a v e ” n o n lin e a rity n e a r th e origin. W e stress th a t n o sign c o n d itio n is im p o sed on th e elem e n ts o f 3F ( z , Z). In ste a d , we im p o se th e w e a k e r co n d itio n H1 (iv).

E x a m p l e 3.3 T h e follow ing p o te n tia l fu n ctio n F(Z) satisfies h y p o th e se s H 1 (fo r the sa k e o f sim plicity, we d ro p th e z -d ep e n d en ce ):

F(Z) =

C IZIT if \Z I < 1, T

ft

- I Z Ip if I?I > 1, P

w ith 1 < t < p, c = — . N o te th a t F is n o t a C 1-function.

p

L e t ę : Wq p (Q) — > R b e th e en e rg y fu n ctio n al for p ro b le m ( 1.1) , d efin e d by

ę ( u ) = Í G ( V u ( z ) ) d z - í F (z , u( z) ) d z Vu e W¿’p (Q).

E v id e n tly ę is locally L ipschitz.

T h e o re m 3.4 I f hypot heses H0 and H 1 hold, then p r o b l e m (1.1) has at least three nontrivial s m o o t h solutions:

u0 e in t C+, vo e — in t C+, an d y 0 e CQ(Q) \ (0) a n d u0, v0 are local mi n i mi ze rs o f ę.

<?) Springer

(14)

P r o o f L e t

F±( z , Z) = F ( z , ± Z ± ) V(z, Z) e Q x R

an d let y ± : p (Q) — > R b e th e locally L ipschitz functio n als, defin ed by

V±(u) = í G ( V u ( z ) ) d z — Í F ± ( z , u( z ) ) d z Vu e W0—p (Q).

Jq Jq

B y v irtu e o f h y p o th e se s H — (i) an d (ii) an d L e b o u rg m e a n v alu e th e o re m fo r locally L ipschitz fu n ctio n als (see e.g., C la rk e [9, p. 41]), fo r a given e > 0, w e ca n find c3 = c3 (e) > 0 , such th a t

F ( z , Z ) ^ — (&(z) + e ) |Z |p + c3 for alm o st all z e Q , all Z e R . (3.1)

T h e n using C o ro lla ry 2.5, estim a te (3.1) an d P ro p o sitio n 2.8, we have

í G ( V u ) d z — Í

J Q JQ

v+(u) = G (V u) d z — I F (z , u) d z

> , C0 IIVuyp — — Í &|u |p d z — - 1|u y p — c4 p ( p — i) p p Jq

^ — { £o — — )y « y p — c4 Vu g w 0 ’p(Q).

p \ m /

C ho o sin g e g (0, £0M ), we in fer th a t y+ is coercive. A lso, ex ploiting th e com p actn ess o f th e em b e d d in g o f W0’p (Q) in to L p (Q), w e can easily ch eck th a t y+ is se q u en tially w eakly low er se m ico n tin u o u s. So, by th e W e ie rstra ss th e o re m , w e can find u 0 g

W0’p (Q), such th a t

y + (u0) = inf y+(u) = m+. (3.2)

ugW0‘ p(Q)

B y v irtu e o f h y p o th e se s H'0(iv) an d H — (iii), for a given e > 0 ,w e ca n find 5 = 5(e) > 0 an d ß — = ß — (e) > 0, such th a t for alm o st all z g Q an d all y g R w, Z g R w ith ||y || < &

an d |Z | < &, we have

G ( y ) < - yy||T an d F ( z , Z ) > — IZIT- (3.3)

T T

L e t u g in t C+ an d let t g (0, 1) b e sm all, such th a t

tu(z) g [0,5] an d ||V (tu)(z)\\ g [0 ,& ] Vz g Q.

T h en , using (3.3) , w e have

y+(tu) = / G ( V (tu)) d z — F ( z , tu) d z

J Q J Q

< - IV u y ; — ßX - i K

t T t T

f ( .T . .. ||T )

= T ( e |u y T — ß il|u ||£ ).

C ho o sin g e e (0, , w e see th a t

ty+(tu) < 0 ,

^ Springer

(15)

(see (3.2)), i.e., u 0 = 0.

F ro m (3.2) , we hav e

y +( u0) = m+ < 0 = y + (0)

0 e 3 y +(u0),

V ( u0) = u 0,

w h ere u*0 e L p (Q ), u*0 e dF+(z, u0(z)) for alm o st all z e Q.

F ro m th e n o n sm o o th ch ain ru le (see C lark e [9, p. 42]), we have

(3.4)

dF+(z, Z) C { £ 3 F ( z , 0) : £ e [ 0 , 1]}

9 F ( z , Z)

if Z < 0, if 0 < Z < 1, if 1 < Z .

(3.5)

O n (3.3) w e act w ith —u0 e W 0’p (Q) an d using (3.5) and L em m a 2.4, we o b ta in C0

p _ 1

l|V u_|| p < 0,

i.e., u0 ^ 0 , u 0 = 0 . F ro m (3.4) , we hav e

Since

- d i v a ( V u0(z)) u0\an = 0

= u0(z) in Q ,

V u0(z) = 0 on {u0 = 0 }

(S ta m p a cch ia th e o re m ; see e.g., G a sm sk i-P a p ag e o rg io u [19, p. 195]), w e in fer th a t u 0(z) e d F ( z , u0(z)) for alm o st all z e Q

(see (3.5) ). So, u 0 is a n o n triv ia l p ositive so lu tio n o f p ro b le m ( 1.1) . M o reo v e r, as b e fo re (see th e p ro o f o f P ro p o sitio n 2.6), fro m th e n o n lin e a r reg u la rity th e o ry (see L a d y z h e n sk a y a -U ra ltse v a [25] an d L ie b e rm a n [26]), we hav e th a t u 0 e C+ \ {0}. L e t q = ||u 0||TO an d let ye > 0 b e as p o stu la te d by h y p o th e sis H1 (iv). T h en

—d iv a ( V u0(z)) + Yqu0( z ) p—1 = u*0(z) + yem ( z ) p—1 > 0 for alm o st all z e Q,

d iv a ( V u0(z)) ^ yeu0( z) p 1 fo r alm o st all z e Q an d th u s u 0 e in t C+ (see M o n te n e g ro [30, T h e o re m 6]).

If

W+ = {u e W0’p (Q) : u( z) ^ 0 for alm o st all z e Q}, th e n clearly

V\w+ = V+\w+ ■

Ö Springer so

so

0

so

(16)

So, u 0 is a local C1 (n )-m in im iz e r o f y. In v o k in g P ro p o sitio n 2.6, w e in fer th a t u 0 is a local W0’p ( n )-m inim izer o f y.

Sim ilarly, w o rk in g w ith th e fu n ctio n al y - , we p ro d u c e o n e m o re c o n s ta n t sign sm o o th so lu tio n v0 6 —in t C+ o f p ro b le m ( 1.1) , w hich is a local m inim izer o f the fu n ctio n al y.

W ith o u t any loss o f g en erality , we m ay assum e th a t V( v0) < V( u 0)

(th e analysis is sim ilar, if th e o p p o site in e q u a lity is tru e ) and th a t th e se t K y is finite (oth erw ise, w e alre a d y h av e infinity so lu tio n s for p ro b le m (1.1)). R e aso n in g as in A izico v ici-P ap ag eo rg io u -S taicu [1, p ro o f o f P ro p o sitio n 29] (see also G asinski- P a p a g e o rg io u [20, T h e o re m 3.4]), w e ca n find q 6 (0, 1) sm all, such th a t

V( v0) < y ( m ) < inf \ v ( u ) : \\u - u 0|| = q} = ne , I K - u0|| > q. (3.6) A s we did fo r y+, in a sim ilar way, using h y p o th e sis H1 (ii), we can check th a t y is co ercive and so it satisfies th e P alais-S m ale co n d itio n . T his fact, to g e th e r w ith (3.6) p e rm it th e u se o f th e n o n sm o o th m o u n ta in pass th e o re m (see T h e o re m 2.1). So, we can find y 0 6 W0’p ( n ) , such th a t

y ( v0) < y ( u 0) < nQ < y ( y 0) (3.7) and

0 6 3 y ( y 0 ). (3.8)

F ro m (3.7) it is clear th a t y 0 6 {v0, u 0}, w hile fro m (3.8) , w e have V ( y0) = u0,

w h ere «0 6 L p' ( n ) , u0(z) 6 3 F ( z , y0(z)) for alm ost all z 6 n . H en c e y 0 is a so lu tio n o f ( 1.1) an d th e n o n lin e a r re g u la rity th e o ry im plies th a t y 0 6 C 1 (n ). It rem a in s to show th a t y 0 = 0. F ro m T h e o re m 2.1, we hav e

c = y ( y0) = inf max y ( Y (t ) ) , (3.9) Y er 0<t<1

w h ere

r = { y 6 C ([0 , 1]; W1' p ( n ) ) : y( 0) = v0, Y(1) = ^ } . F ro m (3.9) , w e see th a t, if we can find y* 6 r , such th a t

v>( y*( 0) < 0 Vt 6 T, th e n

c = y ( y0) < 0 = y ( 0)

an d so y 0 = 0. H e n c e o u r effo rt is o n p ro d u cin g such a p a th y* 6 r . T o th is end, let

r c = { y 6 C ([0, 1]; C m ) : y( 0) = v>, Y(1) = u0} .

^ Springer

(17)

B y v irtu e o f th e den sity o f th e e m b ed d in g o f C I1(Q) in to W0’ p (Q), w e see th a t Tc is d en se in T. W e can find y e Tc, such th a t 0 g y ( [0, 1]). Since

Y ([0 , 1]) c C0(Q) an d 0 e y ( [ 0 , 1]), we ca n find X e (0, 1) sm all, such th a t

X\\Vu(z)\\ y S, an d X\u(z)\ y S Vz e Q, u e y ( [0 ,1 ]) (3.10) (w h e re S is as in (3.3) ) and

inf llulU = m > 0. (3.11)

uey([0,1]) T F o r all u e Y [0 , 1] , w e have

y( Xu) = I G ( X V u) d z — I F ( z , X u ) d z

Q Q

y XTellVulH — P X l l u l l TT

y XT ( sc5 — p 1 m ) (3.12)

for som e c5 > 0 (see (3.3) , (3.10) , (3.11) an d n o te th a t y ( [0, 1]) is c o m p ac t in W0’p (Q )). C h o o sin g e e (0, ^cm) and settin g y = Xy, fro m (3.12), w e see th a t

y \ y < 0 (3.13)

an d y is a c o n tin u o u s p a th in W0’p (Q) w hich co n n e cts Xv0 an d Xu0.

N ex t, w e will p ro d u c e a co n tin u o u s p a th in W0’p (Q) w hich co n n e cts Xu0 an d u0 an d along w hich y is strictly negative. T o this end, rec all th a t

m+ = inf y+(u) < 0 = y + (0).

ueW^ ' p (Q)

A lso , we m ay assum e th a t Ky++ = {u0} or o th erw ise we alread y h av e a second positive so lu tio n (n o te th a t by v irtu e o f (3.5) an d th e n o n lin e a r reg u la rity th eo ry , K y+ c C+). In v o k in g T h e o re m 2.2, we can find a co n tin u o u s d e fo rm a tio n h : [0, 1 ] x y+ — > y+ , such th a t

h ( 1 , y 0+) c y + + J Km++ = y m + J { u0} = {u0} (3.14) (since y rm+ = 0 ) and

y+ (h(t, u)) y y+(u) Vt e [ 0 , 1], u e y0+. (3.15) C o n sid er th e co n tin u o u s p a th y+ : [0 , 1] — > W0’p (Q ), d efin e d by

y+(t) = h(t, Xu0)+ Vt e [ 0 , 1].

T h e n

y+ (0) = h(0, Xu0)+ = (Xu0)+ = Xu0.

Ö Springer

(18)

A lso

Y+(1) = h ( \ , X u 0) + = uo

(see (3.14) ). H e n c e y+ is a co n tin u o u s p a th in W ^ ’p (Q) w hich co n n e cts Xu0 an d u 0.

M o reo v e r, fro m (3.15) and since ^ | W+ = y+ |W+, w e have y( y+( t ) ) = y ( h ( t ’ Xu0)+) = ę+ (h(t’ Xu0)+)

^ y+( Xu0) = y ( X u 0) < 0 Vi e [0, 1]

(see (3.13) ), so

^ Iy+ < 0. (3.16)

In a sim ilar fash io n , we p ro d u c e a co n tin u o u s p a th Y- in W0’p (Q) w hich co n n e cts Xv0 an d v0 and

Vlr_ < 0. (3.17)

W e c o n c a te n a te y- , Y an d y+ an d p ro d u c e y* e r , such th a t V'lYt < 0

(see (3.13) , (3.16) an d (3.17) ), so y0 = 0 (see (3.9) ).

So y 0 e C 0 ( n ) \ {0} is th e th ird n o n triv ia l sm o o th so lu tio n o f (1.1) .

4 S econd M u ltiplicity T h e o re m . N o d a l S olutions

In this section, w e lo o k for n o d a l solutions. T o th e b e st o f o u r kn o w led g e, th e re has b e e n no p rev io u s w o rk p ro d u cin g n o d a l so lu tio n s for e q u a tio n s d riv en by a n o n h o - m o g e n eo u s d iffe ren tia l o p e ra to r. T o do this, we n e e d to stre n g th e n th e h y p o th e ses on th e n o n sm o o th p o te n tia l F ( z , Z). F o r this p u rp o se , le t us first in tro d u c e som e n o ta tio n . C o n sid er a m e a su ra b le fu n ctio n f : ^ x R — > R , such th a t for every r > 0, w e ca n find ar e L x (fi)+ fo r w hich w e have

| f (z, Z) | ^ ar (z) for alm o st all z e ^ an d all |Z | ^ r.

W e allow f (z, •) to h av e ju m p d isc o n tin u ities an d define

fi (z, Z) = lim in f f (z, Z') an d f u ( z ’ Z) = lim sup f ( z, Z' ) . (4.1)

Z ^ Z Z'^Z

F o r alm o st all z e ^ , th e se lim its a re finite. W e assum e th a t b o th f l an d f u are su- p erp o sitio n a lly m e asu rab le. T his m e a n s th a t, if u : ^ — > R is a m e a su ra b le function, th e n so are fu n ctio n s z i— > f i i z , u( z ) ) and z i— > f u( z , u ( z ) ) .

W e set

F ( z , Z ) = f f (z, s) ds.

0

T h e n for alm o st all z e ^ , th e fu n ctio n F ( z , •) is locally L ipschitz and d F (z, Z) = [ fi (z, Z), f u( z, Z)]

(see e.g., C h a n g [6] o r C la rk e [9]). W e h av e F ( z , 0) = 0 for alm o st all z e Q.

^ Springer

(19)

So, n ow we can sta te p recisely th e new stro n g e r c o n d itio n s o n th e n o n sm o o th p o te n tia l.

H 2: F : n x R — > R is a fu n ctio n , such th a t

F ( z , Z) = f f (z, s) ds, 0

w h ere f : n x R — > R is a m e a su ra b le fu n ctio n satisfying:

(i) th e re exist a 6 L ^ ( n ) + and c > 0, such th a t

\ f (z, Z)\ ^ a(z) + c\Z \p -1 fo r alm o st all z 6 n , all Z 6 R;

th e functions f l (z, Z) an d f u(z, Z) d efin e d by (4.1) are su p e rp o sitio n a lly m e a ­ su ra b le an d for alm o st all z 6 n , th e fu n ctio n Z -— ► f ( z , Z ) is co n tin u o u s at Z = 0;

(ii) th e re exists a fu n ctio n d 6 L <x’( n)+, d ( z ) < - j - for alm ost all z 6 n , d = 1, such th a t

lim sup p — Z'’1 , ZZ ^ d ( z ) unifo rm ly for alm o st all z 6 n ; Z^±<x, \Z \p

(iii) th e re exist t 6 ( 1, p ) an d c6 > 0, such th a t

f l ( z, Z)Z ^ c6|Z \t for alm o st all z 6 n an d all Z 6 R.

R e m a r k 4.1 N o te th a t th e ab o v e h y p o th e se s im ply th a t 3 F ( z , 0) = {0} fo r alm o st all z 6 n . A lso n o te th a t

u *Z ^ 0 fo r alm o st all z 6 n , all Z 6 R an d all u* 6 3F ( z , Z) (sign co n d itio n ).

E x a m p l e 4.2 T h e follow ing p o te n tia l fu n ctio n F satisfies h y p o th e se s H 2:

F(Z) = - \Z \p + m a x i 1 \Z\t , 1 \Z |q l + c\Z\,

p I t q J

w h ere d < - -1 , t , q 6 (0, p ) an d c ^ 0. If t = q an d c > 0, th e n F is n o t a C 1- function.

F irst w e show th a t p ro b le m (1.1) h as e x tre m a l c o n s ta n t sign sm o o th solutions, i.e., th e re exists a sm allest n o n triv ia l po sitiv e so lu tio n an d a biggest n o n triv ia l neg ativ e

so lu tio n . ( )

H0': H y p o th e s e s H0 h o ld an d th e re exists q 6 (t, p) , such th a t th e m ap t ^ G 0(t q ) is convex, w ith G 0 (t) = f 0 a0 (s)sds.

P ro p o sitio n 4.3 I f hypot heses H'0 an d H 2 hold, then p r o b l e m (1.1) has a smallest nontrivial posit ive solut ion u+ 6 in t C+ a nd a biggest nontrivial negative solution v- 6 —in t C+.

Ö Springer

(20)

P r o o / W e co n sid er th e follow ing auxiliary D iric h le t p roblem :

—d iv a ( V u ( z ) ) = c6\ u ( z ) \ —2u( z) in Q , (4 2 ) u Un = 0

Cl aim P ro b le m (4.2) h as a u n iq u e n o n triv ia l p ositive so lu tio n u e in t C+ and a u n iq u e n o n triv ia l n eg a tiv e so lu tio n v e —in t C+.

L e t : W0’p (Q) — > R b e th e C 1-functional, d efin e d by

f + ( u ) = i G ( V u ( z ) ) d z 6 llu+llT Vu e w 0 ,p(Q).

Jq t

U sing C o ro lla ry 2.5, w e hav e

f + ( u ) y --- 0---||u ||p — c7||u ||T Vu e W0’p (Q), (4.3) p ( p — 1)

for so m e c7 > 0 .

Since t < p , fro m (4.3) we in fer th a t is coercive. A lso , it is se q u en tially w eakly low er se m ico n tin u o u s. So, we can find u e W ^ p (Q), such th a t

(u) = inf f + ( u ) = m+. (4.4)

ueWp p(Q)

A s in th e p ro o f o f T h e o re m 3.4, using h y p o th e se s H^( i v) an d H2 (iii) an d since t < p , we o b ta in

(see (4.4)), so

F ro m (4.4) , we have

th u s

f + ( u ) = m+ < 0 = f + (0)

u = 0 .

f (u) = 0 ,

V ( u ) = c6(u+)T—1 . (4.5)

A ctin g o n (4.5) w ith —u — e W0’p (Q) and using L e m m a 2.4, w e o b ta in u y 0, u = 0.

So, fro m (4.5) , w e hav e th a t u solves (4.2) an d in fact th e n o n lin e a r reg u la rity th e o ry (see L a d y z h e n sk a y a -U ra ltse v a [25] and L ie b e rm a n [26]) and th e n o n lin e a r m axim um p rin cip le o f M o n te n e g ro [30, T h e o re m 6], im ply th a t u e in t C+.

T o show th e u n iq u e n e ss o f th e so lu tio n u e in t C+, in sp ire d by D iaz -S a a [11], we in tro d u c e th e in te g ra l fu n ctio n al £ : W0’p (Q) — > R = R J {+<^}, d efin e d by

hi \ \ fn G ( V u q) d z if u y 0, u q e W0,q(Q),

£(u) = i 0 -

+ w otherw ise.

C learly £ is convex, lo w er se m ic o n tin u o u s an d it is n o t id e n tic a l + r o .

L e t u e W ^ p (Q) b e a n o n triv ia l po sitiv e so lu tio n o f th e auxiliary p ro b le m (4.2).

T h e n o n lin e a r reg u la rity th e o ry (see [25, 26]) an d th e n o n lin e a r m ax im u m prin cip le

^ Springer

(21)

(see [30]) im ply th a t u e in t C+. N o te th a t uq ^ 0 an d (uq) q e w

0

’q (H). So, u q is in th e effective d o m a in o f th e R -v alu ed fu n ctio n al Z. F o r h e C

Q

(Q,) and t > 0 sm all, we h av e uq + th e C+ an d so th e d ire c tio n a l deriv ativ e o f Z a t uq in th e d ire c tio n h exists.

M o reo v e r, using th e ch a in ru le, we have

, q r ( G ◦ D)' (u) f - d i v a ( Vu ) , s

Z (u )(h) =

L

u q -

i

h d z =

L

u q-

i

h d z ■ (4.6)

L e t w b e any n o n triv ia l p o sitiv e so lu tio n o f (4.2). A s above, we h av e th a t w e in t C+. By v irtu e o f th e convexity o f Z an d (4.6) , we h av e

f ( d iv a ( Vu ) d iv a ( V w ) \ q q

0 < / --- ^ ) ( u q - w q) dz,

J a \

u q -

1

w q -

1

f t i-

(see (4.2) an d rec all th a t t < q) and th u s

0 < c6 I ( f t —T — W— ) (Ul — Wq) d z , < 0

Sim ilarly, we estab lish th e u n iq u e n e ss o f th e n o n triv ia l n eg a tiv e so lu tio n v e - in t C+. T his p ro v es th e Claim .

N ow , le t u b e a n o n triv ia l p o sitiv e so lu tio n for p ro b le m (1.1). S uch a so lu tio n exists by v irtu e o f T h e o re m 3.4 and

- d i v a ( V u ( z ) ) = u*(z) for alm o st all z e (4.7) w h ere u * e L p (Œ), u * (z) e d F ( z , u( z)) for alm o st all z e Œ. It follow s th a t u e in t C+

(see [25, 26]). L e t

h +( z , Z ) =

0 if Z < 0 ,

c6f T—1 if 0 < Z < u( z), (4.8) c6u ( z )T—1 if u(z) < Z-

T his is a C a ra th e o d o ry fu n ctio n (i.e., for all Z 6 R , th e fu n ctio n z -— > h+(z, Z) is m e a su ra b le an d fo r alm o st all z 6 n , th e fu n ctio n Z -— ► h+(z, Z) is co n tin u o u s).

W e set

H + ( z , Z ) = f h+(z, s) ds 0

an d co n sid er th e C 1-fu n ctio n al ft+ : W0’p ( n ) — > R , defin ed by

ft+(u) = i G ( V u ( z ) ) d z - i H+( z , u( z) ) d z Vu 6 W f t n ) .

n n

It is clear fro m (4.8) an d C o ro lla ry 2.5 th a t ft+ is coercive. A lso , it is se q u en tially w eakly low er se m ic o n tin u o u s. So, w e can find u 6 W0’p ( n ), such th a t

f t + ® = inf ft+(u) = m+. (4.9)

u6W1 ‘p (n) so

u = w.

Ô Springer

(22)

A s b efo re , since t < p , we hav e th a t

f + ( u ) = m+ < 0 = (0) (see (4.9)), i.e., u_ = 0.

F ro m (4.9) , we have

w h ere

y'+ ( u ) = 0 , so

V ( u ) = Nh+ ( u ), (4.10)

Nh+ ( u ) ( ) = h +(-, u ( ) Vu e W0’p (Q).

A ctin g o n (4.10) w ith _ u _ e W 0’p (Q), w e o b ta in u ^ 0, u = 0. O n (4.10) we act also w ith (u _ u)+ e W ^ p (Q). T h e n

{V( u ), ( u _ u ) +) = h+(z, u ) ( u _ u)+dz J q

= I C6u ( z ) T_ 1( u _ u)+dz J q

y I u* ( u _ u) +dz J Q

= {V(u), ( u _ u ) + (see (4.7) an d h y p o th e sis H2 (iii)), so

I ( a( Vu) _ a ( Vu ) , V B _ V u ) RNd z y 0, J {u>u}

th u s

\{u > u}\N = 0 (see L e m m a 2.4) an d w e o b ta in

u y u . So

u e [0 , u], u = 0 , w h ere

[0, u] = {w e W0’p (Q) : 0 y w( z ) y u( z) for alm o st all z e Q}.

T h e n (4.10) b eco m es

V ( u ) = c6u T _ 1 (see (4.8) ) an d so

u = u e in t C+

(see th e C laim ).

X; Springer

(23)

T h e ab o v e arg u m e n t show s th a t

ev ery n o n triv ia l p ositive so lu tio n u e W0’p (Q) o f (1.1) satisfies u ^ u. (4.11) A sim ilar a rg u m e n t, using th is tim e v e —in t C+ (see th e C laim ), show s th a t

every n o n triv ia l n e g a tiv e so lu tio n v e W0’p (Q) o f (1.1) satisfies v ^ v. (4.12) N ow we a re re a d y to estab lish th e ex isten ce o f e x tre m a l n o n triv ia l c o n s ta n t sign so lu tio n s o f ( 1.1) . So, le t S+ b e th e se t o f n o n triv ia l p ositive so lu tio n s o f ( 1.1) . F ro m T h e o re m 3.4 we k n o w th a t S+ = 0. L e t C c S+ b e a c h a in (i.e., a to ta l o rd e re d su b se t o f S+). F ro m D u n fo rd -S c h w a rtz [12, p. 336], w e k n o w th a t th e re exists a seq u en ce [un}ny1 C C, such th a t

inf un = inf C.

n^ 1

M o reo v e r, w e can h av e th e se q u en c e [u„}„^1 d ec reasin g (see H eik k ila- L a k sh m ik a n th a m [22, L e m m a 1.1.5; p. 15]). W e have

V ( u n) = u*n 'Vn > 1, (4.13)

w h ere un e L p' (Q) an d u^(z) e d F ( z , un (z)) for alm o st all z e Q. E v id e n tly th e se q u e n c e [u„ } „ ^ 1 c W0’p (Q) is b o u n d e d (see (4.13) and recall th a t un ^ u 1 for all n ^ 1). So, w e m ay assum e th a t

un — > u w eakly in W ° p (Q), (4.14)

un — > u in L p (Q). (4.15)

O n (4.13) we act w ith un - u, pass to th e lim it as n ^ + t o an d use (4.14). T h en lim V(un) , un - u = 0

rt^ + TO ' 1

an d so

un — > u in W ° p (Q) (4.16)

(see P ro p o sitio n 2.7). By v irtu e o f h y p o th e sis H2 (i), th e se q u en c e [u ^ } « ^ C L p' (Q) is b o u n d e d an d so, passing to a su b se q u e n c e if n ecessary, w e m ay assum e th a t

u^ — > u* w eakly in L p (Q).

In v o k in g P ro p o sitio n 3.9 o f H u -P a p a g e o rg io u [23, p. 694], we hav e

u*(z) c conv lim sup d F ( z , un (z)) c d F ( z , u( z ) ) for alm o st all z g Q.

n ^ + ^

So, if in (4.13) we pass to th e lim it as n ^ an d use (4.16) , we have V( u ) = u*,

w h ere u* g L p' (Q ), u*(z) g d F ( z , u( z ) ) for alm o st all z g Q and u ^ u

(see (4.11) ).

Ö Springer

(24)

T h e re fo re , w e in fer th a t u e S+ an d u e inf C. Since C is an a rb itra ry chain, from th e K u ra to w sk i-Z o rn lem m a, w e k n o w th a t S+ h as a m in im al e le m e n t u+ > u, u+ e in t C+ (fro m th e n o n lin e a r reg u la rity th e o ry ). U sing L e m m a 3.2 o f G asiriski- P a p a g e o rg io u [20] (th e le m m a rem a in s valid if th e p -L a p la c ia n is rep la c e d by the m o re g e n e ra l d iffe re n tia l o p e ra to r V , since all w e n e e d is th e m o n o to n ic ity o f V ), we hav e th a t S+ is dow n w ard d ire c te d (i.e., if u , w e S+, th e n th e re exists y e S+, such th a t y ^ m in[u, w}). T h e re fo re u+ e in t C+ is th e sm allest p o sitiv e so lu tio n o f (1.1).

Sim ilarly, w e p ro d u c e th e biggest n o n triv ia l n e g a tiv e so lu tio n v- e —in t C+ of p ro b le m ( 1.1) w ith v - ^ v (see (4.12)) using this tim e L e m m a 3.3 o f G asm ski-

P a p a g e o rg io u [20]. □

H av in g th e se ex tre m al so lu tio n s we can p ro d u c e a n o d a l so lu tio n and h av e th e seco n d m u ltiplicity th e o re m , w hich p ro v id es p recise sign in fo rm a tio n for all th re e solutions.

T h e o re m 4.4 I f hypot heses H 0 a nd H2 hold, then p r o b l e m (1.1) has at least three nontrivial sm o o th so lu tio n s

L e t u+ g in t C+ and v— g —in t C+ b e th e tw o e x tre m a l c o n s ta n t sign so lu tio n s of p ro b le m (1.1) p o stu la te d in P ro p o sitio n 4.3. W e have

m0 G in t C+, v0 g —in t C + , an d y 0 g C1 (fi) \ {0} nodal.

P r o o f F ro m T h e o re m 3.4 w e alre a d y h av e tw o c o n s ta n t sign so lutions m0 g in t C+ an d v0 g —in t C+.

- div ( V u + ( z ^ = u+(z) for alm o st all z e Q, w h ere u+ e L p' (Q), u+(z) e 9F ( z , u+(z)) for alm o st all z e Q, and

- d i v (V v- (z)) = v - ( z ) for alm o st all z e Q, w h ere v - e L p' (Q), v - ( z ) e 9F ( z , v- ( z)) for alm o st all z e Q.

W e c o n sid er th e follow ing tru n c a tio n o f f (z, ■):

v - ( z ) if Z < v - ( z ) ,

f (z, Z) = 1 f (z, Z) if v—(z) < Z < u+(z), (4.17) u+(z) if u + ( z ) < Z .

A lso, let

f ± ( z , Z ) = f ( z , ± Z ±).

W e set

F ( z , Z ) = [z, s) ds, F ± ( z , Z ) = -.(z, s) ds

Springer

(25)

an d co n sid er th e locally L ipschitz fu n ctio n als ę , ę± : W0’p (Q) — > R , d efin e d by

ę ( u ) = í G ( V u ( z ) ) d z - Í F (z, u( z ) ) d z Vu e Wy p (Q),

Jq J q

ę ±( u ) = í G ( V u ( z ) ) d z - Í F ± ( z ’ u( z) ) d z Vu e Wy p (Q).

Jq J q

A s in th e p ro o f o f P ro p o sitio n 4.3, w e show th a t

K ę ç [v_, u+], Kę+ = {0, u+}, Kę_ = {v_, 0}. (4.18)

C laim u+ an d v_ are local m inim izers o f th e fu n ctio n al ę.

E v id e n tly is coercive (see (4.17) ) an d se q u en tially w eakly lo w er se m ic o n tin u ­ ous. So, we ca n find u+ e W y p (Q), such th a t

ę+(u+) = inf ę+(u) = m+. (4.19)

ueWp p (Q) F ro m h y p o th e sis H2 (iii) an d since t < p , we have

ę+(u+) = m+ < o = ę + ( 0) (see (4.19) ), i.e., u+ = 0, so

u+ = u+

(see (4.18) an d (4.19) ). _

B u t u+ e in t C+ an d ę \ W+ = ę +\W+. H e n c e u+ is a local C ¿(Q )-m inim izer o f ę , th u s

by v irtu e o f P ro p o sitio n 2.6, it is also a local W0’p (Q )-m inim izer o f ę . Sim ilarly, for v_ e —in t C+, using this tim e th e fu n ctio n al ę _ . T his p ro v es th e Claim .

A s b e fo re (see th e p ro o f o f T h e o re m 3.4), w ith o u t any loss o f g en e rality , w e m ay assum e th a t ę ( v _ ) y ę( u+) and b ec au se o f th e C laim , w e ca n find q e (0, 1) sm all, such th a t

ę ( v _ ) y ę( u+) < inf { ę ( u) : \\u _ u+\\ = q} = ||v_ _ u+\\ > q. (4.20) (see A izico v ici-P ap ag eo rg io u -S taicu [1, p ro o f o f P ro p o sitio n 29] o r G asiriski- P a p a g e o rg io u [20, T h e o re m 3.4]).

S ince ę is co ercive (see (4.17) ), it satisfies th e P alais-S m ale co n d itio n . T his fact an d (4.20) , p e rm it th e u se o f th e m o u n ta in pass th e o re m (see T h e o re m 2.1). So, we can find a so lu tio n y0 e C^(Q) \ {u+, v_} of p ro b le m (1.1) (see (4.19) an d (4.18) ).

M o reo v e r, as in th e p ro o f o f T h e o re m 3.4, using T h e o re m 2.2, w e show th a t y 0 = 0.

Since y 0 e [v_, u+] n C¿(Q ) (see (4.18) an d use th e n o n lin e a r re g u la rity th e o ry ), y 0 g {u+, v_} an d given th e ex tre m ality o f u+ an d v_, we co n c lu d e th a t y 0 e C¿(Q ) \ {0}

m u st b e no d al. □

R e m a r k 4.5 C o m p a re d w ith th e resu lts o f L iu -L iu [27, T h e o re m 1.1] an d L iu [28, T h e o re m 1.2], o u r w o rk h e re is m o re g e n e ra l in m a n y resp ects. In b o th th e a fo re ­ m e n tio n e d w orks, th e d iffe ren tia l o p e ra to r is th e p -L a p la c ia n (i.e., G ( y) = p ||y ||p), F (z, ■) e C 1, asy m p to tically a t ± œ no in te ra c tio n is allow ed w ith X1 and th ey do n ot p ro v id e sign in fo rm a tio n fo r th e th ird so lu tio n . H o w ev er, th e ir c o n d itio n o n f (z, ■) n e a r th e o rigin is a little m o re g e n e ra l th a n ours, since f (z, ■) can b e (p _ 1)-linear

Ô Springer

(26)

n e a r zero. H e re w e a re fo rc ed to assum e a “ co n c a v e ” n o n lin e a rity n e a r th e origin in o rd e r to o v erc o m e th e n o n h o m o g e n e ity o f th e d iffe re n tia l o p e ra to r and p ro d u ce e x tre m a l c o n s ta n t sign so lu tio n s and th ro u g h th e m p ro d u c e a n o d a l solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

R e fe ren ce s

1. Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. Mem. Am. Math. Soc. 196(915), 1-70 (2008)

2. Ambrosetti, A., Lupo, D.: On a class of nonlinear Dirichlet problems with multiple solutions.

Nonlinear Anal. 8,1145-1150 (1984)

3. Ambrosetti, A., Mancini, G.: Sharp nonuniqueness results for some nonlinear problems. Nonlin­

ear Anal. 3, 635-645 (1979)

4. Averna, D., Marano, S., Motreanu, D.: Multiple solutions for a Dirichlet problem with p- Laplacian and set-valued nonlinearity. Bull. Aust. Math. Soc. 77,285-303 (2008)

5. Brézis, H., Nirenberg, L.: H 1 versus C1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317, 465-472 (1993)

6. Chang, K.-C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80,102-129 (1981)

7. Cingolani, S., Degiovanni, M.: Nontrivial solutions for p-Laplace equations with right hand side having p-linear growth at infinity. Comm. Partial Differ. Equ. 30,1191-1203 (2005)

8. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1,165-174 (1976) 9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

10. Corvellec, J.-N.: On the second deformation lemma. Topol. Methods Nonlinear Anal. 17, 55-66 (2001)

11. Diaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305, 521-524 (1987)

12. Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Pure and Applied Mathemat­

ics, vol. 7. Wiley, New York (1958)

13. Figueiredo, G.M.: Existence of positive solutions for a class of (p, q) -elliptic problems with critical growth on RN. J. Math. Anal. Appl. 378, 507-518 (2011)

14. Filippakis, M., Gasiriski, L., Papageorgiou, N.S.: Multiplicity result for nonlinear Neumann problems. Can. J. Math. 58, 64-92 (2006)

15. García Azorero, J., Manfredi, J., Peral Alonso, I.: Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385-404 (2000)

16. Gasiüski, L., Papageorgiou, N.S.: Multiple solutions for semilinear hemivariational inequalities at resonance. Publ. Math. Debrecen 59,121-146 (2001)

17. Gasmski, L., Papageorgiou, N.S.: A multiplicity result for nonlinear second order periodic equa­

tions with nonsmooth potential. Bull. Belg. Math. Soc. Simon Stevin 9, 245-258 (2002)

18. Gasmski, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/ CRC Press, Boca Raton, FL (2005)

19. Gasmski, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman and Hall/ CRC Press, Boca Raton, FL (2006)

20. Gasmski, L., Papageorgiou, N.S.: Nodal and multiple constant sign solutions for resonant p- Laplacian equations with a nonsmooth potential. Nonlinear Anal. 71, 5747-5772 (2009) 21. Guo, Z., Zhang, Z.: W1,p versus C1 local minimizers and multiplicity results for quasilinear

elliptic equations. J. Math. Anal. Appl. 286, 32-50 (2003)

22. Heikkila, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 181.

Marcel Dekker, New York (1994)

23. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Volume I: Theory. Mathematics and Its Applications, vol. 419. Kluwer, Dordrecht (1997)

^ Springer

Cytaty

Powiązane dokumenty

The results were generalized by applying more general non-linear integral inequalities and hence the stochastic versions of uniqueness criterions for non-random

Effective sufficient conditions for oscillation and nonoscillation of solutions of some operator-differential equations with piecewise constant argument are

Smith,An existence theorem for weak solution of differential equations in Banach spaces, Nonlinear Equation in Abstract Spaces (V. Papageorgiou, Weak solutions of differential

Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis: Theory, Methods &amp; Applications 11

Abstract We consider a nonlinear nonparametric elliptic Dirichlet problem driven by the p-Laplacian and reaction containing a singular term and a p − 1-superlinear perturbation..

Li,C., Li, S.: Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary

For the problems in which the energy functional is coercive we refer to Gasiński-Papageorgiou [12, 14] (for the Dirichlet boundary value problem) and to [13,15] (for Neumann

Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Existence of multiple solutions with precise sign information for semilinear Neumann problems.. Aizicovici, S., Papageorgiou,