• Nie Znaleziono Wyników

Genetic alterations in B-acute lymphoblastic leukemia

N/A
N/A
Protected

Academic year: 2022

Share "Genetic alterations in B-acute lymphoblastic leukemia"

Copied!
8
0
0

Pełen tekst

(1)

Review/ Praca poglądowa

Genetic alterations in B-acute lymphoblastic leukemia

Seyedeh Momeneh Mohammadi

1

, Daryosh Mohammad Nejad

2

, Hojjatollah Nozad Charoudeh

1,

*

1StemCellResearchCenter,TabrizUniversityofMedicalSciences,Tabriz,Iran

2DepartmentofAnatomicalSciences,TabrizUniversityofMedicalSciences,Tabriz,Iran

Introduction

Acute lymphoblastic leukemia (ALL) is the most common cancerin children, withtop prevalencein the ages of 2–5 yearsandtheimportantcauseof mortalityfromhematolo- gicalcancersinadultswithsecondpeakaftertheageof50 years [1, 2]. Totally children with B linage ALL have a favorable clinical outcome in comparison with those sufferingfromTlinageALL[3].Considerableadvanceshave beenmadeintreatmentofALLwithanoverallsurvivalrate of 85% in children [2]. About adults, the outcome is being

improved but it remains poor compared to children with along-termsurvivalofonly45%[1]. Thereasonsforthese differencesare multifactorial andnotfully understood, but with increasing age, the frequency of genetic alterations withfavorable outcomedecreases andalteration withpoor outcome like BCR-ABLare morecommon [2].Although, all chromosomal translocations is occurredin anyage and in bothchildrenandadultsbutthereisasignificantdifference intheincidenceofapproximatelymostsubgroupsbasedon age(Fig.1)[4]. ForinstanceETV6-Ranx1andhyperdiploidy dominate in young children, with low incidence of this rearrangement in adults (3%,), whereas the incidence of article info

Articlehistory:

Received:28.06.2016 Accepted:26.11.2016 Availableonline:06.12.2016

Keywords:

 Geneticalterations

 Leukemia

 Signaltransduction

 Review

abstract

Considerable advances have been madeintreatment ofacute lymphoblasticleukemia (ALL)withanoverallsurvivalrateof85%inchildren,andwithagreatimprovementin adults.Despitethisimprovementsandtheaccessibilityofhematopoieticstemcelltrans- plantation,relapsedALLremainsaleadingcauseofchildhoodmortalityemphasizingthe need of new approaches on therapy. Understanding of the pathobiology and genetic alteration of ALL has been enhanced by developing molecular technologies including microarray analysis and genome sequencing. These studies have helped identifying mutationsinkeysignalingpathwaysandrevolutionizedthetreatmentofALLbydrugs whichspecificallytarget thegenetic defectsofleukemia cells,suchas tyrosinekinase inhibitors.Inthispaper,wereviewtheclinicallyimportantGeneticAlterationsinALL.

©2016PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiii Transfuzjologii.PublishedbyElsevierSp.zo.o.Allrightsreserved.

*Corresponding author at: StemCell Research Center, ImamReza Hospital,TabrizUniversity ofMedicalSciences, DaneshgahSt., Tabriz5166614711,Iran.Tel.:+984133373879;fax:+984133373879.

E-mailaddress:nozadh@tbzmed.ac.ir(H.NozadCharoudeh).

ContentslistsavailableatScienceDirect

Acta Haematologica Polonica

journal homepage:www.elsevier.com/locate/achaem

http://dx.doi.org/10.1016/j.achaem.2016.11.002

0001-5814/©2016PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiiiTransfuzjologii.PublishedbyElsevierSp.

zo.o.Allrightsreserved.

(2)

BCR-AB1 Philadelphia translocation increases considerably with age, 3% in children versus 25% in adult [4]. This biologicaldifferencehighlylikelyaffectsoutcomeandover- all survival in adults which is significantly inferior to children.

Primary genetic subtypes of B-cell precursor ALL

The fundamental mechanisms of leukemia transformation are the same and contain, abnormal expression of proto- ancogenand chromosomaltranslocation that finally create fusion genes encoding active kinases and transformed transcription factors. Such abnormalities cause ALL by enforcing in lymphoid progenitor cells an unrestricted

ability for self-renewal,which typicallyfollowed bylacking ofcontrolonnormalproliferation,ablockincelldifferentia- tion and almost resistance to normal apoptosis [5]. The grosschromosomalalterationsarehallmarkofALL,andthe occurrence of each alteration varies withage (Tab. I). The most common rearrangements observed in B-lineage ALL are the t(12;21) (p13;q22) rearrangement resulting in the expressionofTEL-AML1fusion,thet(9;22)(q34;q11.2)“Phila- delphia” chromosome resulting in the expression of BCR– ABL1 fusion, the t(1;19) (q23;p13) translocation resulting in the expression of TCF3–PBX1 fusion; and t(4;11) (q21;q23) translocation encoding MLL–AF4 fusion. Identification of these rearrangements is important in diagnosis and risk stratification of patients withALL. Two main genetic sub- types TEL-AML1 (ETV6-RUNX1) positive and hyperdiploidy

TableI–ClinicallyrelevantsubgroupsofALL

Chromosomaltranslocations/genefusions Prevalence(%) Relativeprognosis Highhyperdiploidywithmorethan50chromosomes 30 Excellent

Hypodiploidywithlessthan44chromosomes 2–3 Poor

t(9;22)(q34;q11.2)translocationencodingBCR–ABL1fusion 2–4 Poor/improvedwithimatiniborothertyrosinekinase inhibitor

t(12;21)(p13;q22)translocationencodingETV6–RUNX1fusion 15–25 Excellent t(4;11)(q21;q23)translocationencodingMLL–AF4fusion 1–2 Poor t(1;19)(q23;p13)translocationencodingTCF3–PBX1fusion 2–6 Excellent

Ph-likeALL 10–15 Multiplecytokinereceptorandkinase-activatinglesions;

amenabletotyrosine-kinaseinhibitortherapy

Fig.1–DistributionofALLsubtypesaccordingtoagegroups.TheoccurrenceofALL.Subtypesvariesbetweenagegroups.

Abbreviations:ALL,acutelymphoblasticleukemia;B-other,B-cellacutelymphoblasticleukemiawithothersubtypes;CRLF2- r,CRLF-2-rearranged;MLLr,MLL-rearranged;Ph-like,Philadelphiachromosome-like[68,69]

(3)

with greater than 50 chromosome compromise the most common abnormalities (approximately 50%) in pediatric precursorB-ALLcases.Bothofthemhavefavorableoutcome and are classified in good risk cytogenetic abnormalities mostlikelyduetosensitivityofTEL-AML1toL-asparaginase and hyperdiploidy to L-asparaginase and antimetabolites suchas6-mercaptopurine andmethotrexate[3,6,7].While inadults,themostcommongeneticabnormalitiesisPhila- delphiachromosometranslocation t(9:22)BCR-ABL1, which encodes the activated BCR-ABL1 tyrosine kinase. It is a reciprocal translocation between chromosome 9 and 22 which fuses the ABL1 oncogene on chromosome 9, to abreakpointclusterregion (BCR)from chromosome22and isrelatedtoahighriskofrelapse.Otherabnormalitieswith highriskofrelapseandpooroutcomearerearrangementof mixed-linageleukemiagenes(MLL)inbothgroups.

The protein with histone methyl transference activity, whichisencodedbyMLLgeneisessentialforhematopoietic regulation of HOX-A and MEISI gene expression.The most commongenerearrangementsincludet(4;11)encodingMLL- AFF1,t(9;11)encodingMLL-MLLT3,t(11;19)encodingMLL-ENL

and t(10;11)encodingMLL-MLLT10,betweenmentionedrear- rangements the t(4;11) translocation is the most common with 50% incidence. In general, MLL rearrangements are related with adverse outcome highly likely due to cellular drugresistance[8].Ofnote,“BCR-ABL1-like”or“Ph.-like”ALL, isanewlydescribedsubtypeofhighriskALLthatisrelated with poor outcome, and increased in frequency with age (which will be described in more details in the following section)[9].

Submicroscopic genetic aberration in ALL

Primary oncogenic events such as chromosomal rearran- gements are not sufficient to cause leukemia by them- selves and secondary mutations should accompany this chromosomal translocation. Advances in cytogenetic uti- lizing array based technology have revealed additional submicroscopic abnormalities in genes that are involved in normal hematopoiesis, apoptosis and tumor suppres- sion(Tab. II).

TableII–recentlyidentifiedgeneticalterationinALL

Gene Alteration Frequency Pathophysiologicandclinical

consequencesofalteration

References

CRLF2 Rearrangement(as

IGH@-CRLF2orP2RY8- CRLF2)

5–15%pediatricandadultB- ALL,and>50%Down syndrome(DS)ALL,and50%

ofPh-likeALL

ConcomitantJAK1/2mutationsin

>50%ofcases;associatedwithIKZF1 alterationandpooroutcome, particularlyinnon-DS-ALL.

[10,11,13]

IKZF1 Focaldeletionsor

sequencemutations

15%ofallpediatricpatients withB-ALL:70–80%ofBCR–

ABL1+patientswithALLand 30%OFhigh-riskBCR–ABL1 likeB-ALL

Associatedwithpooroutcomeinboth BCR-ABL1–positiveandnegativeALL cases

[40,44]

PAX5 Deletions,

translocations, sequencemutations

31%ofB-ALL TranscriptionfactorrequiredforB- lymphoiddevelopment;mutations impairDNAbindingand

transcriptionalactivationbutnot associatedwithpooroutcomes

[44,45]

JAK1/2 Pseudokinaseand

kinasedomain mutations

Upto10%ofhigh-riskBCR ABL1-likeB-ALL;18–35%of DSALL

concomitantCRLF2rearrangement, associatedwithpooroutcome;may beresponsivetoJAKinhibitors

[18,52]

Kinaserearrangements andmutation

Rearrangementsof ABL1,ABL2,CSF1R, EPOR,PDGFRB;

10%childhoodB-ALL,upto 30%adultALL;associated withPh-likegeneexpression profile

Activationofkinasesignaling pathwaysandassociatedwith increasedriskofrelapse

IL7R Upto7%ofBandT-

ALL

Sequencemutations InB–ALLisassociatedwiththe aberrantexpressionofCRLF2,results inreceptordimerizationwithCRLF2 andJAK-STATactivation,maybe responsivetoJAKinhibitors

[61–64]

NT5C2 Sequencemutations 19%ofrelapseTcellALLand 3%ofrelapse

B-precursorALL

mutantsconferresistanceto treatmentwithnucleosideanalog therapies

[65]

TP53 Deletionsand

sequencemutations

Presentin12.4%ofrelapseB cellALLandof6.4%relapseT cellAL

Associatedwithdiseaserelapseand poorevent-freesurvivalandoverall survival.

[66]

CREBBP Deletionsand

sequencemutations

19%ofrelapsedB–AL Mutationsresultinimpairedhistone acetylationandtranscriptional regulationandassociatedwith glucocorticoidresistance

[67]

(4)

Cytokine receptor like factor 2 rearrangements in ALL (CRLF2)

CRLF2 rearrangement has been detected in approximately 5–15% of childhood and adult B-cell precursor and also theyaremorecommoninDownsyndromeALL (in50%of cases)[10–12]. CRLF2 encodescytokine receptor like factor 2 (also known thymic stromal lymphopoitin receptor/

TSLPR) which forms a heterodimeric receptor for thymic stromal lymphopoitin (TSLP) with interleukin-7 receptor- alpha (IL7R) [13]. Two alterations have been typically recognized in CRLF2; a chromosomal translocation which juxtaposes CRLF2to the immunoglobin heavychain locus (IGHG) or more commonly a focal deletion upstream of CRLF2 resulting in fusion of CRLF2 gene with G protein- coupledpuringicreceptorP2Y8gene(P2RY8)[14].Whilethe P2RY8-CRLF2alterationismorecommoninyoungerpedia- tric ALL, but IGH- CRLF2 is frequently detected in adults with ALL [12, 15]. Both of the rearrangements result in overexpression of CRLF2 on the cell surface of leukemia lymphoblastwhichcanbedetectedby flowcytometry[12].

Lesscommonlyalteration ofCRLF2 is apoint mutation at codon232 whichreplacea phenylalaninewitha cysteine.

Various groups have tried todescribe prognostic value of CRLF2 alteration and also its association with treatment outcome in patients with ALL. It has been shown that Patientswith ahighCRLF2 expressionhadahighratesof relapse(31%8%vs11%1%,P=0.006)andapoorevent free survival (EFS) (61%8%vs 83%2%, P=0.003) com- pared to Patients with a low CRLF2 expression [16]. In a cohort study, it was shown that ALL Patients with overexpression of CRLF2 have a very poor outcome [17].

Anothercohort study ofpediatric ALL reportedthat there is a high occurrence of CRLF2 genomic lesions in DS-ALL (in more than 50% of cases) [11]. Additionally, shRNA knockdownof CRLF2 inB-ALL celllinesonly partly inhib- itedcellgrowth[15],whichsuggestthatCRLF2overexpres- sion alone is not sufficient to transform cells and other cooperating mutations and covariates may be involved.

The best described of this covariates that accompany CRLF2 alteration are involving janus kinase1 and januse kinase 2mutations, IKZF1 mutations andDS-ALL. Half of patientswithCRLF2 overexpressionalsoharborJAKmuta- tions(JAK 1andJAK2) [17].Mutation inthe pseudokinase domain of JAK2 at R683 is the most common [18]. CRLF2 rearrangement together with JAK2 mutants resulted in constitutiveJAK-STATactivationandcytokine-independent cell growth [11]. It was revealed that in 41 CRLF2-rear- ranged DS-ALL patients, 34% of them also had JAK2 mutations[11].Inline,instudyof26high-riskpediatricB- ALL patientswithCRLF2 overexpression,69% ofthemhad JAK mutations [19]. CRLF2 rearrangements also have revealedtobeassociated with gainoffunction mutations of IL7R in patients with ALL [20, 21]. The mutant IL-7R proteins forms a functional receptor with CRLF2 for TSLP andresulting in cytokine-independent growth ofprogeni- torlymphoidCells[20].Importantly,CRLF2rearrangements are surrogates of poor outcome and can be used in risk stratificationandtargetingtherapy.

IKZF1 gene deletions

During recent years, between recurring genetic alterations whichcooperateinleukemogenesis,thelymphoidtranscrip- tion factor gene IKZF1 has been found to have definite prognostic impact in B-ALL [22, 23]. IKZF1, which encodes IKAROSproteinmemberof familyofzincfinger,isrequired for the developmentof all lymphoid lineages [24]and has been established as one of the most clinically relevant tumor suppressors in high-risk acute lymphoblastic leuke- mia. IKZF1 deletions usually result in the expression of dominant-negative IKAROS variants (e.g., IK6) that are characterized by loss of N-terminal zinc fingers (which mediate DNA binding) and result inthe lossof the tumor suppressor function attributed to wild-type IKZF1 [25, 26].

Theincidence of IKZF1 deletionsinchildrenwithPhiladel- phia chromosome-positive(Ph+) ALLisapproximately 70%, whereasitsincidenceinchildrenwithPhiladelphiachromo- some–negative(Ph-) ALL is 10–15%, and is related withan increased riskof relapse and decreased overall survivalin bothgroups[24,27–30].

Intrachromosomal amplifications of chromosome 21 (iAMP21) in ALL

Intrachromosomalamplificationofchromosome21(iAMP21) is an uncommon high-riskChromosomal abnormalitythat occurinapproximately2–5%ofpediatricpatientswithB-cell precursor ALL [31–33]. Fluorescence in situ hybridization (FISH), using RUNX1, provides the only reliable detection method (five or moreRUNX1 signalsper cell)[34]. Patients with iAMP21 are older (median 9 years vs 5 years) with a low white cell count (median 3.9 vs 12.4) compared to children without this abnormality [35]. In astudy of, 1630 ALL patients were treatedon the UK MRC ALL97 protocol, iAMP21wasrecognizedasanindependentpredictorofpoor EFS (29% vs78%)and OS(71% vs87%)at 5years [35]. The resultsof twocohortsofpatientswithB-cellprecursorALL andiAMPamplification(2%)treatedonALL97orUKALL2003 showed that iAMP21 patients with ALL benefitted from receiving more intensivetherapy inUKALL2003(event-free survival (29% vs 78%), relapse (70% vs 16%) and overall survivalrates(67%vs89%)at5years)[36].

BCR-ABL1-like or “Ph-like” ALL

Ph-like ALL, is a newly described subtype of ALL which exhibitageneexpressionprofilesimilartothat ofPh+ALL but lacksBCR-ABL1 fusiongene[37–39]. Deletions ormuta- tions of IKZF1are hallmark of both BCR–ABL1–positive and Ph-like ALL which strikingly is associated with treatment failure and disease relapse in both [7, 30, 38, 40] The incidenceofPh-likeALLincreaseswithage,from10–15%of childhoodB-ALLtoover25%ofALLinyoungadults(Fig.1).

The prognosis of BCR-ABL1–like ALL is poor. In the COG AALL0232 study, the EFS of the BCR ABL1–like cases was significantlyinferior tothatof thenonBCR-ABL1like cases

(5)

(62.6%6.9% vs. 85.8%2.0%) [41]. Rearrangements and sequencemutationsinseveralclassesof cytokinereceptors and tyrosine kinases are a hallmark of Ph-like ALL [42].

Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2,CRLF2,CSF1R,EPOR,JAK2,NTRK3,PDGFRB,PTK2B,TSLP, or TYK2 that are responsive to treatment with currently availableTKIs(Tab.III)[9].

PAX5

ThePAX5gene,belongstothepairedbox(PAX)genefamily oftranscriptionfactors,crucialforBlymphoidcellcommit- ment[43].SomaticalterationsofthePAX5areahallmarkof B-ALL and occurred in over one – third of this patients [44, 45]. These alterations are heterozygous and comprise focal deletions, translocations, or point mutations that disrupt PAX5 DNA-binding or transcriptional regulatory functions[46].SeveralstudiesshowedthatPAX5abnormal- itieswerenotassociatedwithanunfavorableprognosisand are notassociated tooutcome [44, 46]. Alsoinstudyof 89 patients with ALL, deletions of PAX5 was observed in 29 patientswhichhadnoprognosticsignificanceinALL[47].

Janus kinase 1 and 2 mutations (JAK1 or JAK2) and JAK-STAT pathway in ALL

Januskinase(JAK)isafamilyofintracellular,non-receptor tyrosinekinases thattransduce cytokine-mediated signals viatheJAK-STATpathway[48,49].TheJAKfamilyhasfour members:JAK1, JAK2, JAK3, and TYK2 that functioning as signal transducers to control cellular proliferation, survi- val,anddifferentiation[49].TheincidenceofJAKmutation inALLhas beenreportedtobeabout18[50,51]to35% in DS-ALL [52]andabout10%in highrisk BCR-ABL1negative ALL and have been associated with poor outcome [18].

Notably, between other family members, JAK2 mutations are more common (at or near JAK2 R683) in B-progenitor ALL[18,50].Importantly,JAKmutationswereshowntobe associated withCRLF2 rearrangements,it has beenshown

that70% ofCRLF2-rearrangedcases alsoharbor JAKmuta- tions [19]. Over expression of CRLF2 with JAK2 mutants resultedincytokine-independentcellgrowthandconstitu- tiveactivationofJAK-STATsignalingpathway,demonstrat- ing that these two genetic lesions together contribute to leukemogenesisinB-progenitorALL[19].Thesignaltrans- ducersandactivatorsoftranscription(STAT)familyisone of the bestcharacterizeddownstream thatis activatedby JAKsignaling.Itcontains anumberoflatenttranscription factors that, when phosphorylated by the JAKs, drive the expression of genes involved in proliferation, apoptosis, migration, differentiation [53–55]. Disrupted or dysregu- lated JAK-STAT pathway result in immune deficiency syndromesandcancers[56].Gain-of-functionmutationsin IL7R is one of the other mutationsthat activate the JAK- STAT signaling pathway and have been identified in patients with ALL.Activating mutations in IL7R are com- monlyfoundinTandBcellALLandarefrequentlyplaced inthetransmembranedomain[20,57,58].IL7Risessential for normal lymphoid development [59]. IL7R heterodi- merizes eitherwith interleukin2receptor subunitgamma (IL2RG) to form a receptor to IL-7 or with CRLF2 to form a receptor to TSLP [60, 61]. Activating mutations in IL7R lead todimerizationandconstitutiveactivationoftheIL-7 receptor andresulting in cytokine independentactivation ofthedownstreamsignalingpathwaysincludingJAK–STAT signalingpathway[57].

Conclusions

Obviously genome sequencing has revolutionized our knowledge of the genomic basis of ALL. These techniques helpedustoidentifynewclinicallyimportantALLsubtypes and leukaemogenic alterations, which have ledto a better risk stratification and willleadtoimprovementof patient- directed or individualized therapy for every patient. How- ever, more comprehensively sequenced ALL genome is requiredtofullyunderstandallsomaticgeneticalterationof ALL that incorporate to treatment failure and disease relapse.

Authors’ contributions/ Wkład autorów

SMM – study design, data collection and interpretation, manuscriptpreparation,literaturesearch.HNC,DMN–data interpretation,fundscollection.

Conflict of interest/ Konflikt interesu

Nonedeclared.

Financial support/ Finansowanie

This studywas supported byVice Chancellor for Research (VCR)ofTabrizUniversityofMedicalSciences(GrantNo:54/

16960).

TableIII–Kinaserearrangementsandtherapeutictargets inPh-likeALL[9]

Kinase Tyrosinekinaseinhibitor

ABL1 Dasatinib

ABL2 Dasatinib

CSF1R Dasatinib

PDGFRB Dasatinib

CRLF2 JAK2inhibitor

JAK2 JAK2inhibitor

EPOR JAK2inhibitor

DGKH Unknown

IL2RB JAK1/JAK3inhibitor

NTRK3 Crizotinib

PTK2B FAKinhibitor

TSLP JAK2inhibitor

TYK2 TYK2inhibitor

(6)

Ethics/ Etyka

Thework describedin this article has been carriedout in accordance with TheCode of Ethics of the World Medical Association(Declaration of Helsinki)for experimentsinvol- ving humans; EU Directive 2010/63/EU for animal experi- ments;UniformRequirementsformanuscriptssubmittedto Biomedicaljournals.

references/pi smiennictwo

[1] LarsonS,StockW.Progressinthetreatmentofadultswith acutelymphoblasticleukemia.CurrOpinHematol2008;15 (4):400–407.

[2] PuiC-H,MullighanCG,EvansWE,RellingMV.Pediatric acutelymphoblasticleukemia:wherearewegoingandhow dowegetthere?Blood2012;120(6):1165–1174.

[3] MeijerinkJP,denBoerML,PietersR.Newgenetic abnormalitiesandtreatmentresponseinacute

lymphoblasticleukemia.SeminHematol2009;46(1):16–23.

http://dx.doi.org/10.1053/j.seminhematol.2008.09.006.

[4] HarrisonCJ.Targetingsignalingpathwaysinacute lymphoblasticleukemia:newinsights.HematologyAmSoc HematolEducProgram2013;2013:118–125.http://dx.doi.org/

10.1182/asheducation-2013.1.118.

[5] PuiC-H,RellingMV,DowningJR.Acutelymphoblastic leukemia.NEnglJMed2004;350(15):1535–1548.

[6] Ramakers-vanWoerdenNL,PietersR,LoonenAH,HubeekI, vanDrunenE,BeverlooHB,etal.TEL/AML1genefusionis relatedtoinvitrodrugsensitivityforL-asparaginasein childhoodacutelymphoblasticleukemia.Blood2000;96 (3):1094–1099.

[7] KaspersGJ,SmetsLA,PietersR,VanZantwijkCH,Van WeringER,VeermanAJ.Favorableprognosisof

hyperdiploidcommonacutelymphoblasticleukemiamay beexplainedbysensitivitytoantimetabolitesandother drugs:resultsofaninvitrostudy.Blood1995;85(3):751–756.

[8] WooJS,AlbertiMO,TiradoCA.ChildhoodB-acute lymphoblasticleukemia:ageneticupdate.ExpHematol Oncol2014;3:16.http://dx.doi.org/10.1186/2162-3619-3-16.

[9] RobertsKG,LiY,Payne-TurnerD,HarveyRC,YangYL,Pei D,etal.Targetablekinase-activatinglesionsinPh-like acutelymphoblasticleukemia.NEnglJMed2014;371 (11):1005–1015.http://dx.doi.org/10.1056/NEJMoa1403088.

[10] YodaA,YodaY,ChiarettiS,Bar-NatanM,ManiK,RodigSJ, etal.FunctionalscreeningidentifiesCRLF2inprecursorB- cellacutelymphoblasticleukemia.ProcNatlAcadSciUSA 2010;107(1):252–257.http://dx.doi.org/10.1073/

pnas.0911726107.

[11] MullighanCG,Collins-UnderwoodJR,PhillipsLA,Loudin MG,LiuW,ZhangJ,etal.RearrangementofCRLF2inB- progenitor-anddownsyndrome-associatedacute lymphoblasticleukemia.NatGenet2009;41(11):1243–1246.

http://dx.doi.org/10.1038/ng.469.

[12] RussellLJ,DeCastroDG,GriffithsM,TelfordN,BernardO, Panzer-GrumayerR,etal.Anoveltranslocation,t(14;19) (q32;p13),involvingIGH@andthecytokinereceptorfor erythropoietin.Leukemia2009;23(3):614–617.http://dx.doi.

org/10.1038/leu.2008.250.

[13] PandeyA,OzakiK,BaumannH,LevinSD,PuelA,FarrAG, etal.Cloningofareceptorsubunitrequiredforsignalingby thymicstromallymphopoietin.NatImmunol2000;1(1):59–

64.http://dx.doi.org/10.1038/76923.

[14] AkasakaT,BalasasT,RussellLJ,SugimotoKJ,MajidA, WalewskaR,etal.FivemembersoftheCEBPtranscription factorfamilyaretargetedbyrecurrentIGHtranslocationsin B-cellprecursoracutelymphoblasticleukemia(BCP-ALL).

Blood2007;109(8):3451–3461.http://dx.doi.org/10.1182/

blood-2006-08-041012.

[15] RussellLJ,CapassoM,VaterI,AkasakaT,BernardOA, CalasanzMJ,etal.Deregulatedexpressionofcytokine receptorgene,CRLF2,isinvolvedinlymphoid

transformationinB-cellprecursoracutelymphoblastic leukemia.Blood2009;114(13):2688–2698.http://dx.doi.org/

10.1182/blood-2009-03-208397.

[16] CarioG,ZimmermannM,RomeyR,GeskS,VaterI,Harbott J,etal.PresenceoftheP2RY8-CRLF2rearrangementis associatedwithapoorprognosisinnon-high-riskprecursor B-cellacutelymphoblasticleukemiainchildrentreated accordingtotheALL-BFM2000protocol.Blood2010;115 (26):5393–5397.http://dx.doi.org/10.1182/blood-2009-11- 256131.

[17] ChenIM,HarveyRC,MullighanCG,Gastier-FosterJ, WhartonW,KangH,etal.OutcomemodelingwithCRLF2, IKZF1,JAK,andminimalresidualdiseaseinpediatricacute lymphoblasticleukemia:aChildren'sOncologyGroup study.Blood2012;119(15):3512–3522.http://dx.doi.org/

10.1182/blood-2011-11-394221.

[18] MullighanCG,ZhangJ,HarveyRC,Collins-UnderwoodJR, SchulmanBA,PhillipsLA,etal.JAKmutationsinhigh-risk childhoodacutelymphoblasticleukemia.ProcNatlAcad SciUSA2009;106(23):9414–9418.http://dx.doi.org/10.1073/

pnas.0811761106.

[19] HarveyRC,MullighanCG,ChenIM,WhartonW,Mikhail FM,CarrollAJ,etal.RearrangementofCRLF2isassociated withmutationofJAKkinases,alterationofIKZF1,Hispanic/

Latinoethnicity,andapooroutcomeinpediatricB- progenitoracutelymphoblasticleukemia.Blood2010;115 (26):5312–5321.http://dx.doi.org/10.1182/blood-2009-09- 245944.

[20] ShochatC,TalN,BandapalliOR,PalmiC,GanmoreI,te KronnieG,etal.Gain-of-functionmutationsininterleukin- 7receptor-alpha(IL7R)inchildhoodacutelymphoblastic leukemias.JExpMed2011;208(5):901–908.http://dx.doi.org/

10.1084/jem.20110580.

[21] ZhangJ,DingL,HolmfeldtL,WuG,HeatleySL,Payne- TurnerD,etal.ThegeneticbasisofearlyT-cellprecursor acutelymphoblasticleukaemia.Nature2012;481(7380):157–

163.http://www.nature.com/nature/journal/v481/n7380/

abs/nature10725.html#supplementary-information.

[22] MullighanCG,SuX,ZhangJ,RadtkeI,PhillipsLA,MillerCB, etal.DeletionofIKZF1andprognosisinacute

lymphoblasticleukemia.NEnglJMed2009;360(5):470–480.

http://dx.doi.org/10.1056/NEJMoa0808253.

[23] GeorgopoulosK,BigbyM,WangJH,MolnarA,WuP, WinandyS,etal.TheIkarosgeneisrequiredforthe developmentofalllymphoidlineages.Cell1994;79(1):143–

156.

[24] MartinelliG,IacobucciI,StorlazziCT,VignettiM,PaoloniF, CilloniD,etal.IKZF1(Ikaros)deletionsinBCR-ABL1- positiveacutelymphoblasticleukemiaareassociatedwith shortdisease-freesurvivalandhighrateofcumulative incidenceofrelapse:aGIMEMAALWPreport.JClinOncol 2009;27(31):5202–5207.http://dx.doi.org/10.1200/

jco.2008.21.6408.

[25] TrageserD,IacobucciI,NaharR,DuyC,vonLevetzowG, KlemmL,etal.Pre-Bcellreceptor-mediatedcellcyclearrest inPhiladelphiachromosome-positiveacutelymphoblastic leukemiarequiresIKAROSfunction.JExpMed2009;206 (8):1739–1753.http://dx.doi.org/10.1084/jem.20090004.

[26] IacobucciI,LonettiA,CilloniD,MessaF,FerrariA,Zuntini R,etal.IdentificationofdifferentIkaroscDNAtranscriptsin

(7)

Philadelphia-positiveadultacutelymphoblasticleukemia byahigh-throughputcapillaryelectrophoresissizing method.Haematologica2008;93(12):1814–1821.http://dx.

doi.org/10.3324/haematol.13260.

[27] MullighanCG,SuX,ZhangJ,RadtkeI,PhillipsLA,MillerCB, etal.DeletionofIKZF1andprognosisinacute

lymphoblasticleukemia.NEnglJMed2009;360(5):470–480.

[28] vanderVeerA,WaandersE,PietersR,WillemseME,Van ReijmersdalSV,RussellLJ,etal.Independentprognostic valueofBCR-ABL1-likesignatureandIKZF1deletion,but nothighCRLF2expression,inchildrenwithB-cellprecursor ALL.Blood2013;122(15):2622–2629.http://dx.doi.org/

10.1182/blood-2012-10-462358.

[29] KuiperRP,WaandersE,vanderVeldenVH,vanReijmersdal SV,VenkatachalamR,ScheijenB,etal.IKZF1deletions predictrelapseinuniformlytreatedpediatricprecursorB- ALL.Leukemia2010;24(7):1258–1264.http://dx.doi.org/

10.1038/leu.2010.87.

[30] vanderVeerA,ZaliovaM,MottadelliF,DeLorenzoP,Te KronnieG,HarrisonCJ,etal.IKZF1statusasaprognostic featureinBCR-ABL1-positivechildhoodALL.Blood2014;123 (11):1691–1698.http://dx.doi.org/10.1182/blood-2013-06- 509794.

[31] MaSK,WanTS,CheukAT,FungLF,ChanGC,ChanSY, etal.Characterizationofadditionalgeneticeventsin childhoodacutelymphoblasticleukemiawithTEL/AML1 genefusion:amolecularcytogeneticsstudy.Leukemia 2001;15(9):1442–1447.

[32] MoormanAV.Theclinicalrelevanceofchromosomaland genomicabnormalitiesinB-cellprecursoracute

lymphoblasticleukaemia.BloodRev2012;26(3):123–135.

http://dx.doi.org/10.1016/j.blre.2012.01.001.

[33] HarrisonCJ,MoormanAV,SchwabC,CarrollAJ,RaetzEA, DevidasM,etal.Aninternationalstudyof

intrachromosomalamplificationofchromosome21 (iAMP21):cytogeneticcharacterizationandoutcome.

Leukemia2014;28(5):1015–1021.http://dx.doi.org/10.1038/

leu.2013.317.

[34] HarrisonCJ.Cytogeneticsofpaediatricandadolescent acutelymphoblasticleukaemia.BrJHaematol2009;144 (2):147–156.http://dx.doi.org/10.1111/j.1365-

2141.2008.07417.x.

[35] MoormanAV,RichardsSM,RobinsonHM,StreffordJC, GibsonBE,KinseySE,etal.Prognosisofchildrenwithacute lymphoblasticleukemia(ALL)andintrachromosomal amplificationofchromosome21(iAMP21).Blood2007;109 (6):2327–2330.http://dx.doi.org/10.1182/blood-2006-08- 040436.

[36] MoormanAV,RobinsonH,SchwabC,RichardsSM,Hancock J,MitchellCD,etal.Risk-directedtreatmentintensification significantlyreducestheriskofrelapseamongchildrenand adolescentswithacutelymphoblasticleukemiaand intrachromosomalamplificationofchromosome21:a comparisonoftheMRCALL97/99andUKALL2003trials.J ClinOncol2013;31(27):3389–3396.http://dx.doi.org/10.1200/

jco.2013.48.9377.

[37] MedeirosBC.DeletionofIKZF1andprognosisinacute lymphoblasticleukemia.NEnglJMed2009;360(17):1787.

http://dx.doi.org/10.1056/NEJMc090454.authorreply1788.

[38] DenBoerML,vanSlegtenhorstM,DeMenezesRX,Cheok MH,Buijs-GladdinesJG,PetersST,etal.Asubtypeof childhoodacutelymphoblasticleukaemiawithpoor treatmentoutcome:agenome-wideclassificationstudy.

LancetOncol2009;10(2):125–134.http://dx.doi.org/10.1016/

s1470-2045(08)70339-5.

[39] Payne-TurnerD,PeiD,BecksfortJ,HarveyRC,LiY,SongG, etal.Integratedgenomicandmutationalprofilingof adolescentandyoungadultALLidentifiesahighfrequency

ofBCR-ABL1-Likeallwithverypooroutcome.Blood 2013;122(21):825.

[40] MullighanCG,MillerCB,RadtkeI,PhillipsLA,DaltonJ,MaJ, etal.BCR-ABL1lymphoblasticleukaemiaischaracterized bythedeletionofIkaros.Nature2008;453(7191):110–114.

http://dx.doi.org/10.1038/nature06866.

[41] LohML,HarveyRC,MullighanCG,LindaSB,DevidasM, BorowitzMJ,etal.,editors.ABCR-ABL1-Like.Gene ExpressionProfileConfersaPoorPrognosisInPatientswith High-RiskAcuteLymphoblasticLeukemia(HR-ALL):A ReportFromChildren'sOncologyGroup(COG)AALL0232.

Blood.1900MSTREET,NWSUITE200,WASHINGTON,DC 20036USA:AMERSOCHEMATOLOGY;2011.

[42] RobertsKG,MorinRD,ZhangJ,HirstM,ZhaoY,SuX,etal.

Geneticalterationsactivatingkinaseandcytokinereceptor signalinginhigh-riskacutelymphoblasticleukemia.

CancerCell2012;22(2):153–166.http://dx.doi.org/10.1016/j.

ccr.2012.06.005.

[43] CobaledaC,SchebestaA,DeloguA,BusslingerM.Pax5:the guardianofBcellidentityandfunction.NatImmunol 2007;8(5):463–470.http://dx.doi.org/10.1038/ni1454.

[44] MullighanCG,GoorhaS,RadtkeI,MillerCB,Coustan-Smith E,DaltonJD,etal.Genome-wideanalysisofgenetic alterationsinacutelymphoblasticleukaemia.Nature 2007;446(7137):758–764.http://dx.doi.org/10.1038/

nature05690.

[45] KuiperRP,SchoenmakersEF,vanReijmersdalSV,Hehir- KwaJY,vanKesselAG,vanLeeuwenFN,etal.High- resolutiongenomicprofilingofchildhoodALLrevealsnovel recurrentgeneticlesionsaffectingpathwaysinvolvedin lymphocytedifferentiationandcellcycleprogression.

Leukemia2007;21(6):1258–1266.http://dx.doi.org/10.1038/sj.

leu.2404691.

[46] FamiliadesJ,BousquetM,Lafage-PochitaloffM,BeneMC, BeldjordK,DeVosJ,etal.PAX5mutationsoccurfrequently inadultB-cellprogenitoracutelymphoblasticleukemia andPAX5haploinsufficiencyisassociatedwithBCR-ABL1 andTCF3-PBX1fusiongenes:aGRAALLstudy.Leukemia 2009;23(11):1989–1998.http://dx.doi.org/10.1038/

leu.2009.135.

[47] IacobucciI,LonettiA,PaoloniF,PapayannidisC,FerrariA, StorlazziCT,etal.ThePAX5geneisfrequentlyrearranged inBCR-ABL1-positiveacutelymphoblasticleukemiabutis notassociatedwithoutcome.Areportonbehalfofthe GIMEMAAcuteLeukemiaWorkingParty.Haematologica 2010;95(10):1683–1690.http://dx.doi.org/10.3324/

haematol.2009.020792.

[48] YamaokaK,SaharinenP,PesuM,Holt3rdV,Silvennoinen O,O'SheaJJ.Thejanuskinases(Jaks).GenomeBiol2004;5 (12):253.

[49] SchindlerC,LevyDE,DeckerT.JAK-STATsignaling:from interferonstocytokines.JBiolChem2007;282(28):20059–

20063.http://dx.doi.org/10.1074/jbc.R700016200.

[50] BercovichD,GanmoreI,ScottLM,WainrebG,BirgerY, ElimelechA,etal.MutationsofJAK2inacutelymphoblastic leukaemiasassociatedwithDown'ssyndrome.Lancet 2008;372(9648):1484–1492.http://dx.doi.org/10.1016/s0140- 6736(08)61341-0.

[51] GaikwadA,RyeCL,DevidasM,HeeremaNA,CarrollAJ, IzraeliS,etal.PrevalenceandclinicalcorrelatesofJAK2 mutationsinDownsyndromeacutelymphoblastic leukaemia.BrJHaematol2009;144(6):930–932.http://dx.doi.

org/10.1111/j.1365-2141.2008.07552.x.

[52] KearneyL,GonzalezDeCastroD,YeungJ,ProcterJ,Horsley SW,Eguchi-IshimaeM,etal.SpecificJAK2mutation (JAK2R683)andmultiplegenedeletionsinDownsyndrome acutelymphoblasticleukemia.Blood2009;113(3):646–648.

http://dx.doi.org/10.1182/blood-2008-08-170928.

(8)

[53] ShuaiK,LiuB.RegulationofJAK-STATsignallinginthe immunesystem.NatRevImmunol2003;3(11):900–911.

http://dx.doi.org/10.1038/nri1226.

[54] O'SheaJJ,PesuM,BorieDC,ChangelianPS.Anewmodality forimmunosuppression:targetingtheJAK/STATpathway.

NatRevDrugDiscov2004;3(7):555–564.http://dx.doi.org/

10.1038/nrd1441.

[55] FridmanJS,ScherlePA,CollinsR,BurnT,NeilanCL,Hertel D,etal.PreclinicalevaluationoflocalJAK1andJAK2 inhibitionincutaneousinflammation.JInvestDermatol 2011;131(9):1838–1844.http://dx.doi.org/10.1038/

jid.2011.140.

[56] AaronsonDS,HorvathCM.Aroadmapforthosewhodon’t knowJAK-STAT.Science2002;296(5573):1653–1655.http://

dx.doi.org/10.1126/science.1071545.

[57] ZhangJ,DingL,HolmfeldtL,WuG,HeatleySL,Payne- TurnerD,etal.ThegeneticbasisofearlyT-cellprecursor acutelymphoblasticleukaemia.Nature2012;481(7380):157–

163.http://dx.doi.org/10.1038/nature10725.

[58] ZenattiPP,RibeiroD,LiW,ZuurbierL,SilvaMC,PaganinM, etal.OncogenicIL7Rgain-of-functionmutationsin childhoodT-cellacutelymphoblasticleukemia.NatGenet 2011;43(10):932–939.http://dx.doi.org/10.1038/ng.924.

[59] PeschonJJ,MorrisseyPJ,GrabsteinKH,RamsdellFJ, MaraskovskyE,GliniakBC,etal.Earlylymphocyte expansionisseverelyimpairedininterleukin7receptor- deficientmice.JExpMed1994;180(5):1955–1960.

[60] NoguchiM,NakamuraY,RussellSM,ZieglerSF,TsangM, CaoX,etal.Interleukin-2receptorgammachain:a functionalcomponentoftheinterleukin-7receptor.

Science1993;262(5141):1877–1880.

[61] LiuYJ,SoumelisV,WatanabeN,ItoT,WangYH,Malefyt RdeW,etal.TSLP:anepithelialcellcytokinethatregulates Tcelldifferentiationbyconditioningdendriticcell maturation.AnnuRevImmunol2007;25:193–219.http://dx.

doi.org/10.1146/annurev.immunol.25.022106.141718.

[62] RochmanY,KashyapM,RobinsonGW,SakamotoK, Gomez-RodriguezJ,WagnerKU,etal.Thymicstromal lymphopoietin-mediatedSTAT5phosphorylationvia kinasesJAK1andJAK2revealsakeydifferencefromIL-7- inducedsignaling.ProcNatlAcadSciUSA2010;107 (45):19455–19460.http://dx.doi.org/10.1073/

pnas.1008271107.

[63] ShochatC,TalN,BandapalliOR,PalmiC,GanmoreI,te KronnieG,etal.Gain-of-functionmutationsininterleukin- 7receptor-a(IL7R)inchildhoodacutelymphoblastic leukemias.JExpMed2011;208(5):901–908.

[64] ZenattiPP,RibeiroD,LiW,ZuurbierL,SilvaMC,PaganinM, etal.OncogenicIL7Rgain-of-functionmutationsin childhoodT-cellacutelymphoblasticleukemia.NatGenet 2011;43(10):932–939.http://www.nature.com/ng/journal/

v43/n10/abs/ng.924.html#supplementary-information.

[65] TzonevaG,Perez-GarciaA,CarpenterZ,KhiabanianH, ToselloV,AllegrettaM,etal.Activatingmutationsinthe NT5C2nucleotidasegenedrivechemotherapyresistancein relapsedALL.NatMed2013;19(3):368–371.http://dx.doi.org/

10.1038/nm.3078.

[66] HofJ,KrentzS,vanSchewickC,KornerG,ShalapourS, RheinP,etal.MutationsanddeletionsoftheTP53gene predictnonresponsetotreatmentandpooroutcomeinfirst relapseofchildhoodacutelymphoblasticleukemia.JClin Oncol2011;29(23):3185–3193.http://dx.doi.org/10.1200/

jco.2011.34.8144.

[67] MullighanCG,ZhangJ,KasperLH,LerachS,Payne-Turner D,PhillipsLA,etal.CREBBPmutationsinrelapsedacute lymphoblasticleukaemia.Nature2011;471(7337):235–239.

http://dx.doi.org/10.1038/nature09727.

[68] RobertsKG,MullighanCG.Genomicsinacute lymphoblasticleukaemia:insightsandtreatment implications.NatRevClinOncol2015;12(6):344–357.

[69] HarrisonCJ.Targetingsignalingpathwaysinacute lymphoblasticleukemia:newinsights.ASHEduProgBook 2013;2013(1):118–125.

Cytaty

Powiązane dokumenty

Clinical, biochemical and genetic data in reported cases with autosomal dominant hypophosphataemic rickets (ADHR), autosomal recessive hypophosphataemic rickets (ARH and

Introduction: The study aimed to evaluate the psychological profile of patients with acromegaly in comparison to other chronic diseases such as non-functioning pituitary

Studies performed on stem cells, targeting their con- version into functionally mature tissue, are not nec- essarily seeking to result in the clinical application of the

Intercontinental program ALL-IC-BFM 2002 was approved on February 23, 2002, in Hannover by working groups from 10 countries (Argentina, Chile, Croatia, Czech Republic,

Tabela I – Cz ęstość wyst ępowania aberracji genetycznych i ich warto ść prognostyczna u dzieci z B-ALL [5, 6].. Table I S Frequency of genetic aberrations and their prognostic

A pivotal phase 2 trial of ponatinib in patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) resistant or

In acute lymphoblastic leukemia (ALL), and progressively more in acute myeloid leukemia (AML), the best parameter of that response is the presence of minimal residual disease (MRD).

presented the cases of 2 boys with acute lymphoblastic leukaemia, who in the course of remis- sion-inducing therapy, during neutropenia, developed multi- focal pyomyositis, similarly