• Nie Znaleziono Wyników

British Chemical Abstracts. A. Pure Chemistry, June

N/A
N/A
Protected

Academic year: 2022

Share "British Chemical Abstracts. A. Pure Chemistry, June"

Copied!
118
0
0

Pełen tekst

(1)

BRITISH CHEMICAL ABSTRACTS

A . - P U R E CHEMISTRY

J U N E , 1931, .

_

L s

C P s:

G en era l, P h y s ic a l, a n d I n o r g a n ic C h e m istr y .

S t e lla r h y d r o g e n lin e s a n d their* r e la tio n to th e S ta r k e ffe c t. C. T. E l v e y and 0 . S t r u v e (Astropliys. J ., 1930, 72, 277— 300).— Observations of th e wings of th e hydrogen lines in early type stars.

L. S. Th e o b a l d.

S t a r k e ffe c t in m o le c u la r h y d r o g e n in .t h e r a n g e 4 1 0 0 — 4 7 0 0 A . J . K . L. Ma cDo n a l d (Proc.

R oy. Soc., 1931, A , 1 3 1 , 146— 154; ef. A., 1929, 616).— C ertain complex structures reported by K iu ti as com ponents of a single line (A., 1926, 103) are resolved into separate lines. Displacem ents of line com ponents are m easured a n d th e observations dis­

cussed from a theoretical point of view.

L. L. Bi r c u m s i i a w.

S p e c tr a of t h e h e liu m g lo w d is c h a r g e . H . McN. Co w a n, W . L. Br o w n, and K . G. Em e l é u s

(N ature, 1931, 1 2 7 , 593).—The distribution of in ten ­ sity in th e arc spectrum of H e i obtained in an investigation of th e cold cathode glow discharge in helium w ith probe wires is described.

L. S. Th e o b a l d.

N e w u lt r a - v io le t s p e c t r u m of h e liu m . J. J.

Ho p f i e l d (Astropliys. J ., 1930, 7 2 , 133—145).—The resonance series of helium in th e ultra-violet has been extended to ten m embers, an d lines in orders as high as the fifth have been m easured. Intense continuous spectra of m olecular origin have been found between 500 an d 1125 A., and tin s is th e only strong con­

tinuous spectrum in the region 500—900 Á. Two distinct species of helium molecules are postulated to explain th e results. The first absorption spectra to be obtained betw een 500 an d 900 Á. are recorded for 0 2 and Ho. L. S. Th e o b a l d.

C o m b in e d e le c tr ic a n d m a g n e t ic f ie ld s o n th e h e liu m s p e c tr u m . II. J . S. Fo s t e r (Proc. R o y .

Soc., 1931, A , 1 3 1 , 133—146; cf. A., 1929, 364).—A study has been m ade of th e effect of sim ultaneous electric an d m agnetic fields applied in either parallel or perpendicular directions on th e helium spectrum .

L. L. Bi r c u m s h a w.

T e m p e r a tu r e d e te r m in a t io n f r o m b a n d sp e c tr a . I. V ib r a tio n a l e n e r g y d is tr ib u t io n and v ib r a tio n a l t r a n s itio n p r o b a b ilitie s in th e cy a n o g e n 2S —2S b a n d s y s t e m . L. S . Or n s t e i n

and H. Br i n k m a n (Proc. K . Akad. W etensch. A m ster­

dam, 1931, 3 4 , 33— 41).—The intensity distribution in the cyanogen 2S —2S ban d system has been d eter­

mined by m easurem ents of th e m axim um intensities of the b and heads. A distribution tem perature for the vibrational levels exists and is th e same as for the rotational levels. J . W. Sm i t h.

y y 6 6 3

I n te n s ity r e la tio n s h ip s in th e a lk a li d o u b le ts . E . Fe r m i ( Nu o v o Cim., 1930, 7, 201—207; Chem.

Zentr., 1930, ii, 2352—2353).—A recom putation gives results in accord w ith experim ental values.

A. A. El d r i d g e.

Z e e m a n e ffe c t in s ilic o n a n d b a n d s p e c tr a of a lk a lin e -e a r th flu o r id e s . (Miss) E . v o n M a t h e s

(Z. Physik, 1931, 68, 493—504).—The Zeem an effect in th e 3p3P 0i,,2- 4 D 3P 0>1,2 lines near 2510

A.,

and in th e lines a t 2881 an d 3905

A.

of silicon, were m easured, an d were found to agree w ith Fow ler’s electronic level system for n eu tral silicon. T he Zee­

m an effect in calcium, barium , an d stro n tiu m fluorides was also m easured an d com pared w ith theory.

A. B. D . Ca s s i e.

I n te r p r e ta tio n o f c e r ta in 2A, II2 b a n d s of s ilic o n h y d r id e . R . S. Mu l l i k e n (Physical R ev., 1931, [ii], 37, 733—735).—Theoretical. I t is shown th a t th e bands found b y Jackson (cf. A., 1930, 388) have a regular 2n sta te and are thus closely analogous to th e X 4300 bands of CH. N. M . Bl i g h.

I n t e n s it ie s in s t e lla r s p e c tr a of a tr ip le t of S i m . O. S t r u v e and C. T. E l v e y (Astrophys, J., 1930, 7 2 , 267—276).—The ratios of to ta l adsorptions of th e Si i n trip let a t 4553, 4568, an d 4575

A.

in stellar spectra depend on th e form of th e absorp­

tion coefficient. L. S. T h e o b a l d .

R e s o n a n c e s p e c t r u m o f s u lp h u r v a p o u r . J.

F r i d r i c h s o n (Compt. rend., 1931, 1 9 2 , 737—739;

cf. Swings, A., 1930, 650, 829).—The resonance spec­

tru m of sulphur vapour has been observed to 6000 A., an d th ree sets of four doublets excited b y th e 3132, 3126, an d 2968 m ercury lines, and of a series of four quadruplets excited by th e 3132

A.

line, have been measured. C. A. S i l b e r r a d .

A b s o r p tio n lin e s o f s u lp h u r ( S h i a n d S l i ) in s t e lla r s p e c tr a . F . E . Ro a c h (Astrophys. J ., 1930, 7 2 , 191— 198).—Stellar lines due to th e S m ion have been identified. Six newly-m easured lines are a ttr i­

b u ted to th e S n ion. L. S. Th e o b a l d.

R e s o n a n c e m u lt ip le t s a n d th e m o m e n t of in e r tia o f d ia to m ic s u lp h u r m o le c u le s . P.

Sw i n g s (Bull. A c a d . roy. Belg., 1931, [ v ] , 1 7 , 420 424).—The m om ent of in ertia of the diatom ic sulphur molecule is 7 X 10-39 c.g.s.u. Fine structures observed in th e resonance radiatio n of S2, are classified as rotatio n doublets. C. W . Gi b b y.

T it a n iu m c o m p a r is o n s p e c tr u m a s a p h o to ­ m e t r ic s c a le . P . C. Ke e n a n (Astrophys. J., 1931, 7 3 . 118— 123).—The relative intensities of IS lines in

(2)

664 BR IT ISH CHEMICAL ABSTRACTS. A .

t h e t i t a n i u m c o m p a r i s o n s p e c t r u m h a v e b e e n d e t e r ­ m i n e d i n o r d e r t o p r o v i d e p h o t o m e t r i c c a l i b r a t i o n f o r e a r l y s t e l l a r s p e c t r o g r a m s . L. S. Th e o b a l d.

R e so n a n c e r a d ia tio n f r o m m a n g a n e s e v a p o u r . J . F r i d r i c j i s o x (Z. Physik, 1931, 68, 550—553; cf.

A., 1930, 1227).—R adiation from copper and silver arcs, and also white light excite th e resonance trip let a t 4032

A.

A. B . D . C a s s i e .

A n o m a lo u s d o u b le t s t r u c t u r e of th e 4 2F t e r m s of c o p p e r. S. Sa m b u r s k y (Naturwiss., 1931, 19, 309—310).—I t appears t h a t th e 42.F term is inverted.

Similar behaviour has been evidenced in the spark

spectrum of zinc. A. J . Meb.

N e w b a n d s y s te m of c o p p e r h y d rid e . P . C.

M a h a n t i (N ature, 1 9 3 1 , 127, 5 5 7 ) .A six-headed b an d system has been found in the region 2 9 0 0 —

2200 A.

The bands are double-headed and th e stru c ­ tu re consists of six m ain branches and three satellites.

L. S. Th e o b a l d.

S p e c tr u m of s e le n iu m . I. S e i v a n d S e v . K , R . R a o and J . S. B a d a m i (Proc. Roy. Soc., 1931, A, 131, 154— 169).—The spectrum of selenium has been investigated from 7000 to 650 A., using suitably strong discharges through capillary tubes containing selenium vapour. Photographs have also been tak en of th e vacuum spark spectrum of selenium in th e region 1400

400

A.

The doublet, system of trebly- ionised selenium has been identified, an d a term scheme is proposed. The ionisation potential is about 42-72 volts. The four iso-electronic spectra Ga I, Ge n , As n r, and Se iv are compared. A few singlet and intercom biiiation lines have been added to th e trip let system of Se v found b y Sawyer and H um phreys (A., 1928, 1296). The approxim ate ionisation potential is 72-S volts.

L. L. Bi r c u m s h a w.

S p e c tr u m of sin g ly -io n is e d a n tim o n y . D . G.

D h a v a l e (Proc. R oy.Soc., 1931, A, 131, 109— 121).—

New m easurem ents of th e first spark spectrum of antim ony have been m ade over th e range 8 5 0 0— 3000

A.

The classification of th e lines again illustrates th e use of the arithm etic progression law (cf. Saha and Kichlu, A., 1928, 209) and th e m ethod of horizontal comparison (Saha and M azumdar, A., 1928, 1296).

The ionisation p otential of Sb+ is estim ated to be abo u t 18-8 volts. L. L. B i r c t i m s h a w .

T e m p e r a t u r e c la s s ific a tio n of th e s t r o n g e r lin e s of n io b iu m , w ith p r e lim in a r y n o te s o n t h e i r h y p e r fin e s tr u c t u r e . A. S. Kixc; (Astrophys. J ., 1931, 73, 13—25).—The electric furnace spectra a t 2500—2900° have been com pared w ith th e arc an d spark spectra. A pproxim ately 200 lines appear in th e furnace spectrum , b u t m any n eu tral and all ionised lines required higher excitation. A bout 40%

of th e 646 lines tab u lated show hyperfine stru ctu re.

L. S. Th e o b a l d.

E v id e n c e f o r th e p re s e n c e of r h e n iu m f r o m th e F r a u n h o f e r lin e s in t h e s o l a r s p e c tr u m . H . Sc h o b e r (N atunviss., 1931,19, 310).— Of 60 strong lines in th e rhenium spectrum 24 appear to coincide w ith F raunhofer lines, th ere being correspondence as regards in ten sity . A. J . Me e.

F in e s t r u c t u r e in t h e m e r c u r y s in g le t t e r m s . S. To l a n s k y (N ature, 1931,127, 595).—A correction.

L. S. Th e o b a l d.

R e la tiv e in te n s itie s of m e r c u r y lin e s u n d e r d iffe re n t c o n d itio n s of e x c ita tio n . M. J . E.

Go l a y (Physical R ev., 1931, [ii], 37, 821— 829; cf.

H ouston, A., 1929, 480).—Using a Cooper-Hewitt arc a n d a mercury-filled tu b e th e relative intensities of th e lines of th e 2s—2 trip let were measured. The variations, then- interpretation , and the mechanisms of emission are discussed. N. M. Bl i g h.

M o le c u la r s p e c tr a of m e r c u r y , zin c, c a d m iu m , m a g n e s iu m , a n d th a lliu m . H. Ha m a d a (Nature, 1931, 127, 555).—The b and system em itted from diatom ic molecules of m ercury, cadmium , zinc, and m agnésium vapours has tw o broad m axim a and one flat m inim um of intensity. The calculated energy of dissociation of th e molecules Zn2, Cd2, an d H g2 are 0-29,0-24, an d ^ 0 -0 7 volt, respectively. Sym m etrical an d asym m etrical bands accom panying th e lines in the spectrum of thallium are probably due to thallium

molecules. L. S. Th e o b a l d.

S tr u c t u r e of e x c ita tio n fu n c tio n s f o r m e r c u r y lin e s . K . Si e b e r t z (Z. Physik, 1931, 68, 505—

521).—An im proved ap p aratu s for m easurem ent of optical excitation functions is described; electron velocities can be varied by as little as 0-2 volt, and this reveals several m axim a in curves si lowing optical intensity a t an y electron v e lo c it y .

A. B . D . Ca s s i e.

Is o to p e effect in th e h y p e r fin e s t r u c t u r e of th a lliu m . H . Sc h ü l e r and J . E. Iv e y s t o n (Natur- wiss., 1931, 19, 320—321).—The intensity relation­

ships in th e hyperfine stru ctu re of th e T l I an d T1 i i

lines m ay be q uan titativ ely in terp reted in term s of a new isotope effect. If th e isotopes are assum ed to have at. wts. of 203 an d 205 an d to be present in the proportion necessary to yield th e norm al a t. w t. of the element, th e calculated num ber, positions, an d intensities of th e com ponents accord fully w ith those determ ined experim entally. The relative displace­

m ent of th e isotope term s is especially large for the 6s26p2P , „ term of Tl I and th e ds7j)1P 1 term of T in .

H . F . Gi l l b e.

B a n d s p e c tr u m of b i s m u th h y d rid e . A.

Heim h e and E . Hi t l t h é n (N ature, 1931,127, 557).

A band spectrum in th e region of th e bism uth line 4722 A. has been observed. The bands consist of single P an d 11 branches w ith well-resolved lines.

L. S. Th e o b a l d.

H y p e rfin e s t r u c t u r e s e p a r a tio n s . S. Go u d s m i t

(Physical R ev., 1931, [ii], 37,66 3—681).—Theoretical.

Using S later’s m ethod of th e invariance of energy sum s (cf. A., 1930, 126) expressions are derived for the hyperfine structure separations of th e levels of com­

plicated electron configurations in different types of

coupling. N. M. Bl i g h.

S y n c h ro n o u s f ilm d r u m fo r r e c o r d in g p e r io d ic s p e c tr a . D . C. St o c k b a r g e r and G . G. Se l i g

(Rev. Sei. In str., 1931, [ii], 2, 211— 216).—The con­

struction of a drum film holder to replace th e plate holder of a q uartz spectrograph for th e photography of th e periodic spectra of altern atin g-current arcs is described. I t is driven by a synchronous m otor

(3)

G EN E R A L , PH Y SIC A L , A N D IN OR GA NIC CHEM ISTRY. 6 6 5

o p e r a t i n g o n t h e s a m e c u r r e n t s u p p l y a s t h e d i s c h a r g e

t u b e . C. W . Ge b b y.

H y p e rfin e s t r u c t u r e a s a t e s t of a l in e a r w a v e e q u a tio n in th e tw o -b o d y p r o b le m . D. R . In g l i s

(Physical R ev., 1931, [ii], 37, 795—799).—M athe­

m atical. The relativistic tre a tm e n t of a nucleus and an electron gives rise to doubtful term s no t agreeing w ith hyperfine stru ctu re m easurem ents.

jST. M. Bl i g h.

T r a n s m i s s io n of l i g h t b y t h i n film s of m e ta l.

S. Ra m a s w a m y (Proc. R oy. Soc., 1931, A, 131, 307—320).

T h e o r e tic a l f o r m u la fo r th e a b s o r p tio n ju m p . V. Po s e j p a l (Compt. rend., 1931,192, 879—881; cf.

th is vol., 13).—A form ula is given for th e absorption jum p, defined as th e ra tio where t 1; t 2 are the tru e absorption coefficients for th e frequencies Vjf-J—s an d vK—s for th e lim it e = 0 , v* being th e critical K absorption frequency. is calculated for all elem en ts; th e values agree satisfactorily w ith the experim ental results available.

C . A . SlL B ER R A D .

S c a tte r in g of X -r a y s b y m e r c u r y v a p o u r.

Y. H . W oo (N ature, 1931, 127, 556—557).—

T heoretical. L. S. Th e o b a l d.

D e p e n d e n c e of X -r a y a b s o r p tio n s p e c tr a on c h e m ic a l a n d p h y s ic a l s ta te . J . D. Ha n a w a l t

(Physical R ev., 1931, [ii], 37, 715— 726).—The X -ray absorption spectra of arsenic, selenium, bromine, zinc, m ercury, xenon, an d krypton, an d some of their compounds were photographed for th e solid and vapour states, an d th e effect of th e chemical and physical sta te of th e absorbing ato m on th e secondary stru ctu re lying to th e sh o rt w ave-length side of th e m am absorption edge was investigated. The four last-nam ed m onatom ic vapours showed no secondary structure fa rth e r from th e m ain edge th a n th e ionis­

ation poten tial of th e a to m ; polyatom ic vapours usually have a secondary stru ctu re sim ilar to th a t for the solid state. The secondary absorption of solid sodium brom ate shows an additional stru ctu re no t observed for a solution. The view th a t com pleted electron shells of atom s in th e solid sta te indicate the absence of secondary absorption edges is n o t sup­

ported. N . M. Bl i g i i.

T h e “ R a y ” m o d ific a tio n of th e fre q u e n c y of X -ra y s . J . H . v a n d e r T u u k (Naturwiss., 1931, 19, 308).—A repetition of R a y ’s experim ent of passing copper K a 2 rays through carbon, nitrogen, and oxygen is described. The au th o r was unable to find th e modified lines on th e long-wave-length side

reported by R ay. A. J . M ee.

E n e r g y d is t r ib u tio n in c o n tin u o u s X -r a y s p e c tra . K . K . Ag l i n t z e v (J. Appl. Chem. Russia, 1929, 6, No. 2, 38—46). Ch e m i c a l Ab s t r a c t s.

X -R ay n o n d i a g r a m l i n e s . G. B. De o d h a r

(Proc. R oy. Soc., 1931, A, 131, 476—493).—I n the K and L series non-diagram lines, p a n s have been detected which show approxim ately constant V v ¡R differences. The com ponents of these p a h s appear to arise from transitions in m ultiply-ionised atom s which are characterised by th e sam e initial and final total q uantum num bers, b u t have different screening

constants. I n spite of th e constancy of th e a V v /R values, all th e p a h s do n o t show th e required linear variation of Av/72 w ith atom ic num ber. Tbese pairs also show some analogy w ith th e usual screening doublets. L. L. Bi r c u m s h a w.

E le c tr o n re fle x io n in a 9 -d ic h lo ro e th a n e . E.

Be r g m a n n and L. En g e l (Pliysikal. Z., 1931, 32, 263—264).-—C ontrary to th e conclusion of W ierl th a t electron reflexion in ap-dichloroethane indicates th a t th is substance consists of a m ixture of cis- and trans- modifications, reconsideration of th e m echanism of th e reflexion leads to a stru ctu re in agreem ent w ith those obtained from X -ray analysis and organic

chem istry. W . Go o d.

E le c tr o n d iffr a c tio n a n d m o le c u la r s t r u c t u r e . R . W i e r l (Ann. Physik, 1931, 8 , [v], 521—564; A., 1931, 13).—The theory of diffraction of X -rays by a single molecule is applied to th e ease of diffraction of electrons b y th e molecules of a gas. Erom th e elec­

tro n diffraction p a tte rn obtained b y passing a beam of high-speed electrons through a gaseous stream th e characteristic form and atom ic distances of the mole­

cule of th e substance are evaluated. E xperim ental details of th e m ethod an d results for 20 substances

are given. W. Go o d.

[M ean fre e p a t h of e le c tro n s in g a s e s .] V. A.

Ba i l e y (Phil. Mag., 1931, [vii], 11, 1052— 1057).—

R em arks on publications b y R am sauer an d b y F ran ck an d Jo rd an .

In flu e n c e of r a d ia tiv e fo rc e s on th e s c a tt e r i n g of e le c tro n s . N . F. Mo t t (Proc. Camb. Phil. Soc., 1931, 27, 255—267).

I o n is a tio n of m e r c u r y v a p o u r b y e le c tro n im p a c t. P . T. Sm i t h (Physical R ev., 1931, [ii], 37, 808— 814; cf. Jones, A., 1927, 708; Bleakney, A., 1930, 391).—B y using an ap p aratu s previously described (cf. this vol., 10), th e to tal num ber of posi­

tive charges per electron im pact in m ercury was deter­

m in e d as a function of th e energy of th e im pacting electrons up to 750 volts. The m axim um efficiency 19-4 occurs a t about 85 volts (cf Lawrence, A., 1927, 85; Hughes, A., 1930, 1230). N. M. Bl i g h.

Q u a n tu m m e c h a n ic s of c r y s ta ls . E . L. Hi l l

(Physical R ev., 1931, [ii], 37, 7S5—794; cf. Morse, A., 1930, 976).—M athem atical. The reflexion of a beam of electrons from a typ e of one-dimensional lattice containing an y num ber of u n it cells is inves­

tig ated ; th e m ore complex case approxim ating to actu al crystals is considered briefly. N. M. Bl i g h.

C a p tu r e of e le c tro n s f r o m m e r c u r y a to m s b y p o s itiv e io n s of h e liu m . C. F . Po w e l l and A. M.

Ty n d a l l (N ature, 19 31 ,127, 592593; cf. A., 1930, 1336).—M easurem ents of th e mobilities of ions in helium containing a small am ount of m ercury vapour (1 : 3 X 101) show electron exchange from m ercury to helium, and provide a m ethod for the determ ination of m obility of positive ions in gaseous helium.

L. S. Th e o b a l d.

C o n c e n tra tio n of b u n d le s of s lo w e le c tro n s . I. Ra n z i (Nuovo Cimv 1930, 7, 254—259; Chem.

Z entr., 1930, ii, 2350— 2351).

(4)

666

BB IT ISH CHEMICAL ABST R A C TS.— A .

C ry s ta l p h o to g r a p h s of e le c tro n w a v e s b y a fo c u s sin g m e th o d . S. v o n Fr i e s eN (Naturwiss., 1931,19, 361).—A qualitative a tte m p t to photograph the diffraction of electrons from a th in layer of zinc oxide b y m eans of an arrangem ent sim ilar to th a t used by Bohlin and Seeman for X -rays is discussed.

W. R . An g u s.

“ I n t e r n a l ” d e g re e s of f r e e d o m of a n e le c tro n . V. Fo c k (Z. Physik, 1931, 28, 522—534).—M athe­

m atical. A. B. D . Ca s s i e.

Q u a n ttu n m e c h a n ic s of a to m ic c o llis io n s.

L. Go l d s t e i n (Compt. rend., 1931,192, 1022— 1024).

—A calculation of the probability of excitem ent of discrete or continuous atomic levels by collision w ith n eutral atom s or rapid positive ions.

C. A. SlL B ER R A D .

M e tr ic a l th e o r y a n d it s r e la tio n to th e c h a r g e a n d m a s s e s of th e e le c tro n a n d p ro to n . H . T.

Fl i n t (Proc. Roy. Soc., 1931, A, 131, 170— 177).—

The principles of conservation of m om entum an d energy applied to two masses show th a t th e four­

dimensional m om entum is conserved. A five-dimen­

sional continuum is investigated, an d it is shown th a t th e corresponding five-dimensional quantities are also conserved. On this theory it is deduced th a t m atter can be destroyed b y th e union of an electron and a proton when th e two particles possess equal and opposite fifth m om entum components.

L. L. Be r c u m s h a w.

S u p e rp o s itio n of e le c tro n c h a rg e s i n m o le c u le s a n d a - p a rtic le s . W . H . Ro d e b u s h (J. Amer.

Chein. Soc., 1931,53,1611— 1612).—Theoretical. The

“ residual affinity ” postulated to explain such com­

pounds as B 2H g m ay be due to th e overlapping of charge, w ithout the exchange phenomenon.

J . G . A. Gr i f f i t h s.

P o s s ib ility of s e p a r a t in g n e o n in to i t s is o to p ic c o m p o n e n ts b y re c tific a tio n . W . H . Ke e s o m and H . v a n Di j k (Proc. K . Akad. W etensch. Am sterdam , 1931; 34, 42—50).—A ttem pts have been m ade to separate th e isotopio com ponents of neon by re cti­

fication a t —24S-40, ju st above th e triple point.

Light and heavier fractions were obtained of densities 0-00039830 a n d 0-00090211, c o r r e s p o n d i n g w i t h a t . w t s . o f 20-14 a n d 20-23, r e s p e c t i v e l y . T h e f a c t t h a t t h e l i g h t e r i s o t o p e i s m o r e v o l a t i l e t h a n t h e h e a v i e r i n d i c a t e s t o a l a r g e d e g r e e o f p r o b a b i l i t y t h a t t h e s o l i d s t a t e p o s s e s s e s z e r o p o i n t e n e r g y . J . W . Sm i t h.

C o n s titu tio n of r h e n iu m . F . W . As t o n (N ature, 1931, 127, 591).—R henium consists of tw o isotopes 185 an d 187, w ith estim ated relative abundance 1-62 : 1, and packing fraction —1 ± 2 , giving an at- wt. 186-22X0-07, in good agreem ent w ith Honig- schm id’s value of 1S6-31. The strongest isotope is isobaric w ith th e w eakest of osmium.

L. S.. Th e o b a l d.

A t. w t. of k r y p to n . H. E . W a t s o n (Nature, 1931, 127, 631).—Comparison of th e densities of k rypto n an d oxygen gives a provisional value of 83-62 for th e a t. w t., a result which supports A ston’s value of 83-77 instead of th e accepted 82-9.

L. S. Th e o b a l d.

Is o to p e s . G . Fo u r n i e r (Compt. rend., 1931,192, 940—941; cf. A., 1929, 363; 1930, 269).—S everal of

th e predicted isotopes, C13, N 15, O 17, Cr50, Ge73, Mo98, and Mo100, have been discovered, and a fu rth e r list of probable, b u t h ith erto undiscovered, isotopes is given.

The existence of N 10 (cf. N aude, A., 1930, 1232) is doubtful in this classification. C. A. Si l b e r r a d.

( 3 - T r a n s f o r m a t i o n . B. M. Se n (N ature, 1931, 127, 523).—The probability of a ¡3-ray escaping from the nucleus is discussed. L. S. T h e o b a l d .

A c tiv a tio n of m a t t e r b y r e s is ta n c e ce lls.

G. Re b o u l (Compt. rend., 1931, 192, 926—928; cf.

A., 1930, 976).—The activ ation previously described is traced to articles of furniture, on which radio­

active d u st h ad been deposited accidentally in th e course of other experim ents. Experim ents repeated after removal of these articles are described.

C. A. Si l b e r r a d.

U p p e r l i m i t of e n e rg y in th e s p e c tr u m of ra d iu m -!? . F . R . Te r r o u x (Proc. R oy. Soc., 1931, A, 131, 90—99).—The cloud expansion m ethod has been used to determ ine th e general form of th e upper region of th e radium -/? spectrum an d th e upper lim it of velocity. No trac e of an end-point is found a t 5000 H o (cf. Madgwick, A., 1927, 1120) and there is evidence of particles em itted w ith an energy of the order of 3,000,000 electron volts ( Ho 12,000). The num ber of particles observed decreases very gradually w ith increasing H o . I t is estim ated th a t ab o u t 4%

of th e to ta l num ber of particles em itted are above SOOOHpj an d abo ut 1-5% above 7000//p, an d th a t th e average energy p er disintegration is 473,000 volts (probable error 20% ). The general shape of the distribution curve indicates th a t th e ¡3-particles are em itted from th e nuclei according to a Maxwellian law.

L. L. Bircumshaav. V alve m e th o d s of re c o r d in g s in g le a - p a r tic le s in th e p re s e n c e of p o w e rfu l io n is in g r a d ia tio n s . C. E. W y n n- Wi l l i a m s an d F. A. B. Wa r d (Proc.

Roy. Soc., 1931, A, 131, 391—409; cf. W ard, W ynn- Wiiliams, and Cave, A., 1930, 7).—The Greinacher m ethod cannot be em ployed in experim ents involving th e counting of com paratively few a- or //-particles in th e presence of disturbances caused by powerful (3- or y-radiation, or b y large groups of a-particles which it is n o t desired to count. These difficulties m ay be avoided by th e use of an ap p aratu s which is described in detail, by m eans of which problem s con­

nected w ith long- and short-range a-particles em itted b y various radioactive bodies and artificial dis­

integration phenom ena m ay be investigated.

L. L. Bi r c u m s h a w.

Io n is e d g a s e s a n d C o u lo m b 's la w . T. V.

Io n e s c u (Compt. rend., 1931, 192, 92S930).R e­

garding th e relative displacem ent of positive ions an d electrons caused in a gas by an electric field as p ro ­ ducing an elastic force, an d applying Poisson’s equation, the period of vibratio n of th e electron is

deduced. C. A. Si l b e r r a d.

O r i g i n o f c o s m i c r a d i a t i o n . ( S m ) J . H . Je a n s

(N ature, 1931, 127, 594).—Agreem ent of th e absorp­

tions calculated for th e annihilation of 1 and 4 protons and th eir accom panying electrons w ith Regener’s observed values suggests th a t th e m ost penetrating constituent of cosmic radiatio n originates in th e annihilation of an a-particle and its two neutralising

(5)

G EN ER A L, PH Y SIC A L , A N D IN OR G A N IC CHEM ISTRY. 667

electrons and th e next, softer constituent in the annihilation of one p roton an d an electron. These two constituents alone appear to form th e fu n d a­

m ental ra d iatio n ; other constituents are softer or degraded forms. L. S. Th e o b a l d.

V a lu e s of e, h, e jm , a n d M r /m . W. N. Bo n d

N ature, 1931, 127, 557).—R e-calculated values are e X1010. 4-779„±0-0011 ; h x l O ” , e ^ S e iO -O O S i;

(e/m )xlO -7, l-7690±0-0004c ; M rjfa, 1846-57± 0 - 4 g;

and 7ic/2ve2—137R17± 0 ;0 5 9. L. S. Th e o b a l d. I n te r p r e t a t i o n of th e d e n s ity m a t r i x in th e m a n y -e le c tro n p r o b le m . P . A. M. Dir a c (Proc.

Camb. P hil. Soc., 1931, 27, 240—243).

A b s o rp tio n of l i g h t b y s y n th e tic b lu e s p in e ls.

K . Sc h l o s s m a c h e r (Z. K rist., 1930, 74, 41—48;

Chem. Zentr., 1930, ii, 1039— 1040).—M easurements of th e tran sm ittin g powers of synthetic blue spinels show th a t th e colouring m a tte r is different from th a t of the n atu ra l products (of. A., 1930, 1267).

L. S. Th e o b a l d.-

“ L i n e ” a b s o r p tio n of c r y s ta llin e c h r o m e a lu m s . H . Sa u e r (Ami. Physik, 1931, [v], 9, 92).—

A correction to a previous paper (A., 1928, 1305).

A. J . Me e. V ib ra tio n s p e c tr a of s o m e s im p le c a r b o n c o m p o u n d s c o n ta in in g th e c a rb o n - c h lo r in e lin k ­ in g . I. R a m a n s p e c tr a . W. We st and (Miss) M. Fa r n sw o r t h (Trans. F a ra d a y Soc., 1931, 2 7 , 145160).—The R am an spectra of a num ber of satu ra te d an d u n satu rated m onochlorm ated straight- chain hydrocarbons in th e liquid sta te have been examined. In all cases one or m ore strong lines, corresponding w ith molecular frequencies of 600—

700 cm .-1, and a less intense line a t 300400 cm.-1, have been o b served; th e y are ascribed to th e C-Cl linking, as th ey do n o t appear in th e R am an spectra of the corresponding alcohols. The corresponding characteristic frequencies of related compounds are polarised to abo u t th e same extent, and several examples have been found of depolarisation ratios greater th a n u n ity ; for th e intense line a t 1450 cm.-1 it is frequently very high, attaining a value of about 2 in th e case of isopropyl chloride. A high-frequency value for a given linking, if it can be interpreted as representing a high value of th e force co nstant for th e vibration, appears to be associated w ith a lack of chemical reactivity, a t least in reactions which involve principally th e ru p tu re of th e linking.

S-Chloropropylene m ay be readily prepared by rapidly boiling ¡J-dichloropropane w ith an amyl- alcoholic solution of metallic potassium a t atm ospheric

pressure. H . F . Gi l l b e.

A b s o rp tio n s p e c tr a of s a t u r a t e d c h lo rid e s of m u ltiv a le n t e le m e n ts . A. K . Du t t a and M. N.

Sa h a (N ature, 1931, 127, 625—626).—As is th e case with sodium chloride, th e tetrachlorides of carbon, silicon, titanium , a n d tin show continuous absorption beginning a t a long w ave-length lim it and extending towards th e rdtra-violet. The relation A7i\i=Q/4 holds, where Q is th e h ea t of form ation of the chloride and v is th e frequency a t which absorption begins.

L. S. Th e o b a l d. S o m e p r o p e r t ie s of c u p r o u s o x id e. B . Gu d d e n

and G. M onch (Naturwiss., 1931, 19, 361).—W ith

freshly prepared cuprous oxide a t 20°, irrespective of its conductivity, th e optical absorption centre is a t 6 3 9 ^ 2 mu.. Linear an d com pletely reversible dis­

placem ent of 0-17 mu p er degree tow ards longer w ave­

lengths results from raising th e tem perature. I t is concluded th a t th e absorption of cuprous oxide in th e visible has no connexion w ith its electrical con­

du ctivity (cf. Auwers, this vol., 409).

W. R . An g u s.

U ltr a - v io le t a b s o r p tio n s p e c tr u m of v a r io u s k in d s of q u a r tz . G. 0 . W i l d (Zentr. Min. Geol., 1930, A, 428-—431; Chem. Zentr., 1931, i, 745).—

Various lands of q u artz h ave been arranged in order of transparency to ultra-violet rays. The colour of sm oky topaz m ay be due to th e separation of silicon.

The only other possible pigm ents are sodium or lithium compounds. A . A . El d r i d g e.

I n f r a - r e d a b s o r p tio n b a n d s in h y d ro g e n s u l­

p h id e . H . H . Ni e l s e n and E. F . Ba r k e r (Physical Rev., 1931, [ii], 37, 727—732).—Using a prism grating spectrom eter for an investigation of th e region 1— 10 p, bands shoving fine stru ctu re were fo u n d .at 2-6 and 3-7 p ; ivave-num bers and intensities of th e lines in th e bands are tab u lated . Bands previously repo rted (cf. Rollefsen, A., 1929, 1215) were found to be due to im purities. T he 2-6 p band consisted of P , R , and Q b randies, th e la tte r broaden­

ing unsy m m etrically; th e 3-7 p han d consisted of only one branch. A qualitative interp retatio n of th e structure, based on th e classical q u antum mechanics of an asym m etric ro ta to r (cf . W itm er, A., 1926,1192)

is given. N. M. Bl i g h.

A b s o rp tio n b a n d s of g a s e o u s h y d ro g e n c y a n id e in th e n e a r in f r a - r e d . R . M, BADGEKand J . L. Bi n d e r

(Physical R ev., 1931, [ii], 37, 800—807).—The absorp­

tion spectrum was photographed in th e region A 7000—

9200; weak bands were found a t A 7912 an d X 8563, th e form er ap paren tly a harm onic of a fundam ental hand a t 3-04 p. T he bands h av e P an d R , b u t no Q branches; w ave-lengths an d frequencies of th e lines of each b and are tab u lated . T he norm al molecule is linear. H ydrogen cyanide is discussed in regard to its fundam ental oscillations of frequencies 3290, 2090, and 710 cm.“1, an d to its .dissociation energy and products. Evidence indicates a norm al molecule HCN, b u ilt u p of a norm al hydrogen atom an d a norm al CN radical. Gaseous cyanogen showed no

absorption bands. N. M. Bl i g h.

A r r a n g e m e n t f o r s tu d y in g t h e R a m a n effect.

H . Hu l u b e i an d ( Ml l e.) Y. Ca d c h o i s (Compt. rend., 1931, 192, 935— 937).—A m ercury-vapour lam p is placed a t th e focus of a parabolic reflector directed upw ards tow ards an o th er reflector in th e shape of a tru n ca ted cone (apex upw ards) w ith sides inclined a t 45°. This reflects th e light perpendicularly on to a tu be, blackened a t th e bo tto m and upper p a r t of th e sides, containing th e substance under exam ination, and placed vertically in th e axis of the. cone. The diffused ligh t is viewed by m eans of a m irror inclined a t 45° placed vertically above th e tube.

C. A . Si l b e r r a d.

R a m a n e ffec t a n d c h e m ic a l li n k i n g s in c e r t a i n o rg a n ic liq u id s . L. E. Ho w l e t t (Canad.

J . R es., 1931, 4, 79— 91).—The general theory of th e

(6)

66S B R IT ISH CHEMICAL A BSTR A C TS.— A .

R am an effect is briefly reviewed. An expression is derived for th e fundam ental frequencies of three masses connected b y elastic forces in a straig h t line.

W ith th e aid of th e expression an a tte m p t is m ade to associate certain frequencies w ith definite linkings and structures from the results of an experim ental stu d y of th e R am an effect in ethylene glycol an d five d eriv­

atives, four nitriles, and benzyl alcohol. The values of the stretching forces of single, double, and triple linkings are deduced w ith the aid of th e assum ptions th a t th e frequency 300 mm .-1 arises from longitudinal vibrations of th e O H linking and th a t double and trip le linkings have stretching forces twice an d th ree tim es respectively th a t of a single linking. W. Go o d.

R a m a n effec t in h y d r o x y l io n s. L. A. Wo o d­

w a r d (Physikal. Z., 1931,32,261—262).—The R am an

effect in concentrated solutions of sodium and po tass­

ium hydroxide has been investigated. I n both cases th e same frequency, Av=3615H;25 cm .'1, was found and is a ttrib u te d to the hydroxyl ion.

W . Go o d.

R a m a n effect a n d a s s o c ia tio n . E. H . L. Me y e r

(Physikal. Z., 1931, 32, 293—295).—A lthough R am an spectra have been m ade of m any liquid m ixtures, no case of association has been reported an d only d is­

placem ents due to th e individual liquids are exhibited.

The influence of m olar concentration on m olecular polarisation of m ixtures is discussed. In a m ix ture of carbon tetrachloride an d eth y l alcohol m olecular polarisation of th e eth y l alcohol is a m axim um a t a concentration of 35% . M anifestation of association in th e R am an effect would be expected in a sim ilar way. I t has been found in m ixtures of eth yl and m ethyl alcohol w ith carbon tetrachloride th a t no new lines are present. Solutions of copper sulphate in w ater give no indication of h y d rate form ation. Solutions of copper sulphate in am m onia show a new band due to Cu(NH3)4S 0 4. R am an displacem ents are given for definite chemical linkings only; linkings betw een associated molecules are tran sito ry and association displacem ents are n o t to be expected. E xperim ents on m ixtures of different concentrations of th e tw o dipolar substances, m ethyl alcohol and w ater, showed th a t variation in th e concentration influenced th e intensity and altered the displacem ent due to m ethyl alcohol by about 5

A.

tow ards shorter wave-lengths.

W. R . Au d i t s.

R a m a n effect in c a lc ite a n d a r a g o n ite . S.

Bh a g a v a n t a m (Z. K rist., 1931, 77, 43— 48).—'The following R am an frequencies have been determ ined : calcite 158-7, 241-7, 283-8, 717-3, 1087-4, 1439-6;

aragonite 94, 15S-4, 209-0, 271-3, 70S-1, 1087-0 c m .'1 Frequencies less th a n 708 are a ttrib u te d to lattice oscillations, those above to atom ic. 1087-0 is th e inactiv e frequency of th e carbonate ion.

C. A. SlL B ER R A D .

P o la r is a t i o n of th e R a m a n s p e c tr u m of w a te r . C. Ra m a s w a m y (N ature, 1931, 127, 558).—The three R am an bands excited b y th e same incident lines are differently p o la ris e d : the degree of polarisation ap p aren tly increases w ith an increase in intensity of th e b au d . L. S. Th e o b a l d.

R a m a n s p e c tr a of c r y s ta ls . F . R a s e t t i (Nature, 1931, 127, 626—627).-—F lu orite gives a R am an shift

of 321-5— 1 cm.-1, corresponding w ith an infra-red w ave-length of 31-1 ¡r, and a group of lines w ith a large frequency shift (7255-8—7297-6 cm.-1). Calcite gives a sim ilar group, frequency sh ift 7270-3—7455-5 cm.-1, and in each case the new lines are com paratively weak in intensity. Sim ilar lines in ice, qu artz, rock salt, gypsum , an hydrite, aragonite, an d b arite could n o t be found. The R am an spectrum of rock-salt is weak an d consists of a continuous b an d from 165 to 365 cm.-1, w ith a fairly sharp line a t 235 cm.-1, which does n o t coincide w ith th e infra-red reflexion m ax i­

m um a t 52-5 ¡j.. L. S. Th e o b a l d.

A n o m a ly in th e p o la r is a tio n of R a m a n r a d i ­ a tio n . W. Hanle (Naturwiss., 1931, 19, 375).—

Some R am an lines of several com pounds are found to be circularly polarised in th e reverse direction to th e circularly polarised exciting light.

W . R . An g u s.

R o ta tio n a l R a m a n s p e c tr u m of c a r b o n d io x id e . W , V. Ho u s t o n and C. M. Le w i s (Proc. N at. Acad.

Sci., 1931, 17, 229231).—T he ro ta tio n b an d excited by th e lines 2536 an d 2534

A .

is composed of equi­

d ista n t lines showing only one m om ent of in ertia : 7-02 x lO -39 g. cm .2 ' C. W . G ibby.

S tr u c t u r e of R a m a n b a n d s in liq u id s . A.

Ka s t l e r (Compt. rend., 1931, 1 92 , 1032— 1034).—

D oublets an d trip lets in R am an spectra of liquids, near v=3400 in w ater (cf. Gerlach, A., 1930, 1091) or v= 3210—3300—33S0 cm.-1 in liquid am m onia (cf.

A., 1930, 14) correspond w ith lines of th e correspond­

ing gas in the infra-red. I t is suggested th a t quan­

tised rotations occur in liquids, and th a t certain R am an doublets and triplets are of th e typ es P R and PQR. The changes in th e R am an spectra of w ater caused by salts (cf. Gerlach, loc. cit.) would th e n be due to th e hindrance caused to th is ro tatio n b y th e attac h m e n t of molecules of w ater to th e ions.

C. A. SlL B ER R A D .

D e p e n d e n c e of R a m a n s c a tt e r i n g o n fre q u e n c y . J . Re k v e l d (Z. Physik, 1931, 6 8 , 543—549).—I n ­ ten sity m easurem ents w ith m ethyl alcohol show th a t R am an radiatio n increases m ore rapidly th a n th e fou rth power of th e frequency as an electronic absorp­

tion b and is approached. Simple resonance theory gives an expression for R am an scattering, an d from this th e frequency of th e electronic absorption band can be ca lc u lated ; th e calculated value for m ethyl alcohol was 2280

A.,

and com pares favourably w ith H en ri’s value 2200

A.

H enri ascribes th is to th e C-H linking, an d th e R am an line was also due to this lin k in g ; th e m ethod should thei'efore prove useful in ascribing electronic frequencies to p articu lar linkings.

A . B. D. Ca s s i e.

In flu e n c e of t e m p e r a t u r e o n th e R a m a n s p e c tr u m of q u a r tz . (Miss) M. J . Ne y (Z. Physik, 1931, 68, 554—558).—P hotom etric curves were o b ­ tain ed of fight scattered by q uartz crystals a t 18° and 500°. A t 500° R am an fines became diffuse, and were displaced tow ards th e exciting fin e ; changes in in te n ­ sity depended on individual fines, an d anti-Stokes fines became relatively more intense. A. B. D. Ca s s i e.

R e so n a n c e flu o re s c e n c e . V. We i s s k o p e (Ann.

Physik, 1931, [v], 9, 23—66).—Theoretical.

A. J . Me e.

(7)

G E N E R A L , PH Y SIC A L , A N D INORGANIC CHEM ISTRY. 669

D ip o le m o m e n t a n d K e r r effect. E. H. L.

Me y e r and 6 . Ot t e r b e i n (Physikal. Z., 1931, 32, 290—293).—The K e rr effect in dipolar m edia is dis­

cussed. M easurem ents m ade w ith chlorobenzenes indicate th a t th e K e rr constants decrease in th e order o-dichlorobenzene, chlorobenzene, to-, p-dichloro- benzene. T his is th e order deduced theoretically.

J . W . Sm i t h.

D ip o le m o m e n ts of b e n z y l a n d b e n z y lid e n e c h lo rid e a n d b e n z o tr ic h lo rid e . A. Pa r t s (Z.

physikal. Chem., 1931. B , 12, 323—326).—The dipole m om ents of these substances in benzene solution a t 20° are, respectively, 1-85,2-05, and 2-15 X 10"1S. Com­

parison w ith th e corresponding derivatives of m ethane indicates th a t displacem ent of a hydrogen atom by the phenyl group hinders th e spreading of th e valency linkings of th e central carbon atom . F . L. Us h e r.

D ip o le m o m e n t s of p r i m a r y , s e c o n d a ry , a n d t e r t i a r y a lip h a tic h a lo g e n d e r iv a tiv e s . A. Pa r t s

(Z. physikal. Chem., 1931, B , 12, 312—322 ; cf. A., 1930, 667).—T he dipole m om ents of halogen d eriv­

atives of propane and of pentane have been m easured a t 20° in benzene solution. A table of values is given.

As in th e butan e derivatives, th e te rtia ry com pounds possess th e highest, and th e prim ary th e lowest, dipole

m om ents. F . L. Us h e r.

E le c tr ic m o m e n t a n d m o le c u la r s t r u c t u r e . I I I . D o u b le a n d t r i p l e lin k in g s a n d p o l a r i ty in a r o m a t ic h y d r o c a r b o n s . C. P . Sm y t h an d R . W.

Do r n t e (J. Amer. Chem. Soc., 1931,53, 1296— 1301;

cf. A., 1929, 1128).—T he dielectric constants and densities of benzene or heptane solutions of th e h y d ro ­ carbons a t tem p eratures betw een 10° and 70°, and th e m olar refractions have been determ ined. The following electric m om ents have been evaluated : CPhgMe, 0-4 x K H 8 e .s .u .: CHPh:CH2, C H PlnC H Ph, and CPh2:CPh.„ 0-0; CPh2:CH2, 0-5“; CPli2:CHPh.

0-6; CPhiCH, 0 83; an d CPh-CPh, 1-12. There is thus no evidence of p olarity inherent in th e ethylene linking itself. T he large m om ents of th e su b stitu ted acetylenes and th e variations w ith tem p eratu re are a ttrib u te d to th e existence of tautom eric equilibria involving unsym m etrical forms containing bivalent carbon, as suggested by Kef. J . G. A. Gr i f f i t h s.

D ie le c tric c o n s ta n t of h y d r o g e n c h lo rid e f r o m 85° to 165° A b s. R . M. Co n e, G. H . De n i s o n,

and J . D. Ke m p (J. Amer. Chem. ‘Soc., 1931, 53, 1278— 1282).— Dielectric constants, D, and polaris- abilities are tab u lated . A t th e tran sitio n tem per­

ature, 98-4° Abs. (Giauque and W iebe, A., 1928, 228), D changes isotherm ally from 3 to 10. This behaviour accords w ith P auling’s theory of th e ro ta tio n of molecules in crystals (A., 1930, 1357).

J . G- A. Gr i f f i t h s.

D ie le c tric p r o p e r t ie s of a n tim o n y p e n ta c h lo rid e an d p h o s p h o r u s p e n ta c h lo rid e . J . H . Si m o n s

and G- Je s s o p (J. Amer. Chem. Soc., 1931, 53, 1263—

1266).—The dielectric constant and d ensity of m olten antimony pentachloride and its carbon tetrachloride solutions have been determ ined between 2-5° an d 47°.

Similar d a ta for carbon tetrachloride solutions of phos­

phorus pentachloride are recorded. T he dielectric constant an d conductivity of m olten phosphorus pentachloride are less th a n those of th e crystals. I t

is concluded th a t th e chlorides have very small or zero dipole m om ents and therefore have a sym ­ m etrical stru ctu re w ith a shell of 10 electrons round th e central atom . J . G. A. Gr i f f i t h s.

R e f r a c to m e tr ic in v e s tig a tio n s . XV. M e a ­ s u r e m e n t of r e f r a c tio n of is o tr o p ic a n d a n is o ­ tr o p i c c r y s ta ls w ith th e c r y s ta l- in te r f e r e n c e r e f r a c to m e te r . P. Wu l f f (Z. K rist., 1931, 77, 61—83).—A detailed account of th e ap p a ratu s an d m ethod of using it. C. A. S i l b e r r a d .

R e f r a c to m e tr ic in v e s tig a tio n s . X V I. R e ­ f r a c t o m e t r i c m e a s u r e m e n t s of c r y s ta ls . P.

Wu l f f and A. He i g l (Z. K rist,, 1931, 77, 84— 121 ; cf. F ajans and J'oos, A., 1924, ii, 372 ; H aase, A., 1928, 694).—To exam ine th e relations between th e m ole­

cular refraction as deduced from th e refractive indices an d th a t deduced additively from th e values obtained for th e gaseous ions(cf. F ajans, A., 192S, 1320 ; Geffcken K ohner, A., 1929, 258; Geffcken, ibid., 1233) the following determ inations have been m ade a t 25°.

F o r anisotropic crystals, n = ^ / n tn j ; or -fynanßn y) : potassium fluoride, d 2-505, n 1-3629, I ih 5-16;

potassium chloride, d 1-969, md 1-4897 (at 18° 1-4904), R L 10-83 ; rubidium chloride, d 2-803, riD 1-4937, R h 12-55 ; cæsium chloride, d 3-988, n D 1-6397,i?L 15-20 ; stro n tiu m fluoride, d 4-286, n D 1-442, R h 7-76 ; barium fluoride, d 4-893, n D 1-474, i?L 10-08 ; calcium chloride, d 2-15, n D (max.) 1-542, (ruin.) 1-531, R L 16-1 ; stro n t­

ium chloride, d 3-085. n D 1-6499. R L 18-74 ; SrCI2,2H,,0, d 2-671, na 1-5942, nß 1-5948, n v 1-6172, 24-99;

SrCl2,6H20 , d 1-9663, n m 1-5356, ne 1-4856, R L 41-14;

barium chloride, d 3-917, na 1-730. nß 1-736, nv 1-742, R l 21-36; BaCl2,2H 20 , d 3-096, na 1-629, nß 1-642, My 1-658, R l 28-54; sodium perchlorate, d 2-499, n a 1-4606, nß 1-4617, n y 1-4731, R L 13-58; p otass­

ium perchlorate, d 2-530, n a 1-4717, nß 1-4724, My 1-4700, Rh 15-37 ; am m onium perchlorate, d 1-952, n a 1-4824, nß 1-4828, ny 1-4868, Jij. 17-22; barium perchlorate trih y d ra te , d 2-911, na, 1-5330, n € 1-5323, R h 41-60 ; potassium sulphate, dx 2-665, m“ 1-4933, 7Vp 1-4946, My 1-4973. Jïh 19-07. Comparison of cal­

culated an d experim ental results shows t h a t as regards alkali an d alkaline-earth fluorides and chlorides p re ­ vious conclusions are confirmed, b u t th a t th e am ­ m onium ion in th e form of the perchlorate stable a t th e ordinary tem peratu re shows a refractom etric be­

haviour m arkedly different from th a t of th e o th er alkali ions, and from itself in its halides, b u t resembles th a t in its sulphate. C. A. Si l b e r r a d.

A n o m a lo u s d is p e r s io n i n b a n d s p e c tr a . E . Se g r é (Nuovo Cim., 1 93 0,7,14 4— 147 ; Chem. Zentr., 1930, ii, 2352).—The anom alous dispersion of th e absorption bands in iodine vapour has been inves­

tig ated , an d th e dependence of th e refractive index on th e exciting frequency established.

L . S. Th e o b a l d. In flu e n c e of t e m p e r a t u r e o n th e e le c tric b ire f r in g e n c e of o r g a n ic liq u id s . A. Kü r t e n

(Physikal. Z., 1931, 32, 251—252).—A n experim ental arrangem ent is described w ith which th e K e rr effect in organic liquids and its v ariation w ith tem perature have been q u an titativ ely investigated. R esults for chlorobenzene an d carbon disulphide are given.

• W. Go o d.

(8)

G70 BR ITISH CHEMICAL ABSTR A C TS. A .

In flu e n c e of t e m p e r a t u r e o n m o le c u la r p o l a r i s ­ a tio n . L. M e y e r (Physikal. Z., 1931, 32, 260—261).

—The suggestion of Sanger (of. this vol., 147) th a t th e deviation of th e m olecular polarisation of a ¡3- dichloroethane in hexane solution a t low tem peratures from linear dependency on th e reciprocal of th e te m ­ p eratu re is duo to association effects is shown to be

im probable. W. G o o d .

M a g n e tic r o t a ti o n of th e p la n e of p o la r is a tio n . E x a m p le of a n o m a lo u s d is p e rs io n . J . V e r - h a e g h e (N atuurw etensch. Tijds., 1931,1 3 , 173— 17S).

—Optical d a ta are given for cinam m aldehyde. The w avo-length-rotation curve has a p o in t of inflexion a t abou t 6300 Á., an d a t higher wave-lengths th e V erdet co nstant dim inishes a t an abnorm al ra te .

H . F . Gi l l b e.

C h a n g e o f s u s c e p tib ility o f p a r a m a g n e ti c s a l t s u n d e r th e in flu e n c e o f lig h t. D . M. Bo s e and P. K . Ba h a (N ature, 1931,127, 520—521).—I n agree­

m ent w ith th e views of Bose (A., 1927, S05), dim inu­

tions of th e param agnetic susceptibilities of solutions of chromic, ferric, and nickel chlorides and copper sulphate on exposure to light of suitable w ave-length have been q ualitatively observed.

L. S. Th e o b a l d.

S te r e o c h e m is tr y of c r y s ta l c o m p o u n d s . V.

D e p e n d e n c e of s t r u c t u r e ty p e of c r y s ta llin e c o m p o u n d s of ty p e s A B a n d A B 2 o n la ttic e e n e rg y . P . N ig g li (Z. K rist., 1931, 77, 140— 145).

—Previous results are discussed (cf. Pauling, A., 1927, 399; A., 1929, 122; Unsold, A., 1927, 919; H yl- leraas, A., 1930, 1234) an d th e dependence of th e typo of stru ctu re of such com pounds on th e ionic distances, dA, dR, dAB, and th e co-ordination num bers of A and B is dem onstrated. The conclusions are illustrated by th e series zinc b len d e— >rock s a lt— ->

osesium chloride, and c u p rite — -> ana ta s e — > fluorite.

C. A. Si l b e r r a d.

I s o m o r p h i s m a n d c h e m ic a l h o m o lo g y . P . C.

K a y (N ature, 1931, 127, 631).—Concerning L ange’s claim for p rio rity (cf. th is vol., 182).

L. S. Th e o b a l d.

Io n ic th e o r y of o r g a n ic re a c tio n s . I. C.

Pr é v o s t and A. Ki r r j i a n n (Bull. Soc. chim ., 1931, [ivl, 49, 194—243).—I t is suggested th a t all th e reac­

tions of organic chem istry are ionic. The ac tiv a te d molecule is identified w ith th e ion.

F . J . Wil k in s. N a tu r e of th e c h e m ic a l lin k in g . A p p lic a tio n of r e s u l t s o b ta in e d f r o m q u a n t u m m e c h a n ic s a n d f r o m a t h e o r y of p a r a m a g n e t ic s u s c e p tib ility to s t r u c t u r e of m o le c u le s . L. P a u l i n g (J. Amer.

Chem. Soc., 1931, 53, 1367— 1400; cf. A., 1928, 690).

— B y m eans of th e q u antum mechanics a series of rules is form ulated for th e electron-pair linking.

These afford inform ation of th e relative strength s of linkings form ed by different atom s, th e angles between th e linkings, th e presence or absence of free ro tatio n ab o u t th e axes of th e linkings, th e relation betw een th e q u antum num bers of electrons involved, an d th e num ber an d spatial arrangem ent of th e linkings. The angle between th e hydrogen-oxygen linkings in w ater is 90— 109-50 ; o ther cases are discussed. One d w ith s an d p eigenfunctions afford four strong linkings

in one plane directed tow ards th e corners of a square.

This applies to bivalent nickel, palladium , and p la t­

inum . W ith tw o d eigenfunctions, six strong linkings directed tow ards th e corners of a n octahedron are produced. O ther cases are examined.

E x cep t for ra re-e arth ions, th e m agnetic m om ent of a molecule or complex ion is given b y g ^ f f V & ^ + l ) , w here 2S is th e num ber of unpaired electrons. Thus i t is possible to determ ine from m agnetic d a ta which ty p e of linking is involved. This has been in vesti­

gated for a large num ber of compounds.

J . G . A . Gr i f e i t h s.

S t r u c t u r e of f e r r i c th io c y a n a te a n d t h e th io - c y a n a te t e s t fo r ir o n . H . I. Sc h l e s i n g e r and

H . B. Va n Va l k e n b u r g h (J. Amer. Chem. Soc., 1931, 53, 1212— 1216; cf. Bosenheim an d Cohn, A., 1901, i, 455).—Since th e absorption spectra of aqueous solu­

tions of sodium an d am m onium ferrithiocyanates, th e ethereal extracts, anhydrous ethereal ferric th io cyan ­ ate, and th e aqueous solution (the re d colour of which m igrates to th e anode during electrolysis) are alm ost identical, i t is concluded th a t th e colour is due to th e ion Fe(CNS)6" '. Confirming th is, th e mol. w t.

of ferric thiocyanate in benzene an d eth er is found to correspond w ith th e form ula Fe[Fe(CNS)e] a n d i t is concluded th a t th is com pound is ex tracted b y ether from aqueous solutions. The decrease of colour caused b y am m onium chloride is a ttrib u te d to th e form ation of a hexachloroferrie ion.

J . G . A . Gr i f f i t h s.

E n e r g y d i a g r a m of s o d iu m c h lo rid e . P . J.

v a n By s s e l b e r g e (J. Physical Chem., 1931, 35, 1054— 1060).—The stru ctu re of com pounds of the sodium chloride typo is discussed. Curves relating th e in teractio n energy of sodium an d chlorine ions and atom s in th e gaseous sta te an d in solution w ith th e distance betw een th e nuclei of th e tw o constituents are draw n, an d th e resulting energy diagram is dis­

cussed. L. S. Th e o b a l d.

P a r a c h o r of t e r v a l e n t io d in e . N . V. Si d g w i c k

and E. D. P . Ba r k w o r t h (J.C.S., 1931, S07— S09).—

I n order to investigate th e effect of an increase of valency th e p arach or of iodosobenzene propionate was determ ined, using chlorobenzene as s o lv e n t; it showed a parachor defect of 17-3 units.

N . M. Bl i g h.

A’-R a y s tu d ie s of m o tio n s of m o le c u le s in d ie le c tr ic s u n d e r e le c tr ic s t r e s s . B . D . Be n n e t t

(J. F ran k lin In st,, 1931, 211, 481—487).—A paraffin was found by X -ra y analysis to consist chiefly of

C 27H 56. U nd er electric stress i t solidified, th e diffrac­

tio n halo being typ ical of a powdered crystal aggregate.

J . Le w k o w i t s c h.

A’-R a y e m is s io n s p e c tr u m a n d c h e m ic a l c o m b in a tio n . E x p e r im e n ts w ith s e c o n d a r y r a y s . A. Fa e s s l e r (Naturwiss., 1931, 19, 307—

30S).—The fluorescence spectrum of sulphur, free an d com bined, w as studied. R esults differ considerably from those obtained w hen p rim ary X -ray s alone are used. A d oublet K a is obtained from sulphur in sulphates w ith th e wave-lengths of th e lines slightly sho rter th a n for free sulphur. A. J . Me e.

' S c a t t e r in g of u n p o l a r i s e d A '-ray s. G. E . M.

Ja u n c e y- an d G. G. Ha r v e y (Physical R ev., 1931,

Cytaty

Powiązane dokumenty

meability of the yeast-cell towards dextrose and pyruvic acid, and the toxicity of high concentrations of the latter towards yeast. By precipitation of the

m ents on the effect of ultra-violet and X -rays on three reactions gave negative results. The collision efficiency is approx. The gaseous catalyst undergoes no chemical

List of Patents Abstracted.. BRITISH

Bulletin of the Institute of Physical and Chemical Research, Japan (Rik- agaku Kcukyujo Iho)... Bulletin de l’In stitu t

(e) Optical properties : Molecular refraction, dispersion, rotation dispersion, optical activity, magnetic (J) Theories of molecular structure.. Valency,

U se of antim ony electrode in the electrom etric determ ination of j>H- T. Electrodes obtained by electrolytically coating a P t rod with Sb gave gradually

ation of the substance by chromic acid in glacial acetic acid solution affords benzoic and p-benzoylbenzoic acids, it is regarded as u ' < ù '-dibenzoyl-cow-dijihenyl-y-

Gaythw aite,