• Nie Znaleziono Wyników

Ship Technology Research/Schiffstechnik

N/A
N/A
Protected

Academic year: 2021

Share "Ship Technology Research/Schiffstechnik"

Copied!
50
0
0

Pełen tekst

(1)

Vol. 43 • No. 1 February 1996

ÜCHirFSliHIIK

M o t i o n S i m u l a t i o n o f a C y l i n d e r at t h e S u r f a c e

o f a V i s c o u s F l u i d

b y L i o n e l Gentaz, B e r t r a n d Alessandrini and G e r a r d D e l h o m m e a n

F o u r i e r R e p r e s e n t a t i o n of N e a r - F i e l d F r e e - S u r f a c e F l o w s by Francis Noblesse and C h i Yang

A H i g h O r d e r P a n e l M e t h o d B a s e d o n S o u r c e D i s t r i b u t i o n a n d G a u s s i a n Q u a d r a t u r e

by Jen-Shiang K o u h and Clmn-Hsine Ho

T E C H N I S C H E I J M V E R S I T E r r Sctieepshydromecliaiiica A r c h i e f M e k e l w e g 2 , 2 6 2 8 C D D e l f t T e l : 0 1 5 - 2 7 8 6 8 7 3 / F a x : 2 7 8 1 8 3 6

Published by

Schiffahrts-Verlag „HANSA", Hamburg

(2)

D

a

s

F

a

c

h

b

u

c

h

f ü r S c h i f f b a u ,

S c h i f f s m a s c h i n e n b a u

u n d S c h i f f s t e c h n i l c

Herausgeber Prof. Dr.-Ing. H. Keil

338 Seiten, Format 14,5 x 21,5 cm,

zahireiche Skizzen und Tabellen,

Efalin, DM 98,40 zzgl.

Versandkosten, inkl. MwSt.

ISBN 3-87700-089-4

T E I L I

SCHIFFBAU - SCHIFFSMASCHINENBAU Betriebsfestigkeit schiffbaulicher Konstruktionen Prof. Dr.-Ing. H. Petershagen, Dr.-Ing. W. Fricke und Dr.-Ing. H. Paetzold

Fatigue Strength of Ship Structures

Prof. Dr.-Ing. H. Petershagen, Dr.-Ing. W. Fricke und Dr.-Ing. H. Paetzold

IVIoderne Schiffsiinien Dr.-Ing. G. Jensen l\1odern Ship Lines Dr.-Ing. G. Jensen

Wasserstrahiantriebe fiir Hochgeschwindigkeits-fahrzeuge

Prof. Dr.-Ing. C. F. L. Kruppa Waterjets for High Speed Propulsion

Prof. Dr.-Ing. C. F. L. Kruppa Schiffsgetriebe und -kuppiungen Dr.-Ing. W. Pinnekamp

Marine Gears, Couplings, and Clutches

Dr.-Ing. W. Pinnekamp

Abwarmenutzung auf Seeschiffen mit Dieselmotorenanlagen Dr.-Ing. K. Abel-Günther Waste Heat Recovery on Board Ships Dr.-Ing. K. Abel-Günther

Angewandte Schiffsakustik

Teil 1: Einführung in die Akustik, Schallabstrahlung ins Wasser, Zielpegel, ZieimaB

Dipl.-lng. K. Albrecht Applied Ship Acoustics Part I:

Dipl.-lng. K. Albrecht

T E I L I I

Verzeichnis der Schiffswerften der Bundesrepublik Deutschland

Technische Ausstattung und Baukapazitat Ausgeführte Neubauten in den letzten Jahren

T E I L I I I

Organisationen und Institutionen für den Schiffbau

B E S T E L L - C O U P O N

Ich / Wir bestelle(n)

Exemplare

Schiffahrts-Verlag

„Hansa"

C. Schroedter & Co.

P o s t f a c i i 9 2 0 6 5 5 D - 2 1 1 3 6 H a m b u r g Tel. (040) 7 9 7 1 3 - 0 2

U S t . - l d . - N r . D E 1 1 8 1 3 8 9 0 3

Handbuchi der Werften, Band XXII, DM 98,40 zuzüglich Versandkosten, inkl. Mehrwertsteuer

N a m e / F i r m a HanMnidi C)Ci' W c i f t c n Dar.ti X X I I Ihre USt.-ld.-Nr. Anschrift Datum/Unterschrift-X

(3)

ilIMIIIlMiiAlH

Journal for Research in Shipbuilding and Related Subjects

S H I P T E C H N O L O G Y R E S E A R C H / S C H I F F S T E C H N I K was f o u n d e d by K . W e n d e l i n 1952. I t is edited by H . S ö d i n g and V . B e r t r a m i n collaboration w i t h experts f r o m universities and m o d e l basins i n B e r l i n , D u i s b u r g and H a m b u r g , f r o m Germanischer L l o y d and other research organizations i n Germany.

Papers and discussions proposed for publication should be sent to Prof. H. Söding, Institut f i i r Schiff-bau, Lammersieth 90, 22305 Hamburg, Germany; Fax +49 40 2984 3199; e-mail soeding@schiffbau. uni-hamburg.d400.de. Rules for authors, newest abstracts, keyword index and editors' software see under http://www.schiffbau.uni-hamburg.de

V o l . 43 • N o . 1 • F e b r u a r y 1996

L i o n e l Gentaz, B e r t r a n d Alessandrini and Gerard D e l h o m m e a u M o t i o n S i m u l a t i o n o f a C y l i n d e r a t t h e S u r f a c e o f a V i s c o u s F l u i d

Ship Technology Research 43 (1996), 3-18

A computer code t o determine the 2D viscous, l a m i n a r , incompressible flow a r o u n d a surface-piercing cylinder i n f o r c e d heave is described. T h e Navier-Stokes equations are discretised b y a finite difference m e t h o d . T h e free surface elevation is c o m p u t e d f r o m the k i n e m a t i c e q u a t i o n independently of t h e s ol ut ion of the t w o Unear systems i n velocity and pressure. T h e o r i g i n a l aspects of this code are b o t h consideration of the free surface b o u n d a r y conditions and re-g r i d d i n re-g of the m o v i n re-g physical d o m a i n at each i t e r a t i o n . H y d r o d y n a m i c forces and coefficients are calculated and compared w i t h experimental results and other numerical calculations i n perfect and viscous fluid. T h e interest of this t h e o r y fies i n the numerical c a l c u l a t i o n of viscous effects, w h i c h , at this t i m e , can only be obtained by experiments or e m p i r i c a l f o r m u l a s .

K e y w o r d s : C F D , added mass, d a m p i n g , Navier-Stokes, free surface, heave

Francis Noblesse and C h i Yang

F o u r i e r R e p r e s e n t a t i o n o f N e a r - F i e l d F r e e - S u r f a c e F l o w s Ship Technology Research 43 (1996), 19-37

A Fourier representation of free-surface effects, based on a decomposition i n t o wave a n d near-fleld components, w e l l suited f o r numerical evaluation i n the near field and the f a r field is given. T h i s Fourier representation of free-surface effects is valid f o r an a r b i t r a r y d i s t r i b u t i o n of sources a n d / o r dipoles and f o r a wide class of water waves i n c l u d i n g t i m e - h a r m o n i c and steady flows, w i t h or w i t h o u t f o r w a r d speed, i n deep water or i n u n i f o r m flnite water d e p t h . H l u s t r a t i v e applications t o wave d i f f r a c t i o n - r a d i a t i o n b y an offshore structure i n deep water and t o steady ship waves y i e l d m a t h e m a t i c a l representations useful f o r numerical and a n a l y t i c a l purposes.

K e y w o r d s : freesurface effect, Fourier analysis, f a r f i e l d wave, nearfield disturbance, d i f f r a c -t i o n , r a d i a -t i o n , source. Green f u n c -t i o n , p o -t e n -t i a l flow

T E C H N S S C H E U N I V E R S I T E I T Laboratorium voor S c h e s p s h y d r o m e c h a n i e a ^>rchief M e k e l w e g 2 , 2 6 2 3 C D D f el.: 015 786373 Fax: 015 T' , 3

(4)

Jen-Shiang K o u h and Chun-Hsine Ho

A H i g h O r d e r P a n e l M e t h o d B a s e d o n S o u r c e D i s t r i b u t i o n a n d G a u s s i a n Q u a d r a t u r e

Ship Technology Research 43 (1996), 38-47

I n panel m e t h o d s used t o compute p o t e n t i a l flows, the b o d y surface is t r a d i t i o n a l l y approx-i m a t e d by a number of panels descrapprox-ibed by planes or quadratapprox-ically curved surfaces, and the source d i s t r i b u t i o n on each panel is assumed as constant, linear or quadratic f u n c t i o n . I n the present m e t h o d , however, the surface integrals are de-singularized by a n a l y t i c a l m a n i p u l a t i o n t o allow a n u m e r i c a l q u a d r a t u r e by Gauss' m e t h o d . T h i s allows t o use the m a t h e m a t i c a l sur-face d e f l n i t i o n d i r e c t l y f o r the flow c o m p u t a t i o n , g i v i n g source s t r e n g t h , velocity and pressure at an a r b i t r a r y n u m b e r of Gauss points on each panel. T h e order of a p p r o x i m a t i o n can be made very h i g h , and i t can be adapted t o the c o m p l e x i t y of the panel. N u m e r i c a l results f o r a sphere, ellipsoids, and a W i g l e y h u l l show t h a t great accuracy is o b t a i n e d w i t h r e l a t i v e l y f e w c o m p u t i n g points.

K e y w o r d s : H i g h order, panel m e t h o d , p o t e n t i a l flow, Gaussian quadrature, C F D

From the editors' software collection: Discrete Fourier t r a n s f o r m a t i o n (revised)

Verlag;

Schiffahrts-Verlag „Hansa" C. Schroedter & Co. (GmbH & Co KG) Striepenweg 31,21147 Hamburg, Postfach 92 06 55, 21136 Hamburg Tel. (040) 7 97 13 - 02, Fax (040) 7 97 13 - 208,

Telegr.-Adr.: Hansapress Schriffleitung:

Prof. Dr.-Ing. H. Söding, Dr.-Ing. V. Bertram

Institut fflr Schiffbau, Lammersieth 90,22305 Hamburg Abonnementsveiwaltung:

Ingeborg Köhn

Tel. (040) 7 97 13 - 323, Fax (040) 7 97 13 - 324

Nachdruck, auch auszugsweise, nur mit Genehmigung des Verlages. Die SCHIITSrECHNIK erscheint viermaljahrUch. Abonnementspreise: Inland: jahdich D M 200,00 inkl. Mehnvertsteuer und Versandkosten; Ausland: jahrlich D M 200,00 zuzUghch Versandkosten. Der Abonnemenlspreis ist im voraus fallig. Zahlbar innerhalb 30 Tagen nach Rechnungseingang. Einzelpreis: D M 51,00 inkl. Mehnvertsteuer, inkl. Versandkosten. Abonnementskündi-gungen sind nur schriftlich mit einer Frist von 6 Wochen zum Ende eines Kalenderjahres beim Verlag möglich.

Höhere Gewalt entbindet den Verlag von jeder Lieferungsverpflichtung. -Erftillungsort und Gerichtsstand Hamburg.

Gesamtherstellung: Hans Kock, Buch- und Offsetdruck GmbH, Bielefeld

Publishen

Schiffahrts-Veriag "Hansa" C. Schroedter & Co. (GmbH & Co K G ) Striepenweg 31, 21147 Hamburg, Postfach 92 06 55,21136 Hamburg Tel. + 49 40 / 7 97 13 - 02, Fax + 49 40 / 7 97 13 - 208,

Telegraphic address: Hansapress Editor

Prof Dr.-Ing. H. Söding, Dr.-Ing. V. Bertram

Institut für Schiflbau, Lammersieth 90, D-22305 Hamburg Subscriptiondepartment:

Ingeborg Köhn

Tel. + 49 4 0 / 7 97 13 - 323, Fax + 49 4 0 / 7 97 13-324

All rights reserved. Reprmts prohibited without permission of the publisher. SHIP T E C H N O L O G Y R E S E A R C H is issued quarterly. Subscripüon price: D M 200,00 per year + mailing cost, to be payed in advance 30 days after receipt of mvoice. Cancellation of subscriptions at the end of a year only by written notice to the publisher 6 weeks in advance.

In case of force majeure the publisher is freed from delivery. Court competency and place of contract: Hamburg.

Production: Hans Kock, Buch- und Offsetdruck GmbH, Bielefeld

ISSN 0937-7255 ISSN 0937-7255

(5)

Motion Simulation of a Cylinder

at the Surface of a Viscous Fluid

L i o n e l G e n t a z , B e r t r a n d A l e s s a n d r i n i a n d G é r a r d D e l h o m m e a u , Ecole Centrale de Nantes^

1 I n t r o d u c t i o n

Nnmerous n u m e r i c a l studies have been carried out f o r the calculation of forces on a surface-piercing cylinder i n forced m o t i o n . Solutions i n perfect f l u i d using development of free surface conditions at different orders were developed first. Ursell (1949) gave a first-order s o l u t i o n f o r the circular cylinder i n heave. Lee (1968) and Parissis (1966) o b t a i n e d solutions at second order f o r cylinders i n heave w i t h a circular or Ushaped section. T h e y showed t h a t h y d r o d y -n a m i c seco-nd-order forces i-ncrease w i t h the freque-ncy of forced m o t i o -n a-nd ca-n be sig-nifica-nt compared t o first-order forces. Potash (1971) generaUsed this second-order s o l u t i o n t o coupled sway and r o l l m o t i o n s . Papanikolaou and Nowacki (1984) b u i l t a complete second-order the-o r y f the-o r sway, heave and rthe-oU mthe-otithe-ons f the-o r a r b i t r a r y sectithe-ons. A l l these meththe-ods use b the-o u n d a r y elements w h i c h are determined so t h a t the n o r m a l velocity on the b o d y is equal t o zero.

O n the other h a n d , Faltinsen (1977), besides others, used a direct n u m e r i c a l s i m u l a t i o n t o solve the f u l l y non-hnear p r o b l e m i n perfect fiuid. T h e b o d y and the free surface contours were meshed. T h e source i n t e n s i t y i n each b o u n d a r y element is the s o l u t i o n of an i n t e g r a l e q u a t i o n , and the geometry of t h e d o m a i n is u p d a t e d at each t i m e step. T h i s m e t h o d allows t o t r e a t various problems hke numerical t o w i n g t a n k , solitary wave and seakeeping problems.

O t h e r researchers use curvihnear meshes fitted t o the physical boundaries of the fluid t o solve conservation equations f o r the flow. T h e b o u n d a r y conditions are expressed i n the c u r v i h n e a r space, discretised b y finite differences. T h e r e s u l t i n g equation system is solved by an i t e r a t i v e procedure. W i t h this m e t h o d Telste (1985) treated a surface-piercing cyhnder i n perfect fluid. Shanks and Thompson (1977) solved the Navier-Stokes equations f o r l a m i n a r flow. Yeung and Ananthakrishnan (1991) developed a s o l u t i o n i n viscous fluid. T h e mesh is generated b y a p p l y i n g a v a r i a t i o n a l p r i n c i p l e , and the Navier-Stokes equations are solved b y a f o r m u l a t i o n using an a u x i h a r y velocity fleld. T h e y c o m p u t e d also viscous effects f o r a rectangular cyhnder i n heave (Yeung and Ananthakrishnan 1992). Nichols and Hirt (1977) presented results f o r two- and three-dimensional viscous flow and studied three-dimensional effects f o r a heaving b o d y , using an extension of the M a r k e r - a n d - C e l l ( M A C ) m e t h o d .

I n our m e t h o d the mesh is o b t a i n e d by a t r a n s f i n i t e i n t e r p o l a t i o n (Eriksson 1982). A p a r t i a l t r a n s f o r m a t i o n is used f o r t h e l a m i n a r Navier-Stokes and the c o n t i n u i t y e q u a t i o n . I n the c o m p u t a t i o n a l space, a l l the boundaries are on curvihnear co-ordinate hnes. T w o hnear systems s t e m m i n g f r o m the discretisation of the t r a n s p o r t equations and t h e mass conservation are solved b y the S I M P L E R a l g o r i t h m (Piquet and Visonneau 1991). T h e new free surface is o b t a i n e d f r o m the k i n e m a t i c free surface c o n d i t i o n , and the fiuid d o m a i n is r e g r i d d e d f o r the next i t e r a t i o n (Alessandrini and Delhommeau 1994).

2 E q u a t i o n s

T h e s u m m a t i o n convention over equally-named indices is used, w i t h i,j,k,l being 1 or 2.

^Division Hydrodynamique Navale, Laboratoire de Mécanique des Fluides, URA 1217 du CNRS, 1 Rue de la Noë, 44072 Nantes Cedex 03

f

(6)

2.1 P r i m i t i v e f o r m o f e q u a t i o n s

Navier-Stokes equations f o r a l a m i n a r flow are w r i t t e n i n the Cartesian Gahlean system ( O , x^,x'^). O is on the free surface at rest at the i n i t i a l p o s i t i o n of the centre of the cylinder.

is h o r i z o n t a l and x'^ is u p w a r d oriented. Unknowns are the Cartesian velocity components u^,u'^ and the t o t a l pressure P. T h e r e l a t i o n p — P + pgx'^, where p is t h e d y n a m i c pressure, allows g r a v i t y forces ( p o i n t i n g t o —x'^) t o be taken i n t o account, u is the k i n e m a t i c viscosity and p the fluid density.

Navier-Stokes and c o n t i n u i t y equations are

du" -du" 1 dp Ö^m" . , ^ ^

= 0. (2) dxi

2.2 T r a n s f o r m a t i o n i n t o c o m p u t a t i o n a l d o m a i n

A discretisation of the physical d o m a i n is made using curvihnear co-ordinates e^, e^. A l l the boundaries and mesh lines are located on = constant ( i = 1 or 2 ) . These co-ordinates allow a rectangular c o m p u t a t i o n a l d o m a i n t o remain fixed when the physical d o m a i n changes.

domain

F i g . 1: Physical and c o m p u t a t i o n a l d o m a i n

A t each time-step the m e t r i c is c o m p u t e d at each node. We have t o compute the components ttij of t h e covariant basis (whose vectors ai are tangent t o coordinates lines i n e'), t h e Jacobian J , t h e components bj of the contravariant basis (the vectors of w h i c h 6' are o r t h o g o n a l t o the co-ordinates lines i n e'), the contravariant m e t r i c tensor g^^, the g r i d c o n t r o l f u n c t i o n f'' and the displacement velocities of the mesh :

«^. = ^ , / = d e t ( a , , ) , bi = J{a,,)-\ g''= j-,b% f ' - ~ i { J 9 % vl = ^ . (3)

T h e p a r t i a l derivatives i n (1,2) are expressed i n the basis (e^,e^). A p a r t i a l t r a n s f o r m a t i o n is made so t h a t the vectors r e m a i n expressed i n the Cartesian basis. T h e n the convective f o r m of equations gives

+

.dl J ^ de>' ' J ' dek ,kl d^u" de^de^ dt de^ l^d_u^ 0. (4) (5)

(7)

2.3 F r e e s u r f a c e b o u n d a r y c o n d i t i o n s

T h e free surface conditions comprise one Icinematic and t w o d y n a m i c conditions. T h e Icine-m a t i c c o n d i t i o n assures t h a t f l u i d particles on free surface stay o n this surface. T h i s c o n d i t i o n gives f o r the free surface elevation h ( w i t h the free surface at rest t a k e n as o r i g i n ) :

Dh o dh , dh 1 ^ " 2 fc\

+ v}— = u\ ( 6 )

T h e d y n a m i c conditions express the c o n t i n u i t y of stresses at the free surface. T h e stress tensor i n the fluid is w r i t t e n :

where 7 is the surface tension coefficient and r the m a i n curvature radius of free surface. U n i t tangent and n o r m a l vectors t o the free surface, t = {t^,t'^) and n - ( n ^ , n ^ ) , can be calculated w i t h the covariant and contravariant vectors ai = (011,012) and 6^ = {bl,bl):

ti = o i j / l a i l and rii = b'^/\b'^\. (8) T h e component i of the stress tensor T is given by T,- = (Tijiij, and the t w o d y n a m i c conditions

are o b t a i n e d by the p r o j e c t i o n of T on n and t. I f the pressure is supposed t o be zero above the free surface:

7 fdui du^\ b}b]

T . n = 0 < ^ , = , , . ^ + ^ + p . ( ^ ^ +

^ j 1^.

(9)

T h e free surface b o u n d a r y conditions (11,12,13) are now expressed i n the c o m p u t a t i o n a l space:

f + = w i t h A' = ^j{u'-vl). (11)

, = , , . ^ + ^ + 2 , . | ^ - ^ ^ (12)

{b)b]au^b]b]a,,f^,=^. (13)

3 D i s c r e t i s a t i o n a n d n u m e r i c a l s o l u t i o n 3.1 M e s h i n g o f t h e p h y s i c a l d o m a i n

T h e flow a r o u n d the heaving cylinder is supposed s y m m e t r i c t o the x'^ axis; thus t h e physical d o m a i n is bounded by one h a l f of the cylinder, the free surface, the axis of s y m m e t r y and the outer boundary. T h e size of the d o m a i n is sufficient t o ensure the i n f i n i t e d e p t h hypothesis ( i n linear t h e o r y ) and no reflection at the e x t e r n a l border. A n algebraic t r a n s f i n i t e i n t e r p o l a t i o n m e t h o d (Eriksson 1982) is used t o o b t a i n an i n i t i a l s t r u c t u r e d monoblock mesh. T h e m e t h o d consists of an i n t e r p o l a t i o n allowing t o define the mesh i n the inner d o m a i n i f t h e d i s t r i b u t i o n of nodes on the boundaries is k n o w n . T h e mesh is refined near the b o d y and the free surface t o take b o u n d a r y layer effects i n t o account. A t every t i m e step a new mesh is generated b y c o m p u t i n g the intersection of the free surface w i t h every hne = constant of t h e i n i t i a l mesh v e r t i c a l l y t r a n s l a t e d . O n each of these lines, the nodes are spread f o l l o w i n g t h e i r i n i t i a l spacing. T h e velocities of the mesh take i n t o account displacements of the nodes (see 2.2). F i g . 2 shows

(8)

an example of the mesh d e f o r m a t i o n . T h i s k i n d of mesh is used i n chapter 4.2. f o r c o m p u t i n g h y d r o d y n a m i c coefficients.

F i g . 2. E v o l u t i o n of the physical d o m a i n at the intersection of the cyhnder and the free surface

3.2 D i s c r e t i s a t i o n o f e q u a t i o n s

Discrete unknowns (velocities, pressure and free surface elevation) are located on the nodes of the g r i d .

T h e t r a n s p o r t equations (4) are r e w r i t t e n according t o the first and second derivatives except the cross derivatives:

9

A f t e r d i v i s i o n by e*' = 6 * / eqs. (14) w i t h ( f ) = become

^ £ . 1 ^ . 1 + ^ e * 2 £ » 2 = 2A\(t)^*i + 2A14>^*2 + -<j)i + S,f,.

du" 1 du" 1 _^jk dp ^ki d^u"

(14)

(15)

Eqs. (15) are hnearised i n velocities by c o m p u t i n g the convection terms A * , A 2 and t h e source terms 5",^ (except the pressure g r a d i e n t ) at the previous t i m e step.

F i g . 3. M u l t i - e x p o n e n t i a l scheme

2-1+

A discretisation of the linearised t r a n s p o r t equation at node P ( F i g . 3) is o b t a i n e d w i t h a m u l t i - e x p o n e n t i a l scheme using the s y m m e t r i c decomposition of eq. (15) f o l l o w i n g each o f the c u r v i l i n e a r co-ordinates:

= 2Al(l},,i + G l , ( ^ , , 2 , . 2 = 2A*2^,.2 + G2 w i t h Gi + G2 = ^4>t + S^. (16) Terms A* and Gi are supposed t o be constant on the five points g r i d , so the previous system is equivalent t o t w o first-order d i f f e r e n t i a l equations w i t h constant coefficients

<^,..,.. = 2 A * + Gi =^ - ^ ( < ^ p - C,-4>i- - Ci+<f>i+) = -Gi. (17)

I f we use a first-order u p w i n d finite difference scheme f o r the unsteady t e r m , t h e discrete t r a n s p o r t equation i n ( f ) at node P becomes

( c ^ + ^ + ^ ) ^S-"' - t ( C . - * . - + C . . * . . ) - + = 0. ( 1 8 )

(9)

A discretisation of t l i e c o n t i n u i t y equation (5) a n d terms of the pressure gradient c o m i n g f r o m source terms (see eqs. 14,15) by centred second-order schemes gives checkerboard oscillations (Visonneau 1993). Non-centred f i r s t order schemes ( w i t h 3 nodes) are therefore used. T h e c o n t i n u i t y e q u a t i o n is decentred u p w i n d and the pressure gradient d o w n w i n d (Alessandrini and Delhommeau 1994).

3.3 F i n a l p r e s s u r e - v e l o c i t y l i n e a r s y s t e m s

A t each node P , eq. (18) gives a discrete r e l a t i o n between velocity and pressure u n k n o w n s on P and adjacent nodes. T h e c o n t i n u i t y equation (5) gives another r e l a t i o n between u n k n o w n velocities on P and adjacent nodes. Such relations must also be defined on t h e boundaries of t h e d o m a i n . For a l l boundaries except the free surface, D i r i c h l e t or N e u m a n n conditions o n velocities or pressure are used. O n the free surface, t h e n o r m a l d y n a m i c c o n d i t i o n (12) gives a r e l a t i o n f o r t h e pressure, the RHS being calculated at t h e previous step. T h e surface tension t e r m is neglected. T h e t a n g e n t i a l dynamic c o n d i t i o n (13) gives a r e l a t i o n f o r h o r i z o n t a l velocity

A n o t h e r e q u a t i o n m u s t be f o u n d f o r the v e r t i c a l velocity u'. A r e l a t i o n c o m i n g f r o m t h e c o n t i n u i t y e q u a t i o n (5) at t h e free surface w i h be p r e f e r r e d , i f possible, t o a D i r i c h l e t or a N e u m a n n c o n d i t i o n . T h e choice between D i r i c h l e t or N e u m a n n c o n d i t i o n is made t o a v o i d non-zero values outside t h e diagonal of the matrices.

T h e discretisation of the t r a n s p o r t and c o n t i n u i t y equation and the b o u n d a r y conditions finally give t h e t w o linear systems

{E-A)JJ + GF = f and DV = g. (20) Vector U contains t h e velocities M ^ U ^ at each node, vector P the pressure p . £ is a diagonal

m a t r i x , A a m a t r i x w i t h zero on t h e diagonal. D and G are the matrices s t e m m i n g f r o m t h e discretisation of t h e divergence of the velocity and of t h e pressure gradient. Source terms a n d cross terms of second order are i n the RHS ƒ .

3.4 S o l u t i o n o f t h e l i n e a r s y s t e m s

T h e pressure equation D(E- A ) " ^ ( ƒ - GP) = g o b t a i n e d b y c o m b i n i n g eqs. (20) cannot be solved d i r e c t l y because of t h e p r a c t i c a l i m p o s s i b i h t y t o i n v e r t t h e f u l l m a t r i x D{E - A ) ~ ^ G . Instead, t h e c o m b i n e d e q u a t i o n is solved by the i t e r a t i v e S I M P L E R a l g o r i t h m (Piquet and

Visonneau 1991). I t uses as a p p r o x i m a t e inverse of E - A t o o b t a i n the pressure e q u a t i o n {DE-^G)P = DE-\AU + f ) - 9 .

K n o w i n g t h e velocity field C/C^-i) at the previous time-step, S I M P L E R determines t h e velocity U^''^ a n d pressure P^'') field t o be f o u n d b y

C/ = P - 1 ( A [ / M + / ) ( e l ) ; Pi^^) = iDE-^G)-\DÜ - g) (e2);

U* = {E - A ) - \ f - GP^^^) (e3); P'= {DE-'G)-\DU* - g) (e4); (21) C/W = U*- E-^GP' (e5).

I n ( e l ) we c o m p u t e an advective velocity field. T h e divergence of t h e velocity field o b t a i n e d by (e3) is 7^ 0, so a pressure correction P ' is c o m p u t e d i n (e4) and used i n (e5). P ' does n o t change t h e new pressure field computed i n (e2). One i t e r a t i o n is sufficient t o c o m p u t e velocity a n d pressure fields w i t h a quite good accuracy. T h e matrices E - A a n d DE'^G have t o be i n v e r t e d . T h e p o s i t i o n of non-zero coefficients i n these matrices is precisely k n o w n i n a s t r u c t u r e d mesh. T h e m a t r i x E-A is well c o n d i t i o n e d a n d has a d o m i n a n t diagonal, c o n t r a r y t o

(10)

DE~^G. T h e C G S T A B a l g o r i t h m (Van der Vorst 1992)a.iid an incomplete L U p r e c o n d i t i o n i n g is t h e n used. T h i s a l g o r i t h m is a variant o f t h e bi-conjuguate gradient a l g o r i t h m w i t h a greater robustness.

I t e r a t i o n s o f the S I M P L E R a l g o r i t h m can only i m p r o v e the velocity-pressure c o u p l i n g . T o handle n on lin e a r ities , supplementary iterations (called nonlinear i t e r a t i o n s ) can be made i n each time-step. T h u s a f t e r c o m p u t i n g new velocity and pressure fields, the m e t r i c coefficients (eq. 3 ) , coefficients Al,A2, S4, of ( 1 5 ) , discretised terms of the c o n t i n u i t y equation or pressure gradient (i.e. a l l e x p h c i t terms of discretized equations) can be c o m p u t e d again w i t h the n e w velocities. T h e n new linear systems (20) are solved t o o b t a i n another velocity a n d pressure field. So the influence of iterations on nonlinearities wiU be evaluated i n each c o m p u t a t i o n case.

3.5 U p d a t e o f t h e f r e e s u r f a c e e l e v a t i o n

Once the new velocity and pressure fields are k n o w n , the free surface elevation h is c o m p u t e d f r o m k i n e m a t i c c o n d i t i o n (11). T h e t i m e derivative of h is discretised b y a non-centred scheme of first order, and the spatial derivative by a Dawson 4-point u p s t r e a m scheme w h i c h reduces the phase s h i f t of first or second-order finite difference schemes. T h e sign of the coefficient A^ gives the d i r e c t i o n of the stencil t o ensure s t a b i l i t y :

^ j = -Cohi - Cihi+i - C2hi+2 - Cg/ii+s. (22)

Coefficients d are: Co = 5 / 3 , C i = - 5 / 2 , C2 = 1, Cg = - 1 / 6 .

Near t o the boundaries where Dawson's scheme cannot be used, u p s t r e a m 2-point schemes are used. A n e x p l i c i t i t e r a t i v e solution w i t h a f r a c t i o n a l t i m e step is preferred t o an i m p l i c i t s o l u t i o n . T h e free surface elevation on the cylinder (hi), w h i c h cannot be c o m p u t e d f r o m t h e k i n e m a t i c c o n d i t i o n , is l i n e a r l y e x t r a p o l a t e d .

T h u s , at each t i m e step ( k ) we have t o r e - g r i d the fiuid d o m a i n w i t h the l o c a t i o n of t h e cyhnder at step ( k ) and the free surface elevation at step ( k - 1 ) ; t o calculate the m e t r i c f o r t h e new mesh; t o discretise the convectiondiffusion terms, source t e r m s , coefficients of the m u l t i -e x p o n -e n t i a l sch-em-e and discr-etis-ed v-elocity div-erg-enc-e and pr-essur-e gradi-ent; t o c o n s t i t u t -e a n d solve the pressure-velocity hnear systems; and finally t o compute the new free surface elevation.

4 N u m e r i c a l r e s u l t s

4.1 P r i n c i p l e o f d e t e r m i n i n g f o r c e a n d h y d r o d y n a m i c c o e f f i c i e n t s o f a c y l i n d e r Forced heaving m o t i o n s of a surface-piercing cyhnder are simulated i n viscous fiuid. T h e b o d y is never e n t i r e l y immersed or emersed. T h e heaving m o t i o n is given b y ydt) = A s i n w i . A h c o m p u t a t i o n s (except the first case i n 4.5) are done w i t h a k i n e m a t i c viscosity v = l O - ^ m V s .

H y d r o d y n a m i c forces per u n i t l e n g t h are o b t a i n e d by a d d i n g pressure force Rpy{t) a n d f r i c t i o n force R f y ( t ) . Rpy{t) includes buoyancy. B o t h forces are i n t e g r a t e d at each t i m e step along the a c t u a l l y i m m e r s e d cylinder contour:

Rpyit) = - [ Pnydl = - [ \ p - pgx')bl de'; (23) Jcyl Jo

(11)

Uy is t l i e v e r t i c a l component of the e x t e r n a l u n i t n o r m a l (defined b y the mesh hne = 0 ) . For c a l c u l a t i o n of h y d r o d y n a m i c coefficients, we have t o take i n t o account the mean and the time-variable h y d r o s t a t i c forces Fb and Rhy{t), respectively For a circular cyhnder we have

Fb = pgA = pg7rr'/2, (25) Ri^y(t) = -pg{6r' + ycit)rcos6) w i t h ê = &Tcsm{ycit)/r). (26)

where A is the w e t t e d surface of the cyhnder at rest. , free surface at rest

F i g . 4. Parameters used i n c o m p u t i n g h y d r o d y n a m i c a ! forces

A d d e d mass coefficients CM22 are i n phase w i t h the acceleration, d a m p i n g coefficients CA22 w i t h the velocity. For heaving they are f o u n d by a Fourier analysis:

+00

Rpy{t) + Rfy{t) -Fb- Rhy{t) = E( a „ cos nut + ö„ sin nut). (27) n=0

We have

CM22 = -Au^O.bpnr^ Au^O.bpirr'^ T ^ ^ 2 CA22 = - ^ ^ ^ 2 • (28)

F o l l o w i n g Tasai and Koterayama (1976) and Lee (1968), the forces P i " ^ and phases Sn at different orders n are defined by

-1-00

Rpyit) + Rfvit) -Kb = Y ^ K COS nut + b'^ sin nut)

= 2pgr' ' + £ 2pgr' " i ^ i " ) sin(na;i + 5 „ ) . (29)

T h e difference between Fa{l) and Si on the one h a n d , and CM22 and CA22 on the other h a n d , is due t o Rhyit) w h i c h is not ~ s i n w i . I n practice, terms of higher order of Rhy{t) are neghgible. T h u s , c o m p u t i n g F^°\Fa{n) and S^ f o r n > 2 w i t h a „ and 6„ or w i t h a'^ and b'^ gives nearly t h e same results; the only difference greater t h a n 5% is i n the t h i r d - o r d e r force. M o r e o v e r , i n perfect fluid the v e r t i c a l d r i f t force Fa{0) c o m p u t e d f r o m the Fourier coefficient at n = 0 is t h e constant p a r t of the second order t e r m F^"^^.

4.2 H y d r o d y n a m i c c o e f f i c i e n t s o f t h e c i r c u l a r c y l i n d e r

F i r s t the case A/r = 0.2 ( r = l m ) and u = 3.16 r a d / s was simulated w i t h 2 meshes (coarse and fine) of 5000 nodes (100 on the free surface, 50 on the c y l i n d e r ) and one mesh of 7200 nodes (120-60). T h e coarse 5000-node mesh had a mesh size d/r = 0.03 of the first r o w near the cyhnder, the fine one had d/r = W''^, and the 7200-node mesh had d/r = IQ-'^ there.

O n l y the last t w o meshes resolve the b o u n d a r y layer a n d thus give correct viscous forces Rfy{t). T h e c o m p u t a t i o n s w i t h these t w o meshes showed some convergence problems (see F i g . 5, h t t l e v e r t i c a l segments e.g. at t = 2.1 and 4.1s). T h e C P U t i m e on a 40 M f l o p c o m p u t e r f o r 12s s i m u l a t i o n t i m e was 18h f o r the fine 5000-node mesh, 25h f o r the 7200-node mesh ( t i m e steps 2 • 10~^s), a n d 3.5h f o r the coarse mesh ( t i m e step 10~^s).

Differences i n Rpy{t) f o r the three meshes are not very significant. M a x i m u m and m i n i m u m values of h y d r o d y n a m i c coefficients were obtained w i t h the t w o 5000-node meshes (see t a b l e ) by e v a l u a t i n g the results between 6 and 12 s after the s t a r t of t h e s i m u l a t i o n .

(12)

- Rpy(t)-Fb : computation with a fine grid of 7200 nodes - Rpy(t)-Fb : computation with a fine grid of 5000 nodes - Flpy(t)-Fb : computation with a coarse grid

F i g . .5. Comijaxison of forces f o r tliree meslies

Heaving m o t i o n of a circular cylinder: ijc{t) = As'mojt, A/r = 0.2, OJ - 3.16 r a d / s .

_ Rpy(t)-Fj3 : usual computation with a coarse grid

Rpy(t)-Fb '• computation with a coarse grid and 1 iteration on non linearities Rpy(t)-Fb : computation with a coarse grid and 3 iterations on non linearities

t(s)

F i g . 6. Comparison of pressure force f o r different immbers of iterations on nonlinearities H e a v i n g m o t i o n of circular cylinder: yc{t) = A s i n w i , A/r - 0.2, u) = 3.16 r a d / s

(13)

CM O N a v i e r - S t o k e s calc. A / r = 0 . 2 N a v i e r - S t o k e s calc. A / r = 0 . 4 Y a m a s l i i t a e x p . A / r = 0 . 2 Y a m a s h i t a e x p . A/r-OA P a p a n i k o l a o u calc. A / r = 0 . 2 P a p a n i k o l a o u calc. A / r = 0 . 4 K r = ü ^ / g F i g . 8. A d d e d mass CM22 C\J C\i 1.0 h 0.5 0.0 V O 0,6 . N a v i e r - S t o k e s calc. A / r = 0 . 2 . N a v i e r - S t o k e s calc. A / r = 0 . 4 Y a m a s l i i t a e x p . A / r = 0 . 2 Y a m a s h i t a e x p . A/r-OA T a s a i & al. e x p . A / r = 0 . 2 T a s a i & a l . e x p . A / r = 0 . 4 P a p a n i k o l a o u calc. A / r = 0 . 2 - P a p a n i k o l a o u calc. A / r = 0 . 4 l . U 1 . 0 O K r = a ^ / g F i g . 9. D a m p i n g c o e f f i c i e n t CA22 pi.o 0.0 N-S calc. A / r = 0 . 2 N-S calc. A / r = 0 . 4 T a s a i & al. e x p . Nr-0.2

T a s a i & al. e x p . Nr-OA

P a p a n i k o l a o u & al. calc.

0.5 F i g . 10. F i r s t - o r d e r force F ^ ' 0)320 D Kr=ci:^/g 260 240 h - N - S calc. A / r = 0 . 2 - N - S calc. A / r = 0 . 4 T a s a i & al. e x p . A / r = 0 . 2 T a s a i & al. e x p . A / r = 0 . 4 - P a p a n i k o l a o u & al. calc.

K r l c c ^ / g

F i g . 1 1 . F i r s t - o r d e r pliase

F i g . 12. Second-order force F f ) F i g - 13. Second-order phase ^3

(14)

CM21 CA22 ^i[deg] Fi'^ ^2 [deg] Jo

coarse mesh 0.643 0.350 0.555 210 0.449 -30 -0.115 0.225

fine mesh 0.625 0.348 0.567 209 0.428 -33 0.104 0.228

T h e agreement between the t w o meshes is good except f o r the v e r t i c a l d r i f t force. T h u s i t seems reasonable t o save c o m p u t i n g t i m e t o calculate a l l quantities derived f r o m pressure i n t e g r a t i o n w i t h the coarse mesh, as is done i n the f o l l o w i n g .

C o m p u t a t i o n s w i t h different numbers of iterations on nonhnearities show o n l y smah dif-ferences ( F i g . 6 ) . T h u s f u r t h e r c o m p u t a t i o n s f o r the circular cyhnder w i h be made w i t h o u t supplementary iterations on nonlinearities.

F i g . 7 shows t h e t i m e v a r i a t i o n of the non-dimensional pressure force a f t e r s u b t r a c t i n g Fb and Rhyit) f o r A/r = 0.4 and Kr = u'r/g = 0.64. Steady-state osciUations develop v e r y quickly. T h e agreement w i t h non-hnear calculations f o r a perfect fluid by Hwang et al. (1987) is g o o d ; t h e difference at the start of the s i m u l a t i o n is due t o d i f f e r e n t i n i t i a l m o t i o n .

T h e c o m p u t a t i o n s i n viscous fluid w i t h A/r = 0.2 and 0.4 and OJ between 1.1 a n d 4.43 r a d / s used a l e n g t h of the fluid d o m a i n between 15 t o 100 m (radius r = l m ) and a t i m e step of 10~^s. A s stated before, o n l y pressure forces have been taken i n t o account f o r c a l c u l a t i n g t h e h y d r o d y n a m i c coefficients. O n Figs. 8-15 various results are compared w i t h e x p e r i m e n t a l d a t a by Yamashita (1977), Tasai and Koterayama (1976) and w i t h perfect fiuid c o m p u t a t i o n s of Papanikolaou (1987) and Papanikolaou and Nowacki (1984). T h e radius o f circular cylinders used i n t h e experiments was 0.20 m , corresponding t o iZ„ of about 5 • 10^. T h u s the l a m i n a r flow assumption seems j u s t i f i e d .

E x p e r i m e n t a l variations of added mass and d a m p i n g coefficients are w e l l r e p r o d u c e d i n our calculations. However, added masses are overestimated f o r A/r = 0.4, and d a m p i n g coefficients are underestimated f o r A/r = 0.2. For low frequencies there are large differences i n the measured d a m p i n g coefficient between Y a m a s h i t a and Tasai et a l . , p r o b a b l y due t o the measuring difficulties at l o w frequencies. I n these cases, supplementary c o m p u t a t i o n s w i t h fine grids showed t h a t the viscous p a r t of the force is negligible. F i r s t - o r d e r forces a n d phases and second-order phases are quite g o o d f o r b o t h amphtudes. T h e v e r t i c a l d r i f t force is u n d e r p r e d i c t e d f o r A/r = 0.2. For A/r = 0.4 and h i g h frequencies there are n u m e r i c a l problems due t o strong m o t i o n s of the free surface near the body. T h i s m a y correspond t o t h e b e g i n n i n g of wave b r e a k i n g (see n e x t p a r t ) and should e x p l a i n the d i s c o n t i n u i t y of t h e curves f o r second- and t h i r d - o r d e r forces.

To conclude, our viscous fluid c o m p u t a t i o n s give a good p r e d i c t i o n of the v a r i a t i o n o f t h e h y d r o d y n a m i c coefficients w i t h frequency f o r b o t h amplitudes investigated.

4.3 F r e e s u r f a c e e l e v a t i o n f o r t h e c i r c u l a r c y l i n d e r

I n the previous simulations, the free surface elevations h{t) were i n t e r p o l a t e d at each t i m e step i n a p o i n t located i n the m i d d l e of fiuid d o m a i n . A Fourier analysis

-1-00

h{t) = 5 ] /i„ cos{nu>t + 6n). (30) n = l

gives t h e non-dimensional a m p h t u d e of order n by A „ = hn/A. T h e first-order a m p h t u d e A i is c o m p a r e d t o e x p e r i m e n t a l results of Tasai and Koterayama (1976) and Kyozuka (1982) i n F i g . 16. For A/r — 0.2 the a m p l i t u d e is slightly overestimated, whereas the agreement is g o o d f o r A/r = 0.4. T h e wave a m p h t u d e needs several periods t o become s t a t i o n a r y , so reflections o n e x t e r n a l b o u n d a r y can occur. Results w o u l d p r o b a b l y be i m p r o v e d w i t h a larger d o m a i n .

T h e free surface elevation near the cylinder at different t i m e steps f o r a f o r c e d h e a v i n g m o t i o n y^t) = Acosut w i t h A/r = 0.4 and oj'r/g = 2.0 is compared i n Figs. 17a-f w i t h

(15)

0.2 R -0.1 •0.2 •0.3 N-S calc. A/r=0.2 N-S calc. A/r=0.4 Y a m a s h i t a exp. A/r=0.2 Y a m a s h i t a exp. A/r=0.4 Papanil<olaou & al. calc.

, A-A. Kr=a:^/g F i g . 14. V e r t i c a l d r i f t force F„ (2) CO CÖ 0.6 ^ N-S calc. A/r=0.2 - N-S calc. A/r=0.4 Y a m a s h i t a exp. A/r=0.2 Y a m a s h i t a exp. A/r=0.4 Kr=tt?r/g F i g . 15. T h i r d - o r d e r f o r c e F f )

_A Navier-Stokes calculations A/r=0.2|

A Tasai & al. experiments A/r=0.2

V Kyozuka experiments A/r=0.2

• I - 1.0

<

(b)

• V

- • — N a v i e r - S t o k e s calculations A/r=0.4| • Tasai & al. experiments A/r=0.4

V Kyozuka experiments A/r=0.4 1.0 1.5 2 . 0 ^ ^ 0.0 0.5 1.0 1.

F i g . 16. A m p l i t u d e o f f i r s t - o r d e r wave f o r A/r 0.2 (a) a n d 0.4 ( b )

co^r/g

-extrapolated free surface for re-gridding

-calculated free surface ^ . 1 3 0

-extrapolated free surface for re-gridding -calculated free surface

F i g . 18. Free surface e l e v a t i o n near a cyhnder w i t h a f m e mesh; h e a v i n g m o t i o n A sin(a)t) w i t h

A/r = 0.2 and UJ = 3 . 1 6 r a d / s .

(16)

c o m p u t a t i o n s i n perfect f l u i d by Hwang et al. (1987) who use a semi-Lagrangian b o u n d a r y element m e t h o d s i m i l a r t o t h a t of Faltinsen (1977). T h e agreement between b o t h m e t h o d s is g o o d . I n F i g . 17f H w a n g and al. give a water j e t at the intersection between cylinder a n d free surface. T h i s phenomenon stops the s i m u l a t i o n i n perfect flow a n d i n viscous fluid a n d m a y represent t h e b e g i n n i n g of wave breaking i n reality.

4.4 P r o b l e m s a t t h e i n t e r s e c t i o n o f t h e b o d y w i t h t h e f r e e s u r f a c e

C o m p u t a t i o n s on fine meshes have shown n u m e r i c a l problems at the intersection between t h e b o d y a n d t h e free surface. I n t h i s region t h e wave elevation is o f t e n o s c i l l a t i n g , w i t h v e r y h i g h local slopes, r e s u l t i n g i n divergence of calculations. T h i s was described by Alessandrini and Delhommeau (1995). I t is due t o t h e singular f o r m t a k e n b y t h e k i n e m a t i c free surface equation (11) at t h e intersection: at this p o i n t , b o t h the no-shp c o n d i t i o n and the free surface k i n e m a t i c c o n d i t i o n should be satisfied. We have

dh/dt + u^dh/dx^ = u'. (31) As ti^ = 0 a n d u' = 0, w i t h o u t care we could conclude t h a t dh/dt = 0, i.e. the free surface

cannot move. I n r e a l i t y , dh/dx^ is i n f i n i t e at the b o d y intersection, so t h a t u^dh/dx^ can have a finite value. T h e free surface must be tangent t o the body, g i v i n g a viscous meniscus d i f f e r e n t f r o m t h e surface tension meniscus. T h i s is verified n u m e r i c a l l y i n F i g . 18, where the c u r v a t u r e of the free surface depends on the v a r i a t i o n of t h e free surface elevation.

U n f o r t u n a t e l y t h i s free surface behaviour leads t o a s i n g u l a r i t y i n the c o m p u t a t i o n of t h e m e t r i c . I n t h i s case t h e mass conservation cannot be used t o o b t a i n t h e v e r t i c a l v e l o c i t y at t h e free surface due t o a severe divergence of c o m p u t a t i o n s . These problems have been solved by using a D i r i c h l e t c o n d i t i o n f o r the v e r t i c a l velocity at the free surface, a n d by a change i n c o m p u t i n g t h e free surface elevation near t o the body. T o avoid t h e s i n g u l a r i t y of t h e m e t r i c , t h e free surface elevation is e x t r a p o l a t e d i n the v i c i n i t y of the b o d y as shown i n F i g . 18. T h i s e x t r a p o l a t i o n is used o n l y f o r the r e - g r i d d i n g and f o r the c a l c u l a t i o n o f t h e m e t r i c (Alessandrini and Delhommeau 1994). I n spite of these m o d i f i c a t i o n s , convergence on fine meshes is d i f f i c u l t t o o b t a i n near t h e body. I t e r a t i o n s on nonlinearities seem t o a t t e n u a t e t h i s p r o b l e m .

4.5 C o m p u t a t i o n s o f f o r c e s for a r e c t a n g u l a r c y l i n d e r

T h e influence of viscosity is weak f o r a circular cyhnder i n forced heaving. T h e r e f o r e we made c o m p u t a t i o n s f o r a rectangle where viscous effects are more i m p o r t a n t . A first c a l c u l a t i o n was f o r f o r c e d heaving m o t i o n yc{t) = Asinut and LOB'/V = 1000, uj'B/2g = 2, A/B = 0.3, B/d = 1.0 (here i/ = 0.018m^/s and B = 2 m ) f o l l o w i n g c o m p u t a t i o n s of Yeung and Ananthakrishnan (1992). B and d are b r e a d t h and d r a f t at rest, respectively. For t h e rectangle t h e meshes at t h e b o d y were refined sufficiently t o resolve b o u n d a r y layer effects f o r t h e a c t u a l

value. We used a mesh of 6000 nodes, and the t i m e step was 2 • 10~^s.

For comparison w i t h Yeung a n d A n a n t h a k r i s h n a n , R f y i f ) was d i v i d e d i n t o t h e shear c o m -ponent

a n d the n o r m a l component

Rfyn{t) = 2pv—b\de\ (33) These components a n d the pressure force are nondimensionalised b y pB'^uj'.

C o m p u t a t i o n s w i t h 1 or 3 i t e r a t i o n s on nonhnearities show o n l y s m a l l differences i n Rpy{t) ( F i g . 19). A l s o t h e viscous forces Rfys{t) and Rjyn{t) are s i m i l a r f o r d i f f e r e n t numbers of nonlinear i t e r a t i o n s . So one nonlinear i t e r a t i o n appears enough. A m p l i t u d e s of the shear a n d n o r m a l components are a p p r o x i m a t e l y 10% and 2% of the v e r t i c a l pressure force ( F i g . 19).

(17)

F i g . 17. Free surface elevation o b t a i n e d by f o r c e d heaving m o t i o n Acos{u>t) o f a circular cylinder; A/r = 0.4, u)^r/g = 2.0 — Navier-Stokes c o m p u t a t i o n s ; • Perfect f l o w c o m p u t a t i o n s .

(M

F i g . 19. Pressttre force and viscous force f o r a rectangular cyhnder i n heave Asin{ut). C o m -p u t a t i o n s w i t h o u t ( — ) , w i t h one ( • ) and w i t h three ( A ) nonhnear i t e r a t i o n s . u>B^/u = 1000 (u = O . l S m V s ) , u>'-B/2g = 2.0, A/B = 0.30, B/d = 1.0.

(18)

T h i s agrees weh w i t h d a t a given by Yeung and A n a n t h a k r i s h n a n (about 10% f o r the shear and 1% f o r the n o r m a l c o m p o n e n t ) .

F u r t h e r c o m p u t a t i o n s used the parameter uB' jv = 1.8 • lO'' and the same values as before f o r oj'B/2g, A/B and B/d. (Here u = l O - ^ m V s and B = 2 m ) . T h e mesh h a d 6000 nodes t o o , a n d the t i m e step was 5 • 10~^s. F i g . 20 shows nondimensional forces c o m p u t e d w i t h d i f f e r e n t numbers of i t e r a t i o n s on nonhnearities. C o m p a r i n g Figs. 19 and 20 shows the i n f l u e n c e of viscosity: the pressure force is the same, b u t the force due t o the shear stress is i m p o r t a n t o n l y f o r the s m a l l uB'/v. I n F i g . 20 the n o r m a l viscous force is n o t shown because of i t s smaUness.

Figs. 21 and 22 show the velocity and v o r t i c i t y fields i n t h e v i c i n i t y of t h e b o d y f o r t = 2.bbT and / = 3.18T respectively, T being the heave p e r i o d . T w o i t e r a t i o n s on nonlinearities were used, r e s u l t i n g i n free surface elevations i n the v i c i n i t y of the b o d y w h i c h are smoother t h a n those c o m p u t e d w i t h o u t supplementary nonlinear i t e r a t i o n s . O u r results have been compared w i t h those o f Yeung and Ananthakrishnan (1991) w h o used also Navier-Stokes c o m p u t a t i o n s . T h e agreement between the t w o calculations is quite good; however, because Yeung a n d A n a n -t h a k r i s h n a n ' s c o m p u -t a -t i o n s comprised -the whole body, -t h e i r v o r -t i c i -t y resul-ts are shgh-tly asy-m e t r i c ( F i g . 22 b ) .

5 C o n c l u s i o n

W e solve the two-dimensional unsteady l a m i n a r Navier-Stokes equations f o r f o r c e d m o t i o n of a b o d y at a free surface. A comparison of our results f o r n - t h harmonic force coefficients w i t h those given b y perfect fiuid computations and w i t h experimental results prove the accuracy of t h e m e t h o d . T h e m a i n interest of the C P U - t i m e intensive viscous fluid m o d e l is t h e s t u d y of flows a r o u n d sharp-edged bodies where the influence of viscosity is i m p o r t a n t , a n d o n l y Navier-Stokes c o m p u t a t i o n s are expected t o predict the h y d r o d y n a m i c coefficients accurately. However, the t r e a t m e n t of the intersection between b o d y and free surface needs s t i l l some i m p r o v e m e n t s . T h e next step planned is t o use a f u l l y coupled v e l o c i t y / p r e s s u r e / f r e e surface elevation f o r m u l a t i o n solved by a direct m e t h o d (Alessandrini and Delhommeau 1995).

6 R e f e r e n c e s

A L E S S A N D R I N I , B . and D E L H O M M E A U , G. (1994), Simulaüon of three-dimensional unsteady viscous free surface flow around a ship model, Int. Jour, for Num. Meth. in Fluids 19, 321-342

A L E S S A N D R I N I B . and D E L H O M M E A U , G. (1995), Simulation numérique de Vécoulement turbulent incompressible auiour d'une carène de navire: vers une prise en compte rigoureuse des conditions de surface libre en fluide visqneux, 5èmes Journées de I'Hydrodynamique, Rouen

ERIKSSON, L . E . (1982), Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation, A I A A Journal 20(10), 1313-1320

FALTINSEN, O . M . (1977), Numerical solutions of transient nonlinear free-surface motion outside or inside moving bodies, Proc. 2nd I n t . Conf. on Num. Ship Hydrodyn., Berkeley, 347-357

H W A N G , J.H., K I M , Y . J . and K I M , S.Y. (1987), Nonlinear forces due to two-dimensional forced oscil-lation, Proc. l U T A M Symp. on Nonlinear Water Waves, Tokyo, Springer-Verlag, 231-238

K Y O Z U K A Y . (1982), Experimental study on second-order forces acting on cylindrical body in waves, Proc. 14th Symp. on Naval Hydrodynamics, A n n Arbor, 319-382

LEE, C . M . (1968), The second-order theory of heaving cylinders in a free surface, J. of Ship Research 12, 313-327

NICHOLS, B . D . and H I R T , C W . (1977), Nonlinear hydrodynamic forces on floating bodies, Proc. 2nd Int. Conf. on N u m . Ship Hydrodyn., Berkeley, 382-394

P A P A N I K O L A O U , A . (1987), On calculations of nonlinear wave-body interaction effects, Proc. l U T A M Symp. on Nonlinear Water Waves, Tokyo, Springer-Verlag, 247-258

(19)

P A P A N I K O L A O U , A . and N O W A C K I , H . (1984), Second-order theory of oscillating cylinders in a regular steep wave, Proc. 13th Symp. on Naval Hydrod., 303-331

PARISSIS, G. (1966), Second-order potentials and forces for oscillating cylinders on a free surface, MIT-Report 66-10, Dept. of Ocean Eng.

P I Q U E T , J. and VISONNEAU, M . (1991), Computation ofthe flow past shiplike hull, Comp. & Fluids 19(2), 183-215

POTASH, R.L. (1971), Second-order theory of oscillating cylinders, J. of Ship Res. 15(4), 295-324

SHANKS, S.P. and T H O M P S O N , J.F. (1977), Numencal solution ofthe Navier-Stokes equations for 2D hydrofoils m or below a free surface, Proc. 2nd Int. ConL on Num. Ship Hydrodyn., Berkeley, 202-220 T A S A I , F. and K O T E R A Y A M A , W. (1976), Nonlinear hydrodynamic forces acting on cylinders heaving

on the surface of a fluid. Rep. of Res. Inst, for A p p l . Mech., Kyushu Univ., vol. 23 no. 77

T E L S T E , J.G. (1985), Calculation of fluid motion resulting from large-amplitude forced heave motion of a two-dimensional cylinder in a free surface, Proc. 4th Int. Conf. Num. Ship Hydrodyn., Washington D . C , 82-93

URSELL, F. (1949), On the heaving motion ofa circular cylinder on the free surface of a fluid, Quartely J. of Mech. and A p p l . Math. 2, 218-231

V A N DER VORST, H.A. (1992), Bi-CGSTAB: a fast and smoothly converging variant of bi-CG for the solution of nonsymetric linear systems, J. Sci. Stat. Comp. 13

V I S O N N E A U , M . (1993), Simulation numérique des equations de Navier-Stokes pour un fluide visqueux incompress ible, Ecole de printemps de M E N , Carcans-Maubuisson, May

Y A M A S H I T A , S. (1977), Calculations ofthe hydrodynamic forces acting upon thin cylinders oscillating vertically with large amplitude, J. Soc. Naval Arch, of Japan 141, 61-69

Y E U N G , R.W. and A N A N T H A K R I S H N A N , P. (1991), Large-amplitude oscillation of two-dimensional bodies in a viscous fluid with a free surface, 6th Int. Workshop on Water Waves and Floating Bodies, Woods Hole

Y E U N G , R.W. and A N A N T H A K R I S H N A N , P. (1992), Oscillation of a floating body in a viscous fluid, J. of Eng. Math. 26, 211-230

Y E U N G , R.W. and Y U , C F . (1991), Viscosity effects on the radiation hydrodynamics of horizontal cylinders, J. of Offshore Mech. and Artie Eng. 1(A), 309-316

I . . . . I . . . . I , . 1 . 1 . J

' ' , — 10 15 20 rat

F i g . 20. Pressirre force and viscous force for a rectangrdar cylinder i n lieave Asm.{ut). C o m -p u t a t i o n s w i t h o u t ( — ) , w i t h one ( • ) and three ( A ) nonhnear i t e r a t i o n s . OJB^^IV = 1.8 • 10^ {v = l O - ' ^ m V s ) , u>'^B/2g = 2.0, A/B = 0.30, B/d = 1.0.

(20)

F i g . 2 1 . Velocity and v o r t i c i t y fields at t = 2.bbT [T =lieave p e r i o d ) . Present m e t h o d (c and d ) , c o m p u t a t i o n s o f Yeung and Ananthakrishnan (a and b ) . Heaving m o t i o n Asmiut) w i t h A/B = 0.30, B/d ^ 1.0, uj'^Bj2g ^ 2.0, uB'^jv = 1.8 • 10^ [P = l O ^ W / s ) .

F i g . 22. Velocity and v o r t i c i t y fields at f = 3.18T ( T =heave p e r i o d ) . Present m e t h o d (c and d ) , c o m p u t a t i o n s of Yeung and Ananthakrishnan (a and b ) . Heaving m o t i o n Asiii{u>t) w i t h A/B - 0.30, B/d = 1.0, u;''B/2g = 2.0, uBy^ = 1.8 • 1 0 ^

(21)

Fourier Representation of Near-Field Free-Surface Flows ^

F r a n c i s N o b l e s s e , D a v i d Taylor M o d e l Basin^ C h i Y a n g , George Mason University^

1. I n t r o d u c t i o n

W i t h i n the classical frequency-domain analysis of ship motions based on the Green f u n c t i o n s a t i s f y i n g the usual hnear free-surface b o u n d a r y c o n d i t i o n , free-surface effects are defined by a Fourier superposition of elementary waves exp[k(- i {a(-\-l3r])], where a and /? are Fourier variables, k = ^a^^^"^ is the wavenumber, and (.^ , ' ' ? ) ( < 0) are nondimensional coordinates (the C axis is v e r t i c a l and points u p w a r d , and the plane C = 0 is the mean free surface). Specifically, the t e r m representing free-surface eff'ects i n the Green f u n c t i o n G ' ( f ; x), where I = (^, ??, C < 0) is the flow-observation p o i n t and x = (,T, y, ^ < 0) is the singular p o i n t , and the free-surface p o t e n t i a l ^•'^in the F o u r i e r - K o c h i n approach are defined b y

4 . ^ { ^ ; } = ^hm f d f J f j a {^^Pt ^ - + ' ^ ( - - + / ^ ^ ) ] } exp[ ( a ^ + ^ , ) ] / [ i ^ + i . s i g n ( i ? , ) ] .

Here S = S{a,(3) is a spectrum function w h i c h is defined by a d i s t r i b u t i o n of the elementary wave s o l u t i o n ex-p[kz + i(ax + Py)] of the Laplace equation over the mean w e t t e d huU and the mean waterhne of the ship. Specific spectrum f u n c t i o n s are defined w i t h i n the Fourier-K o c h i n f o r m u l a t i o n developed i n Noblesse and Yang (1995). However, we are n o t concerned w i t h specific spectrum f u n c t i o n s here. Indeed, we consider the Fourier representation (1) f o r a generic s p e c t r u m f u n c t i o n <S , i.e. f o r a,n a r b i t r a r y d i s t r i b u t i o n of sources a n d / o r dipoles.

T h e f u n c t i o n D = D{a,/3) i n (1) is the dispersion function, and Df = dD/df where ƒ is a wave frequency. Specifically, the dispersion f u n c t i o n f o r wave d i f f r a c t i o n - r a d i a t i o n b y a ship advancing at constant speed along a.straiglit p a t h , chosen as the ^ axis ( t h i s axis points t o w a r d t h e ship b o w ) , t h r o u g h regular waves i n water of i n f i n i t e d e p t h and l a t e r a l extent, is

D = { f - F a f - k w i t h k = V o H ^ s i g n ( P / ) = s i g n ( / - F a ) . (2) Here ƒ = a; ^/L/g is the nondimensional wave frequency and F='U/\fgL is t h e Froude number,

w i t h w = encounter frequency of i n c o m i n g waves, L = ship l e n g t h and U = ship speed.

A c c u r a t e evaluation of the singular double Fourier i n t e g r a l (1) is c r i t i c a l f o r using

free-surface Green f u n c t i o n s , be i t f o r d e t e r m i n i n g near-field fiows v i a a. free-free-surface Green-function method, f o r couphng an inner near-field calculation method which accounts f o r viscous a n d / o r nonhnear effects w i t h an outer linear potential-flow representation, or f o r evaluating the f a r - f i e l d waves corresponding t o a given near-field flow (predicted b y any calculation m e t h o d , i n c l u d i n g p o t e n t i a l - f l o w methods based on R a n k i n e singularities and viscous-flow m e t h o d s ) .

T h e free-surface t e r m G ^ defined b y (1) is analyzed i n immerous studies of free-surface Green f u n c t i o n s using contour integration i n the complex plane. T h i s classical m e t h o d of analysis o f t h e Green f u n c t i o n and the subsequent huh-panel and waterhne-segment i n t e g r a t i o n involve s u b s t a n t i a l d i f f i c u l t i e s , w h i c h have hindered the development of reliable and p r a c t i c a l c a l c u l a t i o n methods based o n the free-surface Green function ( 1 ) . T h e double Fourier i n t e g r a l

/

oo roo

df5 I daAexp[-i{ai+(3vi)]l[D + iesign{Df)] (3)

-oo J-oo

•'This study was supported by the Independent Research program of the David Taylor Model Basin, with additional support from the Carrier Channel Guidance program.

^Code 542, Bethesda, MD 20084-5000, USA. 'Fairfax, VA, USA.

(22)

is analyzed i n Noblesse and Chen (1996) using an alternative m e t h o d t o the classical contour-i n t e g r a t contour-i o n approach. T h contour-i s alternatcontour-ive m e t h o d , based on a dcontour-irect analyscontour-is ( w contour-i t h o u t contour-i n t r o d u c contour-i n g an i n t e g r a t i o n c o n t o u r ) i n the real Fourier space ( a , / 3 ) , shows t h a t the generic free-surface p o t e n t i a l defined by the Fourier representation (3) can be expressed as

4 > ^ = r ( 4 )

where cf)^ and cj)^ correspond t o a wave component and a non-oscihatory near-field ( l o c a l ) flow component. T h e wave component ^ ' ^ i s given by an integral along the curve(s) defined i n the Fourier plane by the dispersion r e l a t i o n D{a,f3) = 0:

<t>^=-iT^y2 ds[sign(Df) + sign{^Da + vDp)]Aexp[-i{aC+/3r2)]/\\VD\\ (5) D=o -^^=0

where {D^,Dp) = (OD/da ,dD/d(3), \\VD\\ = {Dl + D j y / ' , ^ ^ ^ ^ means s u m m a t i o n over all the dispersion curves D = 0, and ds stands f o r the d i f f e r e n t i a l element of arc l e n g t h of the dispersion curves. T h e near-field component (j)^ i n (4) is given by

/

CO roo

dp daA<ixp[-i{a^+(iy)]l[D-ies\gn{iD„ + yDp)] (6)

•oo J-oo

where D — i£s\gix{^Da-]-r]Dp) may be replaced by D outside a dispersion curve, and we have

sign(e-D„

+ vDp) =

QïïeW =

Expression (6) f o r the near-field component (j)^ \s adequate f o r a n a l y t i c a l purposes, as is i l l u s t r a t e d by the analysis of the Green f u n c t i o n of wave d i f f r a c t i o n - r a d i a t i o n at l o w f o r w a r d speed given i n Noblesse and Chen (1996). Expression (6) can also be used f o r purposes of n u m e r i c a l evaluation i f e i n the expression D~i e sign{^Da+r]Di3) is sufficiently smah. However, t h i s m e t h o d of n u m e r i c a l l y evaluating the near-field component ^ ^ i s n o t p r a c t i c a l because the i n t e g r a n d of (6) corresponding t o the smah values of e required t o o b t a i n sufficient accuracy is sharply peaked at a dispersion curve, as is shown i n this study. A Fourier representation of t h e near-field component (f)^ w h i c h can be evaluated numerically i n an accurate and p r a c t i c a l manner (an essential requirement f o r a free-surface Green-function calculation method a n d f o r couphng an inner near-field calculation method w i t h an outer linear potential-flow represen-tation) is obtained here. T h i s Fourier representation of the near-field component (p^ and the Fourier representation (5) o f t h e wave component (f)^ in the decomposition (4) i n t o wave and near-field components y i e l d a m a t h e m a t i c a l representation o f the generic free-surface p o t e n t i a l (f)^ t h a t is weU suited f o r a n a l y t i c a l and n u m e r i c a l purposes i n b o t h t h e near field and t h e f a r field (where (p^ fti ( f ) ^ ) , as is shown i n this study f o r steady ship waves and t i m e - h a r m o n i c offshore-structure waves.

2. P r a c t i c a l F o u r i e r r e p r e s e n t a t i o n o f n e a r - f i e l d c o m p o n e n t

Noblesse and Chen (1996) show t h a t the near-field component <?!)^ can be expressed as

(f)^ = (/)2-'^i w i t h (7a)

/

OO poo

d(3 da Aexp[-i{aC+f3r])]/D and ( 7 b )

-oo J —CO

Ti = -iT^Y, / dss\gn{iD„^r]Dii) Aexp[-i{ai+(iri)]l\\SJD\\. (7c) D=o - ^ ^ = 0

T h e representation (7) is used, instead of expression ( 6 ) , as a s t a r t i n g p o i n t f o r the analysis of the near-field component (f)^ developed below.

(23)

2.1. D i s p e r s i o n s t r i p s

T l i e representation (7) defines the near-field component (p^ as the difference between t h e double i n t e g r a l (t>2 and the single i n t e g r a l (f>i . We seek a representation of the n e a r - f i e l d component cj)^ w h i c h involves only a double integral by expressing t h e single i n t e g r a l 4>i a l o n g t h e dispersion curve(s) D = 0 as a double i n t e g r a l . To t h i s end, we define t h e dispersion strip(s) -4:(JW <D< AaW, where t h e positive real constant a and f u n c t i o n W{a, (5) c o n t r o l t h e w i d t h o f t h e dispersion s t r i p ( s ) . Specifically, t h e w i d t h of the dispersion s t r i p -^aW <D<AaW, given by 2d7i = 2dD{dn/dD) = 8aW/ldD/dn), is equal t o 8crT4^/||Vi?|| since dD/dn = \\VD\\ , see (13) i n Noblesse and Chen (1996). Dispersion strip(s) of nearly constant w i d t h can be defined i f t h e width-function W{a,j3) is chosen as W - WVDW . F u r t h e r m o r e , the w i d t h of a dispersion s t r i p is equal t o 8cr i f V F = l l V i ^ l l • Other choices f o r the f u n c t i o n W can be used, as is shown for steady flows f u r t h e r on i n t h i s study. We define A as

A = D/W. ( 8 ) T h e analysis developed i n t h i s study uses t w o even real f u n c t i o n s of A/a w h i c h are n e g l i g i b l y

small outside a dispersion s t r i p - 4 ( T < A < 4 ( T . These t w o /oca/mng f u n c t i o n s , denoted Er a n d Ei, are chosen i n section 2.4 as the p r o d u c t of the exponential f u n c t i o n e x p [ - ( A / c r ) 7 2 ] b y p o l y n o m i a l s i n ( A / c r ) ^ . T h e f u n c t i o n e x p [ - ( A / c 7 ) 2 / 2 ] is equal t o e x p ( - 8 ) 3 X 10"'* at t h e

edges D = ±4aW of a dispersion s t r i p .

2 . 2 . D o u b l e - i n t e g r a l a p p r o x i m a t i o n of s i n g l e i n t e g r a l T h e single i n t e g r a l (7c) can be expressed i n t h e f o r m

<j>i = - i { C / c 7 ) y I dssign(^Dc>-{-rjDp)oAoexv[-i{ao^+(3or])]\\VD\\^'[ E,{A/a)dA

D=0

where Ei is an even f u n c t i o n s a t i s f y i n g t h e c o n d i t i o n

/

oo roo

Ei{A/a)dA^2 Ei{A/a)dA = aTr/C, (9)

-oo Jo

C is a real constant ( d e t e r m i n e d f u r t h e r o n ) , a n d the subscript 0 means t h a t the corresponding f u n c t i o n is evaluated at the dispersion curve D = 0. T h e i n t e g r a l (/>! can be expressed as

^ = - i ( C / a ) V / dssign{CD„-\-riDp)o r dAEi{A/cj) Aex]>[-iia^+P7j)]/\\VD\\

JD=0 J-OO

+i{C/a)Y, I dssign{^D^ + TiDp)o r dAE,iA/a)A{A,s) (10)

D=0 J J - o o

w i t h A = A e x p [ - i ( a e + / 3 ? ? ) ] / l | V £ ' | | - A o e x p [ - i ( « o ^ + M ] / | | V i ? | | o • ( H )

T h e f u n c t i o n A ( A , s ) , w h i c h vanishes at a dispersion curve A = 0 , m a y be a p p r o x i m a t e d b y t h e T a y l o r series A ( A , s) = A i ( s ) A -(- A 2 ( s ) A ^ - l - A 3 ( s ) A ^ - l - • • • i n t h e v i c i n i t y of a dispersion curve. T e r m b y t e r m i n t e g r a t i o n of t h i s expansion yields

/

oo roo roo

E,{A/a)A{A,s)dA = Ai{s) E,{A/a) A dA + A2{s) E,{A/(7) A'dA + • • • .

-co J oo J oo

T h e integrals i n v o l v i n g o d d powers of A are zero f o r any even f u n c t i o n Ei{A/a). I t follows t h a t t h e second i n t e g r a l i n (10) is negligibly small i f

roo

/ E,{A/a) Jo

A 2 ™ d A = 0 f o r l < m < M (12a)

(24)

roo

( I / C T ) ! / P ; ( A / C T ) A^^^C^A I < 1 f o r m > M + l . (12b)

Functions Ei w l i i c l i satisfy conditions (9) and (12a) are defined i n section 2.4 . Expression (10) tiierefore becomes

~

- ^ ^ E

J j , ^ / ' J _ J ^ s i g n ( e i ? „ + ??i^^)o e x p [ - i ( « e + / ? 7 / ) ] since (8) yields dA = dD {l-AdW/dD)/W. T h e r e l a t i o n

dW/dD = \W-VD/\\VD\\\ (13) w h i c h follows f r o m (24) i n Noblesse and Chen (1996), yields dA = dDfl/\\VD\\ w i t h

Ü = [\\WD\\-DVW-VD/{W\\VD\\)]/W. (14) T h e t r a n s f o r m a t i o n of coordinates (s,D) ( a , / ? ) f i n a l l y yields

foo roo

4>i^-i{Cla) dp dasign{CD^ + rjDp)onEiAexp[-i{a^+p7])]/\\VD\\, (15) J—oo J oo

w h i c h expresses the single i n t e g r a l (7c) as a double i n t e g r a l . T h i s double-integral representa-t i o n of (f)i can be combined w i representa-t h representa-the double i n representa-t e g r a l ^2 i n (7a). T h e r e s u l representa-t i n g double-inrepresenta-tegral representation of the near-field component (f)^ is given i n section 2.5 , after the double i n t e g r a l ^2 defined b y (7b) is m o d i f i e d i n t o a f o r m better suited f o r n u m e r i c a l evaluation.

2 . 3 . A c l a s s o f s i n g u l a r d o u b l e i n t e g r a l s

T h e double i n t e g r a l (7b) is of the f o r m J^^dp J^^daN/D where the d e n o m i n a t o r D vanishes along one (or several) curve(s) and the n u m e r a t o r N is finite at the curve(s) D = 0 . T h i s i n t e g r a l can be expressed as

/

oo roo roo rco roo roo

dp daN/D= dp daN{l-Er)/D+ dp daNE^/D. (16)

•00 J — oo J oo J—oo J oo J oo

T h e f u n c t i o n Er = Er{A/a), where A = D/W, is an even real f u n c t i o n t h a t is neghgibly smaU outside the s t r i p ( s ) defined by -AaW <D <AaW, and the i n t e g r a n d N{l-Er)/D vanishes i f D = 0 because the even f u n c t i o n Ej.(A/a) is assumed t o satisfy the c o n d i t i o n

Er{0) = 1 . (17) T h e o n l y significant c o n t r i b u t i o n t o the second i n t e g r a l on the r i g h t of (16) stems f r o m the

strips -4aW <D<4aW. T h i s i n t e g r a l can be rendered negligibly smah, so t h a t (16) becomes

/

CO rco POO POO

dp daN/D^ dp daN{l-Er)/D, (18)

-00 J oo J CO J oo

i f the locahzing f u n c t i o n Er{A/a) is chosen i n the manner explained f u r t h e r on. I f the f u n c t i o n D also vanishes at an isolated p o i n t (ao,/3o), this singular point must he outside the s t r i p ( s ) -4aW < D < 4aW associated w i t h the curve(s) D = 0 , so t h a t the f u n c t i o n E,. is n e g h g i b l y smah at the p o i n t (an ,/9o) and the i n t e g r a n d on the r.h.s. of (18) is i d e n t i c a l t o the i n t e g r a n d on the l e f t i n the v i c i n i t y of this p o i n t . T h u s , the s t r i p ( s ) associated w i t h the singular curve(s) D = 0 are assumed s u f f i c i e n t l y t h i n to exclude any isolated singular p o i n t .

T h e second i n t e g r a l on the r.h.s. of (16) may be expressed as

E / ds [ dD \\VD\\-^NEr/D

D=0 J^=^ J-oo

Cytaty

Powiązane dokumenty

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright

К исполнению Верховным Судом УССР также относились следующие функциональные обязанности, которые ранее были прерогативой отдела

W ten sposób ciele­ sność kobiety staje się niemal przeszkodą, ciało jest odczuwane przede wszyst­ kim jako to, co „stawia opór”.. Simone de Beauvoir wskazuje, iż ciąża

In this literature survey a proposal is suggested, that enables fatigue failure research on a machine, developed at the Delft University.. On the basis of fatigue research done in

W niedalekiej przyszłości planuje się raportowanie dla GUS poprzez POL-on, stworzenie archiwum prac dyplomowych w ramach PBN (Polskiej Bibliografii Naukowej),

Pomnik Józefa Frageta jest bowiem wierną kopią grobowca Johanna Friedricha Augusta Borsiga (1804-1854), znajdującego się na cmentarzu św.. Doroty w Berlinie, którego podstawa

Lubelskiej (1805-2005), red.. W związku z tym do 1807 roku diecezja lubelska, funkcjonowała tylko teoretycznie, a jej struktura deka- nalno-parafi alna stanowiła

Chińskie BIZ w krajach europejskich w latach 2006-2013 Źródło: Opracowanie własne na podstawie danych Heritage