• Nie Znaleziono Wyników

Theoretical and experimental dependence of the Rm values of aromatic and heterocyclic compounds on the composition and kind of the binary mobile phase in thin-layer chromatography - Biblioteka UMCS

N/A
N/A
Protected

Academic year: 2021

Share "Theoretical and experimental dependence of the Rm values of aromatic and heterocyclic compounds on the composition and kind of the binary mobile phase in thin-layer chromatography - Biblioteka UMCS"

Copied!
12
0
0

Pełen tekst

(1)

ANNALES UNI VERSIT ATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXIV, 1 SECTIO AA 1979

Instytut Chemii UMCS

. Zakład Chemii Fizycznej

Jan K. RÓŻYŁO, Hanna KOŁODZIEJCZYK, Joanna GROSS

Theoretical and Experimental Dependence of the R

m

Values of Aromatic and Heterocyclic Compounds on the Composition and Kind of the Binary Mobile Phase

in Thin-layer Chromatography

Teoretyczne i doświadczalne zależności aromatycznych i heterocyklicznych związków od składu oraz rodzaju dwuskładnikowej fazy ruchomej w chromatografii cienkowarstwowej

Теоретические и экспериментальные зависимости Rm для некоторых аромати­

ческих и гетероциклических веществ от состава дикомпонентной подвижной фазы в тонкослойной хроматоргафии

Finding optimal conditions of the separation of substance mixtures as well as the inter­

pretation of the obtained results are the subject of intensive studies and tests. The procedure which has recently been applied quite frequently is a theoretical determination of certain chromatographic parameters of substance in a given chromatographic system on the basis of substance adsorption from multicomponent mobile phases, e.g. binary solvents used as the mobile phase [6, 7]. These investigations allow for the influence of the following para­

meters indispensable in the chromatographic process: the kind of the mobile phase, the kind and structure of the adsorbent and the molecular structure of the chromatographed substances. The present tendency is to unify the methods of a theoretical calculation of chromatographic parameters as well as their tabulation which would facilitate an appro­

priate selection of parameters and substances in various chromatographic systems.

This paper presents the specificity of a molecular interaction between the molecules of the solvent components of the mobile phase and those of the chromatographed sub­

stances. An attempt was made to find a relationship between certain parameters of adsorp­

tion of the mobile phase components and the amount and kind of substituents in the derivatives of the chromatographed substances: naphthalene and chinoline. Therefore, apart from the obtained experimental values, the values of certain parameters for parti­

cular mobile phases were also calculated theoretically with the use of the equation resulting

from Os'cik’s thermodynamic theory of adsorption from multicomponent systems [1, 2,

3,4]:

(2)

2

Jan К. Różyło, Hanna Kołodziejczyk, Joanna Gross

ÄM1.2 = * »1Û ÂM1,2 + (^i -¥’1)(Д^М1,2 + лг)+ЛМ,1 (1)

where:

длЛ/1,2-RM,\

~

r

M,2',

r

M1,2 ~ the R

m

value for the substance obtained when using binary ‘1 + 2’ solvent;

R

m

.

i

~ the R

m

value for substance z obtained when using pure solvent ‘1 R

m

,2 ~ the R

m

value for substance z obtained when using pure solvent ‘2’;

Az — represents molecular interaction between molecules of the solvent com­

ponents and those of the chromatographed substance z and is equal to the logarithm of the hypothetic distribution coefficient of k”?. ;

— a volume fraction of component ‘1’ of the solvent in the volume phase;

— a volume fraction of component ‘1 ’ ’<л the surface phace;

—ip i ) — represents excess adsorption of component ‘1 ’ of the mobile phase which can be determined'from the distribution of the mobile phase components [1, 2]:

(<Дi - ) =---

(1 +< * )( * ! "О (2)

where: Kt — is the adsorption equilibrium constant of component ‘1’ of the mobile phase; for ideal and regular solvents it can be assumed that-log Kt equals the ДЛд/1,2 mean value.

I. EXPERIMENTAL PART

Experimental R

m

values of 17 substances, methylo- and nitro- derivatives of naphtha­

lene and chinoline, were determined on silicagel adsorbent Type 60 produced by Merck, in thermostatic conditions at 21°C, using adsorbent layers 0.3 mm thick, activated for two hours at 135°C, by using ascending technique. The above-mentioned substances were chromatographed in the binary mobile phase systems: trichloroethylene-butyl acetate, trichloroethylene-n-butanol, trichloroethylene-methyl-ethyl ketone, acetone-chloroform, methanol-benzene; the solvents were selected according to Pimentel and McClellan’s classification [5] so as to obtain a possibly wide range of the mobile phase activity.

parameters were calculated for particular chromatographic systems and the Az values were estimated by the method of selection of parameters appropiate for respective substance groups. Graphs of the dependence of the R

m

values on the mobile phase com­

position were drawn on the basis of the experimental data and theoretical calculations.

(3)

Theoretical and Experimental Dependence of the

R

m Values...

3

II. DISCUSSION OF RESULTS

In the chromatographic systems of the A— В type according toPimentel and McCHean [5]: trichloroethylene — methyl-ethyl ketone, trichloroethylene — n-butanol. trichloro­

ethylene — butyl acetate, good separation of the tested substance mixtures was stated.

The curves of the R

m

dependence on the mobile phase composition for chinoline and its derivatives showed considerable differences of the .Кд,/ for pure solvents and had the mini­

mums within the range of 0.3—0.5 of the volume fraction of the more polar component.

In the case of naphthalene and its derivatives those curves showed lower R

m

values and smaller differences of those coefficients for pure solvents although their minimums fell, as was the case with chinoline derivatives, within the range of 0.3—0.5 of the volume frac-

70 L--- --- .--- t—---- --- --- --- —I

■ 0,1 03 05 0.7 09 0.1 03 05 07 09

CHCtcdp ---

» CH3C0C2H5

vaiume fraction of CHyCOC2H5

Fig. 1. The dependence of the

R

m value on the mobile phase composition for: chinolinę. 2.6-di- methylchinolinc. ' chinoline-t-aldehyde and nitro­

chinoline; points - experimental data, lines - theoretical data. Mobile phase: trichloroethylene -

methyl-ethyl ketone

о - @3)

70

0,0

o-C©0H

Volume fraction of CHjCtXQHc;

'W 01 03 05 07 09 01 0,3 05 0,7 09 01 03 05 G7 09 CHCl-CCb - --- •CHjCOCoHc

Fig. 2. The dependence of the R\f values on the mobile phase compo­

sition for: naphthale: . 2-napbtol. 2-naphthylamine and 2-naphtho- chinoline; points - experimental data, lines - theoretical data.

Mobile phase: trichloroethylene - methyl-ethyl ketone

(4)

4

Jan К. Różyło, Hanna Kołodziejczyk, Joanna Gross

tion of the more polar component. Certain differences were also observed between the experimental and the theoretically calculated relationship» Ä.vparticularly for substances capable of forming the hydrogen bonds with the components of the mobile phase [8], e.g. with methanol, butanol and trichloroethylene.

1.0 <’

'W 0.1 0,3 0,5 07

Q9

0.1 0,3 05 07 09 0,1 0.3

Q5

0.7 0,9 CHCl ■ CCI? — ----—--- —— CH3CH2CHnCHoOH

Volume fraction of j СНзСН2СН2СН20Н

(V

Fig. 3. The dependence of the Rtf values on the mobile phase composition for:

chinoline, 2,6-dimethylchinolinc and 2-naphthochinoline; points - experimental data, lines - theoretical data. Mobile phase: trichloroethylene - n-butanol

ено

Fig. 4. The dependence of the R/ц values on the mobile phase composition for: chinoline-4-aldehyde and nitro­

chinoline; points - experimental data, lines - theoretical data. Mobile phase: trichloroethylene-n-butanol

' 0,1 03 05 0.7 0,9 CHCl.CCl} CH3CH2CH2CI-I2HO

Volume fraction of СН3СН2СН2СН21-Ю

(5)

Theoretical and Experimental Dependence of the

R

m Values...

5

1Ql

i ■ ■ I ■ . 1 .--- - —i ■ ■

■ 0.1 0,3 0,5 0.7 09 01 03 05 0.7 09 0.1 0.3 0.5 0.7 09 CHCiCCl2 fraction of > 0(СН2)3 СЦ

ChfjCOO^^CHj

Fig. 5. The dependence of the

R

m values on the mobile phase com­

position for: chinoline, isochinoline, 7-methylchinoline, 8-methyl- chinoline and 8-hydroxy chinoline; points - experimental data, lines

— theoretical data. Mobile phase: trichloroethylene - butyl acetate

j —

.---1---

i —

i--- i--- --- •—

G.1

03

0,5 0.7 0.9 0.1 0.3 0.5 0.7 0,9

сна ca2 ch 3 coo ( ch 2)3 ch 3

Volume fraction of CH3C00(CH2)3CH3

Fig. 6. The dependence of the

R

m values on the mobile phase com­

position for: naphthalene, 2,6-diaminonaphthalene, 2-naphthyl- amine and 2-naphthol; points - experimental data, lines - theore­

tical data. Mobile phase: trichloroethylene - butyl acetate

(6)

6

Jan К. Róży Jo, Hanna Kołodziejczyk, Joanna Gross

CHC(CCl2__________________►

z Volume fraction CHjCOOtCHfoC^

of СН3СО О(СЧ2)з-СН3

14g. 7. The dependence of the R]\f values on the mobile phase com­

position for: diphenylamine and anthracene; points - experimental data, lines — theoretical data. Mobile phase: trichloroethylene —

butyl acetate

CHClCCh --- „СН3 СО О(СН2)з-СНз Volume fraction of

CH3CO- O(CH2)3 ■ CHjty)

Fig. 8. The dependence of the Rtf values on the mobile phase com­

position for: 1-naphthochinoline, 2-naphthochinoline, chinoline- -4-aldchyde and nitrochinoline; points - experimental data, lines - theoretical data. Mobile phase: trichloroethylene - butel acetate

(7)

Theoretical and Experimental Dependence of the R\[ Values...

7

1,0 L- —* —*— ■— -1_L— . —.—. ■ 1 ■ — . __ ,__

01 03 0,5 07 09 01 03 05 0,7 09 01 03 05 07 09 C6H5CI --- --- • CH3COOH3

Volume fraction of CH^COCHj

Fig. 9. The dependence of the Лд/values on the mobile phase com­

position for: 2-naphthol; 2-naphthochinoline, diphenylamine, naph­

thalene, p-bromoaniline and 2-naphthylamine; points — experimen­

tal data, lines - theoretical data. Mobile phase: chlorobenzene - acetone

10 0.1 03 05 07 09 01 03 05 0,7 09 0.1 03 0,5 0,7 0,9 C6H5Cl --- CH3GH

Volume fraction of CH3OH

Fig. 10. The dependence of the values on the mobile phase com­

position for: chinolinę, isbchinoline, T-methylzchinoline, 8-methyl- chinoline, 8-hydroxychinoline and 2.6-dimethylchinoline; points - experimental data, lines - theoretical data. Mobile phase: chloro­

benzene — methanol

In theoretical calculations the attention was paid to the and Az values (Tablel).

The Â’j values calculated for the whole system were positive in all the above mentioned

systems within the range of 13.9—13.3 which indicated the presence of active hydrogen

atoms and atoms of electrodonor character (oxygen). The Az parameter was calculated in

an system for each chromatographed substance individually which resulted in changes in

the values of that parameter. In the trichloroethylene - n-butanol (A-AB) system, these

(8)

8

Jan К. Różyło, Hanna Kołodziejczyk, Joanna Gross

Mobile phase KI Substance Az

Table 1

0.3 0.5 0.7

Trichloroethylene- 13.96 quinoline -0.82 -1.36 -1.67 -1.28

Butanol 2,6-dimethylquinoline -0.72 -1.58 -1.99 -1.43

(A-AB) 0-naphthoquinoline -0.79 -1.36 -1.54 -1.23

o-nitroquinoline -0.81 -1.20 -1.60 -1.20

quinoline-4-aldehyde -0.49 -1.04 -1.64 -1.05

T richloroethylen e- 13.14 quinoline -0.03 -0.04 0.12 0.04

Butyl acetate isoquinoline 0.26 0.22 0.21 0.23

(A-B) 8-hydroxyquinoline -1,70 -0.17 -0.18 -0.68

7-methylquinoline 0.30 0.90 0.42 0.54

8-methylquinoline 0.06 0.01 0.02 0.03

a-naphthoquinoline 0.25 -0.24 -0.32 -0.27

0-naphthoquinoline 0.07 0.11 0.20 0.13

o-nitroquinoline -0.15 -0.08 -0.78 -0.23

quinoline-4-aldehyde 0.06 0.11 0.20 0.12

* naphthalene -0.52 -0.32 0.19 -0.21

0-naphthol -0.14 -0.12 0.08 -0.06

0-naphthylamine 0.11 0.27 0.49 0.29

anthracene -0.78 -0.57 -0.36 -0.57

diphenylamine -0.56 -0.59 -0.63 -0.59

Trichloroethylene- 13.33 naphthalene 0.15 0.05 0.30 0.16

Methyl ethyl ketone quinoline 0.15 0.10 0.10 0.12

(A-В) 2,6-dimethylquinoline 0.10 0.02 0.06 0.06

ßmaphthoquinoline 0.15 0.15 0.14 0.14

o-nitroquinoline 0.04 -0.05 0.00 0.00

quinoline-4-aldehyde 0.23 0.12 0.10 0.15

Э-naphthol 0.04 -0.09 0.02 -0.01

ß- naphthylamine 0.17 0.15 0.03 0.12

Acetone- 13.90 quinoline 0.02 -0.01 -0.50 -0.12

Chlorobenzene 2,6-dimethylquinoline 0.00 -0.21 -0.49 -0.23

(B-N) ß-naphthoquinoline 0.06 -0.12 -0.35 -0.13

nitroquinoline 0.00 -0.07 -0.19 -0.08

quinoline-4-aldehyde -0.05 -0.21 -0.55 -0.27

naphthalene 0.19 -0.01 -0.21 -0.01

0-naphthol 0.13 0.04 -0.20 -0.01

p-bromoaniline 0.42 0.26 0.15 0.27

Methanol- 13.30 quinoline -0.14 -0.05 0.00 -0.06

Chlorobenzene isoquinoline -0.35 -0.38 -0.29 -0.35

(AB-N) 8-hydroxyquinoline -0.50 -0.38 -0.30 -0.32

7-methylquinoline -0.36 -0.43 -0.33 -0.37 8-methylquinoline -0.48 -0.50 -0.42 -0.46 2,6-dimethylquinoline -0.36 -0.35 -0.23 -0.29 a-naphthoquinoline -0.55 -0.30 -0.10 -0.32 0-naphthoquinoline -0.40 -0.32 -0.28 -0.33

nitroquinoline -0.04 -0.39 -0.32 -0.34

quinoline-4-aldehyde -0.04 -0.16 -0.14 -0.10

naphthalene -0.06 -0.38 -0.13 -0.09

2,3,5-trimethylnaphthalene -0.29 -0.33 -0.50 -0.37

0-naphthol 0.06 -0.12 -0.08 0.02

0-naphthylamine 0.06 -0.19 0.00 -0.04

anthracene -0.19 -0 16 -0.39 -0.24

1,5-dimethylnaphthalene -0.46 -0.42 -0.47 -0.45

(9)

Theoretical and Experimental Dependence of the R\f Values...

9

values were negative for the group of chinoline derivatives, ranging from -1.05 for chino- line-4-aldehyde to —1.43 for 2,6-dimethylchinoline. The negative J, values may be con­

nected, among others, with a relatively strong adsorption of the more polar component of the mobile phase. In the systems of trichloroethylene-butyi acetate and trichloroethylene

— methyl-ethyl ketone, the Az parameter turned into positive one ranging from 0.23 for isochinoline to 0.00 for nitrochinoline. Most probably, there occurs a decrease in the

■ oj 0,3 os 07 qa oj 03 0,5 Q7 0? qi 03 050,703 y0(ume fraction of CHjOH*'

Fig. 11. The dependence of the Rtf values on the mobile phase composition for: naphthalene. 1,5-dimethylnaphthalene, 2-naphthol, 2,3,5-trimethylnaphthalene and 2-naphthylamine; points - expe­

rimental data, lines — theoretical data. Mobile phase: chlorobenzene

— methanol

'■° 07 0,3 Q5 Q7 Q9 Q7 Q3 Q5 Q7 Q9 Q7 Q3 Q5 Q7 09 CçHçCl - --- • CI-tyJH

Volume fraction of CH3OH

Fig. 12. The dependence of the R\j values on the mobile phase com­

position for: anthracene, 1-naphthochinoline, 2-naphthochinoline.

chinoline-4-aldehyde and nitrochinoline; points - experimental data, lines - theoretical data. Mobile phase: chlorobenzene - methanol

(10)

10

Jan К. Różyło, Hanna Kołodziejczyk, Joanna Gross

-7,0 U —.. ... I ...

01 03 05 07 09 0.1 0.3 Q5 07 0.9 OJ 0.3 0,5 0.7 0,9 C

g

45 CI ___________ ________________ 'снэсосн3

Volume fraction of CH3COCH3

Fig. 13. The dependence of the

R

m values on the mobile phase com­

position for: chinoline, 2,6-dimethylchinoiine, chinoline-4-aldehyde and nitrochinoline; points - experimental data, lines - theoretical

datą. Mobile phase: chlorobenzene - acetone

molecule interaction of the chromatographed substances with the molecules of the mobile phase while strong interaction begins between the polar components of the mobile phase.

In the systems of the B—N and AB—N types, i.e. acetone — chlorobenzene and metha­

nol — chlorobenzene the relationships Лд/ =/(^i) were similar to those found in the A—В type systems. Considerable differences occurred also in the R

m

values for pure solvents while the minimums fell within the range of 0.5—0.7 of the volume fraction of the more polar component. The Kx value did not change in comparison with the former systems and was 13.3 and 13.9. It can be noticed, therefore, that the Kx and Az values are deter­

mined by the solvent of greater polarity and capability of forming hydrogen bonds [8], since an addition a component low activity causes no apparent changes of these values.

In each of the systems the lowest values of the R у were found for naphthalene and anthracene being nonadsorbent substances due to the lack of substituents. The presence of two aromatic rings in the molecule increases adsorption in the cases of 1-and 2-naphtho- chinoline and chinoline-4-aldehyde and nitrochinoline, which can be explained by a greater influence of the kind of active substituent on the R

m

value rather than the amount of aromatic rings in the molecule. Consequently, the influence of the amount of aromatic rings in a molecule on the R

m

value is slight. It can also be stated that the greatest adsorp­

tion occurs in the case of substances with substituents —OH, and then with —NH2 and -CH3, while the amount of the substituents of the same chemical kind has little effect on the adsorption quantity, e.g. for 1,5- and 2,6-dimethylochinoline and 2,3,5-trimethylo- chinoline, which is present in the form of a very similar course of the R

m

= №>i) rela­

tionships.

On the basis of the investigations one can notice that the knowledge of the chromato­

graphic and adsorption parameters for given substances makes it possible to predict the

separation of the compounds which are similar in character and chemical structure to

those of the tested compounds, and to plan an appropriate selection of mobile pha>es.

(11)

Theoretical and Experimental Dependence of the R\f Values...

11

REFERENCES 1. Ościk J.: Przem. Chem. 40, 279 (1961), 44, 129 (1965).

2. Ościk J.: Ann. Univ. Mariae Curie-Skłodowska, Lublin, sectio AA 17, 593 (1967).

3. Ościk J., Chojnacka G., Szczypa В.: Przem. Chem. 46, 593 (1967).

4. Осьцик Я.: Труды Второй Всесоюзной конференции по теоретическим во­

просам адсорбции, АН СССР Изд. Москва 1969,

5. Pimentel G. G., McClellan A. L.: The Hydrogen Bond, W. A. Freeman Co., New York-San Francisco 1960.

6. Różyło J. K.: Interpretacja i próby optymalizacji procesów adsorpcyjnej chromatografii cienko­

warstwowej, Lublin 1975.

7. Różyło 1. K., Malinowska 1., Gross J.:in press.

8. Snyder L. R.: J. Chromatogr. 92, 223-230 (1974).

STRESZCZENIE

Wyznaczanie z góry optymalnych warunków rozdziału mieszanin w chromatografii cienkowar­

stwowej do tej pory praktycznie w dużej mierze odbywa się drogą kolejnych prób.

W przedstawionej pracy pokazano metodę teoretycznego wyznaczania wartości R\[ substancji aro­

matycznych i heterocyklicznych w oparciu o dane parametry adsorpcji tych substancji i składników ruchomej fazy mieszanej o różnej aktywności. Wykazano dobrą zgodność teoretycznie obliczonych i doświadczalnie otrzymanych wartości Rj[ badanych substancji. Pokazano nowe możliwości przyję­

tej teorii optymalizacji procesów adsorpcyjnej chromatografii cienkowarstwowej.

РЕЗЮМЕ

В работе представлено метод экспериментального и теоретического опреде­

ления зависимости Рм от состава подвижной фазы (RM=f(<fi)) для некоторых ароматических и гетероциклических веществ, опираясь на параметры адсорбции этих веществ и состав этой подвижной фазы. В исследованных системах обна­

ружено хорошое согласие экспериментальных и теоретических функций Рм =

= f(<fi). Представлено возможности этой теории в процессе оптимализации ад­

сорбционной тонкослойной хроматографии.

(12)

Cytaty

Powiązane dokumenty

Under the research study, the effect was analyzed of IQ, MeIQx, or PhIP amines (each of them at 5 and 25 μg/ml concentration rates) on the growth (24 h cultivation in MRS broth)

W życiu człowieka potrzeby stanowią czynnik wyzwalający działanie. To ludzkie działania wyznaczały postęp cywilizacji, to dzięki nim ludzie zaczęli poznawać nowe, dotąd

Z perspektywy społeczeństwa późnej nowoczesności Foryś zinterpretował trzy zjawiska: po pierwsze, indywidualizację (rozumianą jako poszerzanie sfer wolno- ści), która

Naghdi a monograph on shells and plates for the Encyclopedia of Physics (Handbuch der Physik). The a.chievments of Naghdi in the theory of shells influenced his

tographed in n-component mobile phase; к g is the capacity ratio of the s-th solute for the i-th solvent and the 1-th type of adsorption sites; and y^ are mole tractions of the

The ACS3 solar sail structure uses booms developed by the NASA Space Technology Mission Directorate (STMD) Deployable Composite Booms Project (DCB).. The DCB project is a

[r]

Zawiera więc nie tylko twórczość bezpośrednio przeznaczoną dla wydawnictw samizdatowych, lecz także tytuły powstałe pod koniec lat sześćdzie­ siątych, które już nie