• Nie Znaleziono Wyników

Computational models for understanding of the role of brainstem in disorders of consciousness

N/A
N/A
Protected

Academic year: 2021

Share "Computational models for understanding of the role of brainstem in disorders of consciousness"

Copied!
1
0
0

Pełen tekst

(1)

Computational models for understanding of the role of brainstem in disorders of consciousness

Dariusz Mikołajewski

1,2,3

, Włodzisław Duch

2,3

1

Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University, Poland,

2

Department of Informatics, Nicolaus Copernicus University, Poland,

3

Neurocognitive Laboratory, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Poland, Email to: darek.mikolajewski@wp.pl

Introduction

Consciousness is the highest-level control function enabling awareness of oneself and the environment. This function results from the integration of information in the whole brain, and therefore is one of the most complex processes within human organism. Consciousness is embodied in the whole human brain, and its neural correlates depend on particular context.

The brain stem plays very important role in regulation of the overall arousal of the brain and in control of the information flow from and to the body. Lesions of the brain stem lead to serious disorders of consciousness, including coma, minimally conscious state, vegetative state or locked-in syndrome. Understanding the details of the brainstem’s role in consciousness control is still a challenge [1, 2] that we try to address using computational simulations [3, 4, 5].

References

[1] Hurley R. A., Flashman L. A., Chow T. W., Taber K. H. The brainstem: anatomy, assessment, and clinical syndromes. J Neuropsychiatry and Clinical Neurosciences 2010; 22(1): iv, 1-7.

[2] Angeles Fernández-Gil M., Palacios-Bote R., Leo-Barahona M., Mora-Encinas J. P.

Anatomy of the brainstem: a gaze into the stem of life. Semin Ultrasound CT MR.

2010; 31(3): 196-219.

[3] Mikołajewska E., Mikołajewski D. Role of brainstem within human body systems – computational approach. J Health Sci. 2012; (2)1: 95-106.

[4] Mikołajewska E., Mikołajewski D. Consciousness disorders as the possible effect of brainstem activity failure-computational approach. J Health Sci. 2012; (2)2: 1-12.

[5] Mikołajewska E., Mikołajewski D. Computational approach to neural plasticity of nervous system on system level. J Health Sci.2012; (2)4: 39 - 47.

[6] Duch W. Brain-inspired conscious computing architecture. Journal of Mind and Behavior 2005; 26(1-2): 1-22.

[7] Dehaene S., Changeux J.-P., Naccache L., Naccache L., Sackur J., Sergent C.

Conscious, preconscious and subliminal processing: a testable taxonomy. Trends in Cognitive Science 2006; 10(5):204-211.

[8] Wójcik G.M. , Mikołajewski D., Dobosz K., Nowak W., Osiński G., Meller J., Duch W, Three-stage neurocomputational modelling using Emergent and Genesis software Three-stage neurocomputational modelling using Emergent and Genesis software. Proc. of 11th Cracow Grid Workshop, 7-9.11.2011, Kraków, Poland.

[9 Dobosz K., Duch W. Understanding neurodynamical systems via Fuzzy Symbolic Dynamics. Neural Networks, 2010; 23: 487–496.

[10] Duch W., Dobosz K. Visualization for understanding of neurodynamical systems.

Cognitive Neurodynamics, 2011; 5(2): 145–160.

Models

Basic models: switchboard (activation selection device), physiological, hierarchical (ARAS).

Example: Taxonomy of conscious, preconscious and subliminal processing by Dehaene et al. [7]

Further modelling work

• More detailed models based on three-stage neuro-compu- tational modelling using Emergent or Genesis software [8].

• Modelling using PGenesis on the Tryton supercomputer (with Gdańsk Technical University).

• Physiological vs. pathological information processing in vegetative and minimally conscious states, locked-in syndrome, etc.(InterDoctor Project, Neurocognitive Lab).

• Influence of noise on functions relevant to consciousness.

• Conclusions from computational simulations on deep brain stimulation – how to maximize brain arousal?

• Traditional vs. new measures of information integration.

• Modelling of neural plasticity as s result of e.g. post-stroke neurorehabiltiation.

• Visualization for understanding of neurodynamical systems via Fuzzy Symbolic Dynamics and recurrency plots [9, 10].

General brainstem role within consciousness control

according to the concept by Duch [6]:

Concepts of the consciousness control

The process of consciousness control may be viewed from several points of view. It requires synchronous co-operation of many parts of the central nervous system (CNS) including Ascending Reticular Arousal System (ARAS) and cerebral hemispheres. Conscious perception of external stimuli requires activation of frontoparietal cortices and low- level specialized cortices. Frontoparietal activation can also be found during subliminal stimulus processing. The approach of Parvizi and Damasio is focused on the brainstem reticular formation contribution to the basic somato-sensing processes critical for emerging core consciousness reflected in cerebral cortex activations. The process of non-specific brain activation underlies wakefulness and attention which enables consciousness.

According to this concept consciousness involves at least two sets of mechanisms:

• core consciousness, the most basic form of consciousness that maps generally body state and interactions with subjects, environment and other people within spatial and temporal context, responsible for “the feeling of being conscious”;

• extended consciousness build on the core consciousness, memory, language abilities, etc.

Activation of the widespread regions of cerebral cortex by the brainstem is mediated through at least several neurotransmitter channels originating from distinct sets of brainstem nuclei.

Consciousness functions using results of cortical computations, cognitive binding, synchronization of the neural correlates of consciousness and preserved functions of the most important CUN parts, including thalamus and brainstem. Consciousness based on integrated information processing is necessary for flexible control of behavior. The thalamocortical system can play unique role in this process providing both:

• specific connections involved in representing externally- directed attention,

• nonspecific connections involved in higher-order cognitive processing, self-awareness and introspective mentalizing [3, 4, 5].

Conclusions

Computational approach to consciousness as a flexible control seems to be a good solution for better understanding of the nature of these complex processes. The role of brainstem in conscious information processing is not sufficiently acknowledged and there is a great need for further interdisciplinary research in this area.

Stimulus source 1

Internal stimuli pathways (dreams, etc)

External stimuli pathways (through whole

model) Stimulus

source 2

Stimulus source n

Function:

ARAS structure:

reticular formation (e.g. within

selected brainstem, thalamus, etc.

nuclei and pathways)

Ascending pathways (depends on stimulus source)

Cerebral cortex areas

Subcortical areas

MultiDimensional Scaling (MDS) Recurrency Plot (RP)

Bottom-up stimulus strength

Threshold

Sufficiently strong

Weak or interrupted

Top-down attention

Absent Present

Preconscious Conscious

Subliminal (unattended)

Subliminal (attended)

Intense activation, yet confined to sensori-motor processors Occipito-temporal loops and local

synchrony Priming at multiple levels No reportability while attention is

Occupied elsewhere

Orientation of top-down attention Amplification of sensori-motor activity Intense activation spreading to parieto-

frontal network Long-distance loops and global synchrony

Durable activation, maintained at will Conscious reportability Very little activation

Activation is already weak in early extrastriate areas

Little or no priming No reportability

Strong feedforward activation Activation decreases with depth Depth of processing depends on attention and task set Activation can reach semantic level

Short-lived priming No durable frontoparietal activity

No reportability

Frontier with fixed value

Frontier with value fluctuation e.g. due to automatic activation

CONSCIOUS PRECONSCIOUS

SUBLIMINAL (unattended)

Cytaty

Powiązane dokumenty

Filozofia pełni więc u niego służebną funkcję wobec chrześcijańskiej myśli, po ciężkim wysiłku analizy poglądów filozofów, zgłębia praw- dę, która swe piękno

Wykaz publikacji z zakresu nauk społecznych, które ukazały się nakładem wybranych polskich.. wydawnictw naukowych w drugim półroczu

over de hi1ve cirkel voor R - verdwijrit. PROEFSTATON WAGENINGEN No '5... Hiermede kunnen wijde esymptotische formule in de vorm schrijven: kz - Ic iii,i ¿.)' cz i ky Voor V

As indicated by extant research (e.g., Buhalis, 2000; Carbonell et al., 2012; Hall & Williams, 2008), the inseparable nature of these services may, for example, imply that

Dokonano tego, analogicznie jak w pierwszej z metod (skonstruowanej na podstawie syntetycznych wskaźników powiązań) uwzględniając tylko gminy o wysokim, albo bardzo wysokim poziomie

Rolę dzienni- karza przejmuje jeden z siatkarzy; rozmówcy znają się prywatnie, łączy ich więź koleżeńska, zatem nie ma między nimi takiego dystansu jak w przypadku oficjal-

Mimo iż pokolenie echo boomers posiada wiele cech, postaw i wartości cha- rakterystycznych dla pierwszych boomersów, stara się budować własny systemy wartości i przekonań, oparty

Cieľom príspevku je upozorniť na tieto vlastnosti a pripravovať budúcich učiteľov chémie nielen rozširovaním teoretických vedomostí o používaných chemických