• Nie Znaleziono Wyników

Charakterystyka właściwości fizycznych i chemicznych poszczególnych frakcji mechanicznych skał macierzystych gleb

N/A
N/A
Protected

Academic year: 2021

Share "Charakterystyka właściwości fizycznych i chemicznych poszczególnych frakcji mechanicznych skał macierzystych gleb"

Copied!
20
0
0

Pełen tekst

(1)

R O C Z N I K I G L E B O Z N A W C Z E , T . X I X , D O D A T E K , W A R S Z A W A 1968

Soil Physics

L U C JA N K R Ó L IK O W SK I (P resid en t of C om m ittee), B O LE SŁA W A D A M C ZY K , J A N BO R K O W SK I, H A L IN A KRÓL, Z BIG N IE W P R U SIN K IE W IC Z , S T A N ISŁ A W R Z Ą SA , EDW A R D ŚL U SA R C Z Y K , C ZESŁAW ŚW IĘCICK I, ST A N IS Ł A W TRZECK I,

T A D E U SZ W OCŁAW EK *

THE PH Y SIC A L AND CHEM ICAL P R O PE R T IE S O F SEPA R A TE

GRAIN SIZE FR A CTIO N S O F SO IL PA R EN T ROCKS

In connection w ith th e In te rn a tio n a l Congress of Soil Science w hich

took place in 1964 in B u ch arest th e Soil P h y sics C om m ittee of th e P olish

S ociety of Soil Science (the la tte r w ill f u rth e r be a b b re v iate d PSSS) has

p rese n ted th e re su lts of in v estig a tio n on th e estab lish in g of a lim it b e­

tw een soil skeleton and fin e e a rth an d proposed a u n iv ersa l acceptance of

th e lim it v alue 1 m m d iam e te r in ste a d of 2 m m [1].

T he said C om m ittee u n d e rto o k th e p re se n t in v estig atio n to c h a ra c te rise

th e m ech an ical fra c tio n s d iscerned b y P S S S in soils an d to s u b sta n tia te

th e degree of rig h tn e ss of th e ex isting c la ssifica tio n 2.

S am ples w ere ta k e n fro m m ate ria ls not changed b y soil-form ing p ro ­

cesses i.e. fro m soil p a re n t rocks. G lacial sands an d b o u ld er loam s, T e r­

tia ry clay, and loess w ere analysed. T he m ed iu m an d h eav y loam s w ere

ta k e n fro m th e areas of th e last g laciation (d istrict O lsztyn); th e light

loam (d istrict W arszaw a), loam y san d (distr. P oznań), an d loose sand

(distr. Kielce) w ere ta k e n fro m th e m id d le-P o lish glaciation ( = Riss =

V arsovien II). The T e rtia ry clay comes fro m L ow er Silesia, th e loess —

from th e L u b lin p lateau .

T he sam ples w ere fra c tio n a te d b y th e Jack so n m etho d an d follow ing

1 T h e a n a ly ses w e r e su p erv ised by: A ss. P rof. Dr. B. A d am czyk (m in eral com ­ p osition ), A ss. P rof. Dr. A . K a b a ta -P e n d ia s (trace elem en ts, b ase ex c h a n g e cap acity, to ta l p o ta ssiu m and sodium ), Dr. E. Ś lu sa rczy k (m ech an ical a n a ly sis, sp e c ific g r a v ity , m a x im u m h y g ro sco p icity ), Dr. S. T rzeck i (pF curves), Dr. T. W o cła w ek (fu ll ch em ica l a n a ly sis — m a cro elem en ts).

2 A ccord in g to P S S S n om en clatu re: sand 1— 0.1 m m p a r tic le diam eter; fin e sand 0.1— 0.02 m m diam eter; s ilt and cla y (“elu tria b le p a r tic le s”) le s s th an 0.02 m m d ia ­ m eter.

(2)

fra c tio n s o btained: 1 — coarse san d (p article size 1.0— 0.5 m m), 2 — m e­

d ium sand (0.5— 0.25 m m), 3 — “fin e ” san d (0.25— 0.10 mm), 4 — coarse

fin e sand (0.1— 0.05 m m), 5 — fine fin e san d (0.05— 0.02 mm), 6 — coarse

s ilt (0.02— 0.005 mm), 7 — fine silt (0.005— 0.002 m m), 8 — colloidal clay

(less th a n 0.002 mm).

Follow ing p ro p ertie s w ere d e te rm in e d in th e se p a ra te d fractio ns: m in e ­

r a l com position (only in th e fractio n s m o re th a n 0.02 m m g rain size)

u n d e r th e p olarizing m icroscope on p ow d er slides m o u n ted in C an ada

balsam ; specific g ra v ity in th e p y cno m eter; m ax im u m hygrosco picity

(MH) over a 3.3% H 2S 0 4 solution a t 17°C; fu ll p F cu rv es w ith th e use

of ceram ic porous p late s for low er values (up to pF 3), m em bran es and

w a te r rem o v al by excess p ressu re fo r h ig h er v alues; th e to ta l c o n ten t of

SiO z, A120 3, F e 20 3, CaO, MgO, a n d P 20 5 w as d e te rm in e d b y fusion w ith

N a 2C 0 3 an d an aly sis of th e p ro d u ct of fusion a fte r A rin u sh k in a. K 20 and

N a aO w ere d e te rm in e d se p a ra te ly b y flam e p h o to m e try , th e tra c e ele­

m en ts by sp ectro -p h o to m etry . Base exchange capacity w as d e te rm in e d

b y M ackenzie’s m icrom ethod.

T he m echanical com position of th e sam ples w as d e te rm in e d b y th e

are o m etric B ouyoucos-C asagrande m eth o d m odified by P ró szy ń sk i, as

w ell as by th e p ip ette m ethod a fte r p re p a ra tio n according to Jackson.

T he re su lts w ere u su a lly r a th e r con v erg en t (Tab. 1); th e p ip ette m ethod

gave som ew hat h ig h er re s u lts fo r th e fra c tio n less th a n 0.02 m m an d th a t

less th a n 0.002 m m d iam e te r (except th e h e a v y loam). The ex am in ed sam ­

ples w ere th en a rra n g e d according to th e ir in creasing silt an d clay con tents

(excepting th e loess). N ot a ll o b tain ed re su lts are given h ere ow ing to

space restric tio n . A fter an in tro d u c to ry estim atio n of re su lts it w as

? a o i

c-l c-le c h a n i c a c-l c o m p o s it io n o f s o i c-l s

S o i l s

? e r c » n t o f the m e c h a n ica l l r a c t i o n s w ith d ia a e t e r

P i p e t t m ethod * A re o a ctr:ic method

A l l f r a c t i o n s r in e f r e c t i o n s t o g e t h e r f i a к f r a c t i o n s L e so th e r

1-0.5

9-^ r

0.25-

C

. 10

u . l o -

о. 05 0.05-

0 .0 2 0 . 0 2

-С.СЮ

5 0.005-

0.002 <0.002 1-0.1 0.1-

0 .0 2 < C 0 .C 2

1-0.1

c!g2

<r;o.o2

< 0 . 0 0 2 I Send 6 .7 2 4 .4

51.6 11.5

1.3

0.4

O.o

3-3

32.9 12.3

4.3

35.1 11.3

3.0

2 .0

I I Sandy Ioa= 8 . 9

lb.2

i 6 . 2 1 3 .2 7 .3 9 . 0 2 .1 3 . 1 6 0 .3 2 0 .5 1 9 .2 o 2 .5 2 3 .5 1 4 .0 o.O

I I I Loa_ij- sar.d 7 .3 1 1 .5 2 } . ô 1 3 .2 7 .3 8 . 3 5.Ö 2 1 .9 4 3 . 0 2 0 .5 3 o .5 4 5 .3 2 4 .2 3 0 .0

16.0

IV Loam 4 . :J 5 - 9 2 2 .7 I S . 4 6 .4

9.с

5 . 0 2 5 .7 3 7 .5

24. Ö

3 7 . 7 4 1 .7 2 2 .3 3 6 .0 2 1 .0 V C lay lo a a 4 . 1 3 .3 1 Ś .2 1 6 .4 6 .3 9 - 0 6 .6 2 3 .4 3 1 .0 2 3 .2 4 5 - 2 3 2 .4 1 7 .1 5 0 .5 3 0 .0 VI C loy c . c 0 . 0 0 .4 7 .9 2 .0 3 .5 7 .6 7 3 .4 0 .4 b .3 3 3 .7 0 .5 1 3 .5 3 6 .0 6 7 .0 VII L c es s 0 . 0 0 . 0 0 . 2 2 3 . 9 4 1 .1 1 1 .6 1 .3 l b . 4 0 . 2 7 0 .0 2 9 .8 0 .4 7 4 . u 2 5 .0 1 1 .0 Ko o f f r a c t i o n s 1 2 3 4

5

6 7 8 1 -3 4 - 5 b -3 1 -3 4 - 5 6 - 3 в * Sam ple p r e p a r a t io n a c c o r d in g t o J a c k s o n 'a n e t t e d

(3)

T h e ch em ica l and p h y sic a l p ro p erties 5

decided to give averages fo r th e san ds an d loam s as th ese rocks a re

fe a tu re d by sim ila r p ro p ertie s of th e ir fractio ns. The re su lts obtained

for th e clay an d th e loess w ere given se p a ra te ly as th e y d eviate consi­

d e ra b ly fro m th e d a ta o b tained for th e glacial deposits. A n in flu ence

of geological proven ien ce of th e rocks on th e p ro p ertie s of th e ir fra c tio n s

w as not in v estig ated .

T he d e te rm in e d m i n e r a l c o n s t i t u e n t s of th e ex am ined fra c ­

tions w ere d istrib u te d in to th re e basic groups (Table 2): A — th e group

of “b a rr e n ” com ponents (as reg a rd s n u trie n t content) co ntain ing ch iefly

S i 0 2, В — th e group of com ponents being th e n a tu ra l (potential) source of

n u trie n ts , ch iefly m acroelem ents, an d С — a group of h e av y m inerals,

d iffic u ltly w e a th erin g b u t being a v aried n a tu ra l source of m an y tra c e

elem ents.

T he a n a ly tic a l d a ta show' th a t th e coarse sand fra c tio n s contain a la r ­

g er p ro po rtio n of less valu ab le com ponents (group A) as com pared to th e

fine san d fractio ns. A gain, th e la tte r are ric h e r in th e m ore valu ab le

m in e rals of groups В an d C.

In su b -g ro u p В -a (felspars) th e fine san d fractio n s show — as com pared

to th e coarse sand ones — a g re a te r p ro p o rtion of po tassium felsp a r (ortho-

clase). T he loess rock form s a kin d of exception from th is ru le. T he v a lu ­

able (in a pedogenetic sense) silicates an d h y d ro alu m in o silicates (sub­

g roup B-b) occur n e a rly ex clusiv ely in th e fine sand fractio n s, an d espe­

c ially in th e fin e fine sand. T he fin e san d fra c tio n s also con tain larg e r

am o u n ts of g roup С m inerals.

The re su lts of m in e ral com position d e te rm in a tio n s speak fo r th e con ti­

nu an ce of th e ex istin g classification of fractio n s according to P S S S norm s.

The s p e c i f i c g r a v i t y show s a r a th e r u n ifo rm ten d e n c y to

in crease w hile th e fra c tio n p a rticle size decreases (Tab. 3). A m ore d etailed

analy sis of th e re su lts d e m o n strates th a t th e m ean v alue of specific g rav ity

of th e sam ple ap proaches th a t of th e fra c tio n w ith 0.02— 0.005 m m p a rtic le

size. T he coarser fractio n s show low er values, th e fin e r ones — h ig h er

values of specific g rav ity , th e h ig h est being show n by colloidal clay

(less th a n 0.002 mm).

If fractio n classification w ere m ade as b ased on specific g rav ity , th e re

should be discerned: the lig h t fractio n s (more th a n 0.02 m m g rain size),

th e m edium h eav y fractio n s (0.02— 0.002 m m), an d th e h e av y fra c tio n s

(less th a n 0.002 mm).

The m a x i m u m h y g r o s c o p i c i t y (Tab.4) of th e soil sam ples

is connected w ith th e colloidal clay co n te n t (i.e. th e fra c tio n less th an

0.002 m m g rain size). T he o btain ed re su lts show th a t th e m ost d istin ct

in crease in hygroscopic m o istu re co n te n t occurs b etw een fractio n s 7 an d

8, th e least one — am ong th e coarse san d fractio n s (Fig. 1).

(4)

biinerai com pos iti on of s o i l f r a c t i o n s in volume pe r ce nt I - II I I I - V , VII ОаШр1в il J * 1 2 3 4 j 1 2 3 1 4 ; j 5 ; 3 i 4 5 Diameter in mm Components 1 .0 0 0 . 5 0 0 . 5 00 . 2 5 0 . 2 50 . 1 0 0 . 0 50 . 1 0 0 . 0 20 . 0 5 1 . 0 00 . 5 0 0 . 5 0 ' 0 . 2 5 '0 .2 50 .1 0 0 . 1 0 1 0 . 0 5 ' i Э.05 0 . 2 5 Э. 02 j 0. 10 0 . 1 00 . 0 5 0 . 0 50 . 0 2 Group A: 4uartz j Qu ar tz it e 1 Chalcedony 8 5 . 3 4 . 2 0 . 0 i 8 9 . 9 2 . 5 0 . 2 1 8 9 . 0 1 . 2 Û.1 8 1 . 9 0 . 0 0 . 0 8 2 . 0 0 . 0 0 . 0 7 6. 8 2 . 8 0 . 0 8 5 . 5 2. 7 0 . 1 j 8 4 . 0 1 . 6 0 . 1 7 4 . 5 ) 6 5 . '■ j 80 .3 0 . 0 С .: ; 0 . 0 0 . 0 i 1 0 . 0 ; L -82 . 3 0 . 0 0 . 0 8 3 . 0 0 . 0 0 . 0 i T o ta l group A 89 . 5 9 1 .7 9 0 . 3 8 1 . 9 8 2 . 0 7 9 .6 8 8 .3 8 5 . 7 74. 5 | 5 3 . 9 8 0 . 3 8 2 . 3 8 3 . 0 1 ... I Group Б: 1 Subgroup B-a- Orthoc las e M ic ro c li n e p e r t h i t e p l a g i o c l a s e Weathered f e l s p a r s 3 . 5 0 . 3 2 . 0 0 . 0 2 . 0 3 . 2 0 . 7 1 . 0 0 . 2 2 . 2 4 . 7 0 . 3 0 . 3 0 . 5 2 .3 1 1 . 6 0 . 2 0 . 7 1 .3 0 . 7 8 . 6 0 . 1 C.O 0 . 3 0 . 0 5-7 0 . 8 0 . 3 1 . 1 2 . 8 3 . 9 0 . 2 0 . 4 1 . 2 1 . 7 6 . 2 0 . 5 0 . 4 0 . 6 1.7 I 10 .1 0 . 0 0 . 7 0 . 9 1 . 1 15 .1 j о , 7 i ~ j 1 " i i 1 1 .0 0 . 0 0 . 0 0 . 3 1 .7 7. 7 0 . 3 0 . 3 1 . 7 1 .3 7 . 2 0 . 0 j 0 . 3 0 . 5 o . o ! j T o ta l subgroup B-a 7 . 8 7-3 8 . 1 14.5 9 . 0 1 0. 7 7. 4 9 . 4 1 2. 8 :>.;>! 1 3 . 0 1 1. 3 8 . 0 ; Subgroup B-b1 j Amphibole I Glau con ite ! B i o t i t e ! Muscovite i C h lo r it e 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 7 0 . 0 0 . 0 0 . 8 0 . 0 2 . 1 0 . 3 1 . 8 1 . 4 0 . 9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 8 0 . 1 O.C 0 . 0 O . l i 2 . 1 0 . 1 0 . 0 0 . 0 i . 7 i 3 . 1 0 . 6 0 . 9 j 0 . 0 1 . 7 ■■-.-■U 0 . 0 •;.7 ; 0 . 0 0 . 3 : 0 . 0 1 .7 0 . 0 0 . 0 0 . 3 0 . 0 i 1 . 8 ! 0 . 2 j 1 . 2 ! 1 . 3 j 0 . 0 1 T ot al subgroup B-b 0 . 0 0 . 0 0 . 2 1 . 5 6 . 5 0 . 0 0 . 9 2 . 3 6 . 3 2 . 0 i 2 . 0 4 . 5 j Subgroup B-c; Clay fragments Hock fragments 2 . 9 0 . 8 0 . 9 0 . 0 0 . 7 0 . 0 0 . 0 0 . 3 0 . 1 0 . 3 6 . 7 2 . 8 2 . 6 0 . 0 0 . 9 0 . 0 0 ’ 7 j 0 . 0 ! '1*1 1 . 0 0 . 0 0 . 7 0 . 0 1 . 8 0 . 5 T o ta l subgroup B-c 3 . 7 0 . 9 0 . 7 0 . 3 0 . 4 9 .5 2 . 6 1 . 0 0 . 7 C. 7 1 . 0 0 . 7 2 . 3 Subgroup B-d- C a l c i t e 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 4 1 . 3 3 . 6 4 , 2 0 . 0 0 . 0 0 . 0 T o ta l group В 10.3 8 . 2 9 . 0 1 6. 4 1 5 . 8 2 0 . 4 1 1. 3 1 4 . 0 2 3 . 4 5 2. 5 1 6 . 0 1 4 . 0 1 4. 8 Group C? Garnet T i t a n i t e Zircone B u t i l e Epidote S t a u r o l i t e Tourmaline 0 . 2 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1 0 . 0 0 . 1 0 . 0 0 . 3 0 . 2 0 . 0 0 . 0 0 . 1 0 . 2 0 . 7 0 . 5 0 . 2 0 . 1 1 . 0 0 . 3 0 . 0 0 . 1 0 . 4 0 . 2 0 . 1 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 3 0 . 3 0 . 2 0 . 4 0 . 3 0 . 2 0 . 4 0 . 5 0 . 6 0 . 9 0 . 3 0 . 5 0 . 4 0 . 4 0 . 0 0 . 3 0 . 3 0 . 7 1 . 3 1 . 0 0 . 0 0 . 0 0 . 3 1.7 0 . 7 0 . 3 0 . 7 0 . 0 0 . 5 0 . 7 0 . 0 0 . 0 0 . 7 0 . 3 0 . 0 T o ta l group С 0 . 2 0 . 1 0 . 7 1 . 8 2 . 1 0 . 0 1 0 . 4 0 . 3 2 . 1 3 . 6 3 . 6 3 . 7 2 . 2 # Уеап relues

(5)

T he ch em ica l and p h y sic a l p rop erties 7

T a b l e

S p e c y f i c g r a v i t y of s o i l f r a c t i o n s

I em

No o f f r a c t i o n of s o i l s Diameter o f f r a c t i o n in mm : 1 ! ; I I j I I I !— ; IV V r ~ " ! VI ; ; i ! i VII ; 1, 2, 3, 4 , 5 0 . 0 2 2. b0 2 .6 5 2 .6 5 2 .6 4 1 2 .6 4 i ! 2 .6 4 2 . 6 5 ; 6 0 . 0 2 0. 0 0 5 2 . 6 6 2 . 6 8 2 . 6 8 ! 2 . 6 6 2 . 6 7 2 . 6 6 7 0. 0 0 5 0. 0 0 2 2 .7 0 - I 2 .7 0 2 . 6 9 ! 8 < c T 0 - 0 0 2 2 . 7 6 2 . 7 1 2 . 7 9 2. 7 9 i. 2. 7 8 i I j 2 . 7 6 2 . 7 1

T a b l e

Hygroscopic wa t e r c a p a c it y of s o i l f r a c t i o n s ^ g r a v . ) No of s o i l s No о: f r a c t i o n Diameter of f r a c t i o n in am

...T

1

11

1 I I I ! IV ; V i VI VII 1 1 - 0 . 3 i 0 . 0 5 O. lo i 0 .1 0 0. 0 9 ; 0 .0 7 - -2 0 . 5 - 0 . 2 5 0 . 0 5 ! 0 . 0 9 0 . 1 1 0 . 1 2 0 . 1 2 - -3 0 . 2 5 - 0 . 1 о о г- о Г-Но ! 0 . 1 3 0 . 1 3 0 . 1 2 0 . 1 6 0 . 0 9 4 0 . 1 - 0 . 0 3 0 . 1 0 0.2С 0 .2 2 0 . 2 2 0 . 2 0 0 . 1 6 0 . 1 8 5 0 . 0 5 - 0 . 0 2 0 . 2 3 0.4С о i'»о 0 .о0 0. 4 9 0.4Ó 0 . 3 5 6 0 . 0 2 - 0. 0 0 5 j О.о? 0 . 8 1 0 . 7 8 1.04 0 . 8 6 0 . 7 4 7 0.0 05 - 0 .0 0 2 0 . 9 5 , 0 . 9 6 1.9 4 1 .9 9 2 .2 9 2. 9 0 1 . 9 2 8 < C 0 . 0 0 2 l ó . O l j 21.33 2 2 .9 5 2 4 .6 9 23 . 0 0 2 4 .1 5 22. 8 3

The h ygroscopicity of the m ech anical fra c tio n s allow s to group th em

as follow s: p a rticle size 1.0— 0.05 m m (MH less th a n 0.20%), 0.05—

0.002 m m (MH 0.20— 3.0%), and less th a n 0.002 m m (MH about 16%).

The course of th e pF c u r v e s for th e in itia l sam ples (Fig. 2), d if­

ferin g in th e ran g e of d e te rm in e d values, show s a sim ilar shape of

a stro n g ly fla tte n e d S cu rve appro ach in g a stra ig h t line; th e curves for

loose san d are an exception as th e y are m uch less “f la t” an d show tw o

d istin ct inflections. It is visible fro m a com parison of som e w a te r p ro ­

p e rties of th e se p ara te te x tu r a l groups th a t th e am o u n t of w a te r in ac ­

cessible to p lan ts (from 0.6% in th e san d to 23.7% in th e clay) as w ell

as th a t of av ailable w a te r increases w ith th e in crease of th e c o n ten t of

silt an d clay (less th a n 0.02 m m diam eter) in th e soil. The considerab le

(6)

3 A s u ffic ie n t am ou n t of th e fin e s t fra ctio n s could not be ob tain ed from loose sand, nor th a t of th e co a rsest fra ctio n — from th e h e a v y loam and clay.

Fig. 1. M axim u m h y g ro sco p icity of soil fra ctio n s

capacity of loess for storin g w a te r av ailab le to p la n ts a n d its c o m p arati­

vely low w iltin g p e rcen tag e d eserv e a tte n tio n .

F rom th e pF m easu rem en ts o b tained fro m th e m echanical fractio n s of

th e ex am in ed soils 3, not listed h e re for reasons of p rin tin g space, it re su lts

th a t th e w a te r p ro p ertie s of analogous fractio n s se p ara te d fro m sam ples

belonging to various te x tu r a l groups appro ached one a n o th e r considerably,

especially in th e sand an d fin e san d fractions. In m ost cases th e d ifferen ces

betw een th e e x tre m e deviatio n s did n o t exceed 5% of th e ob tained

re su lts (ra rely a tta in in g 10%), w hile som ew hat larg e r deviations — up

to 15% — ap p eared in th e fine silt and colloidal fractio ns.

M eans w ere com puted from th e ob tain ed d a ta (Fig. 3) as th e re w ere

p rac tic a lly no differen ces in th e six firs t m echanical fractio n s and th e

(7)

T he ch em ica l and p h y sic a l p ro p erties 9

d ifferences o ccu rrin g in th e tw o fin e st ones did n o t show a tend en cy.

The curv es in d icate a g re a t sim ila rity in th e c ap acity to sto re w a te r

in th e fractio n s of coarse an d m edium san d as w ell as th e fractio n s of

fin e fin e san d an d coarse silt. The rem ain in g curves do not fo rm p airs

sim ilar in th e th e ir course. A c e rtain re g u la rity m ay, how ever, be obser­

ved: w ith th e decrease of p a rticle size th e am o un t of w a te r boun d by g re ­

a te r forces in creases qu ick ly . The g re a te st capacities for sto rin g w a te r

av ailable to p la n ts are show n by th e coarse fine sand fractio n s — 15.

6

^/

0

,

second place being occupied b y fine silt —

10

.

8

% — and “fin e ” sand —

9.41%. The rem a in in g fra c tio n s show a sm all cap acity in th is respect.

The d iscrepancies for MH v alues o btain ed in the fin e r fractio n s

d epend on th e m eth o d of w o rk an d should p ro b ab ly be ascribed in

a large degree to th e in flu en ce of sam ple p re p a ra tio n on th e resu lts as

w e ll as th e sw elling of soil colloids. The m ethod of sam ple p re p a ra tio n

seem s to in flu en ce also th e co nsiderable d ifference in values at pF 4.2

for th e clay as te x tu r a l g roup (about 80% colloidal fractio n content) and

th e clay as g rain size fra c tio n less th a n

0.002

mm.

In g e n e ra l it m ay be said th a t th e PS S S p a rticle size classification

is co rrect for th e fractio n s of san d an d th e u p p er lim it of fine sand

Fig. 2. T h e pF cu rves for soil sa m p les

S o i l s : I — s a n d , I I — l o a m y s a n d , I I I — s a n d y l o a m , I V — l o a m , V — c l a y l o a m , V I — c l a y ,

(8)

pF

Fig. 3. M ean v a lu e of pF cu rves for fra ctio n s sep arated from a ll in v e stig a te d so ils

F r a c t i o n s in m m : J — 1— 0,5, 2 — 0,5—0,5-5, 3 — 0,25— 0,10, 4 — 0,10— 0,05, 5 — 0,05— 0,02, 6 — 0,02— 0,005, 7 — 0,005— 0,00?, S — < 0,002

(0.1 mm). The q uestion is open for th e low er lim it of fin e sand an d th e

up p er one of silt (0.02 mm), th e coarse silt appro achin g th e p ro p erties

of fine san d in its w a te r sorption capacity.

The b a s e e x c h a n g e c a p a c i t y (Tab. 5) of th e sand an d fine

sand fractio n s of all ex am in ed soils is v e ry low and does not exceed th e

values o b tain ed for q u a rtz and felspars. A h ig h er base exchange capacity

appears only in th e silt and clay fractio n s. It increases g ra d u a lly in all

soils from th e coarse silt fractio n to th e colloidal clay w hich d e m o n stra ­

tes an in creasin g p ro p o rtio n of th e clay m in erals in these fraction s. If th e

base exchange cap acity of th e colloidal clay fractio n be ta k e n as the p rin ­

ciple th e ex am ined soils m ay be classified into follow ing groups: a) soils

contain ing m uch clay m in erals in th e clay fra c tio n — ВЕС m ore th a n

50 m.e. p er 100 g (the clay and th e loess), b) soils w ith a m edium co n te n t

of clay m in erals in th e clay fra c tio n — ВЕС of th e la tte r above 20 m.e.

per 100 g (the loose sand, loam y sand, lig ht loam).

T he an aly ses of th e in itia l sam ples allow ed to a sce rta in th a t th e con­

te n t of m a c r o e l e m e n t s (inform ing on th e p o te n tia l fe rtility of th e

soil) is th e sm allest in loose san d contain in g th e g re a te st p ercen tag e of

(9)

T he ch em ica l and p h y sic a l p ro p erties 11

S i 0 2. The g rea test am o unts of Fe and A1 are contained in the clay. The

oxides of Ca, Mg, K, Na, an d P occur in th e g re a te st am ounts in th e bo ul­

der loam s, especially in th e m edium and h eavy loam s (Tab. 6).

T a b l e

5

Cation exchange c a p a c i t y o f s o i l f r a c t i o n s ( i n m. e./lOO g) No o f f r a c ­ t i o n Ho o f s o i l s D i a m e t e r ^ ^ o f f r a c t i o n ^ ^ . in mm 1 I I I I I IV V VI VII 1 1 - 0 . 5 0 0 0 0 0 n . o . n . o . 2 0 . 5 - 0 . 2 5 0 . 5 6 2 . 1 0 1 . 7 0 1 . 9 6 1 . 1 2 n . o . 1 . 6 8 3 0 . 2 5 - 0 . 1 0 , 5 6 7 . 0 0 1 . 9 6 2 . 5 2 9 .8 0 1 1 . 8 5 6 . 4 4 4 0 . 1 - 0 . 0 5 6 . 3 0 9 . 5 6 4 . 9 0 3 . 7 0 10 . 5 0 7 . 0 0 5 . 2 5 5 0 . 0 5 - 0 . 0 2 7 . 0 0 6 .5 3 4 . 4 0 4 . 2 0 11 .2 0 1 1 . 2 0 8 . 8 6 6 0 . 0 2 - 0 . 0 0 5 14 .7 0 1 4 .0 0 1 7. 50 1 2 .6 0 1 7 .5 0 4 0 . 6 0 25 .6 0 7 0 . 0 0 5 - 0 . 0 0 2 2 4 . 5 0 1 9 .6 0 2 3 . 8 0 2 1 . 0 0 ro о о 4 6 . 2 0 27 . 3 0 8 < ^ 0 . 0 0 2 2 5 . 2 0 2 7 .3 0 28 . 0 0 3 2 . 2 0 3 9. 0 0 5 0 . 4 0 5 0 . 0 0

W hen considering th e re s u lts as to th e freq u en cy of occurrence of th e

larg e st and sm allest am oun ts of a given com ponent in th e se p ara te fra c ­

tions (Tab. 6), follow ing conclusions m ay be draw n:

The p o ten tia l soil fe rtility m ay be ev alu a te d on th e base of a g ra n u ­

lom etric soil classification (the a g ric u ltu ra l aspect) if th e te x tu ra l groups

are divided by th e lim it less th a n 0.05 m m p a rticle size. In th e exam ined

p a re n t rocks th e larg est am ou n ts of Ca and Mg com pounds w ere found in

th e fractio n s below th is size lim it.

T he com pounds of Fe, Al, K, and P occur in larg est am ounts in th e

fra c tio n s below 0.005 m m d iam eter.

T h erefo re th e p a rticle size lim its below 0.05 m m a n d /o r below

0.005 m m m ay serve as th e prin cip le of a “b asic” classification of te x tu ­

ra l groups in Polish p a re n t rocks.

T he d istrib u tio n of t r a c e e l e m e n t s in th e fractio n s of th e e x a ­

m ined sam ples show s a g e n e ra l re g u la rity — th e cu m u latio n of such com ­

p o n en ts in th e clay fractio ns.

T he co n cen tratio n of tra c e elem en ts in th e coarse sand fractio n s oc­

c u rrin g in som e soils is connected w ith th e c o n ten t of th ese elem en ts in

th e p rim a ry m in e rals and has a lre a d y been observed d u rin g th e in v e sti­

gatio n of o th er soils. The cu m u latio n of tra c e elem ents in th e clay fra c ­

tions is s tric tly re la te d to th e ir sorption by th e clay m inerals.

(10)

Chemical co m po si tio n some s o i l s S o i l s Diameter o f f r a c t i o n in mm Cons tituend Hygroscopic water I g n i t i o nl o s s 3 i 0 2 r2°3 I Sand 0 . 2 1 0 . 2 2 93 .0 7 3 . 6 7 II Loamy sand 0 . 1 9 0 . 6 4 8 7 . 8 1 6 . 8 0 I I I Sandy loam 1 . 0 2 1. 37 8 1 . 3 2 1 0. 18 IV Loam 1 .3 6 1. 48 76 . 0 0 1 2 . 5 6 V Clay loam 1 .8 5 3 . 4 2 74 .1 8 15 .3 5 VI Clay 5 . 2 6 4 . 2 3 6 2 . 1 9 2 4 . 0 8 VII Loess 0 . 8 2 1 . 3 8 8 1 . 5 2 9 .9 7 Sandy s o i l s * 1 - 0 . 5 0 . 0 2 0 . 1 8 93 . 4 8 4 . 3 2 0 . 5 - 0 . 2 5 0 . 0 2 0 . 0 5 9 5 . 1 8 3 . 9 9 0 . 2 5 - 0 . 1 0 0 . 0 3 0 . 0 9 91 .8 4 4 . 2 0 0 . 1 0 - 0 . 0 5 0 . 0 5 0 -2 7 9 0. 70 5 . 6 4 0 . 0 5 - 0 . 0 2 0 . 1 0 0 . 5 6 8 5 . 7 8 7 .7 7 0 . 0 2 - 0. 0 0 5 2 . 0 0 1. 8 0 7 7. 52 1 4 .8 4 0. 00 5 - 0 . 0 0 2 1 .6 3 2 . 9 7 70. 50 1 8 .4 8 < 0 . 0 0 2 6 . 8 6 2 7 . 9 2 5 6 . 3 6 12. 03 Loams s o i l s * 1 - 0 . 5 0 .0 5 0 . 3 5 8 9 . 1 4 6 . 8 1 0 . 5 - 0 . 2 5 0 . 0 4 0 . 1 5 8 8 . 9 6 6 . 3 8 0 . 2 5 - 0 . 1 0 0 .0 6 0 . 1 8 9 1 . 3 6 4 . 3 7 0 . 1 0 - 0 .0 5 0 . 1 2 0 . 3 0 8 4 . 5 6 7 .2 0 0 . 0 5 - 0 . 0 2 0 . 3 4 0 . 8 0 82 . 4 0 1 0. 33 0 . 0 2 - 0 .0 05 0 . 4 1 1. 6 4 72 .2 4 14. 77 0 . 0 0 5 - 0 . 0 0 2 1 .0 1 2 . 5 5 64 . 8 0 2 1 . 2 2 < 0. 0 0 2 6 . 0 1 13 .4 5 4 9 . 8 6 3 4 . 7 0 Clay 1 - 0 . 5 n . o . n . o . n . o . n . o . 0 . 5 - 0 . 2 5 n . o . n . o . n . o . n . o . 0 . 2 5 - 0 . 1 0 0 . 0 8 0 . 1 4 98 . 7 8 1 .8 7 0 . 1 0 - 0 . 0 5 0 . 4 1 0 . 3 4 94 . 2 2 3 . 6 2 i 0 . 0 5 - 0 . 0 2 0 . 3 2 0 . 3 0 97 .7 6 2 . 0 7 i i 0 . 0 2 - 0 .0 05 0. 6 3 0 . 7 0 9 3 . 1 6 4 . 7 4 1 0 .0 05 - 0 . 0 0 2 2. 4 4 1 .1 7 7 8 . 1 9 1 4 .7 5 < C 0- 00 2 6 . 4 6 17. 63 4 9 . 5 8 2 3 . 1 7 ! I Loess 1 - 0 . 5 n . o . n . o . n . o . n . o . 1 0 . 5 - 0 . 2 5 n . o . n . o . n . o . n . o . 0 . 2 5 - 0 . 1 0 0 . 0 2 0 . 1 8 9 1 . 1 6 6 . 2 9 i 0 . 1 0 - 0 . 0 5 0 .0 6 0 . 1 0 8 8 . 6 2 7 .1 5 0 . 0 5 - 0 . 0 2 0 . 0 8 0 . 3 9 8 4 . 9 9 9 . 3 1 0 . 0 0 2 - 0 . 0 0 5 0 .6 0 1 . 3 9 8 0 . 8 3 1 0 . 8 2 0 . 0 0 5 - 0 . 0 0 2 3 . 6 o 3 . 6 1 68. 47 2 0 . 3 7 0 .0 02 8 .0 6 15 .5 0 50 .4 4 23 . 3 0

(11)

T h e ch em ica l and p h y sic a l p rop erties 13

T a b l e

6

and t h e i r gr an ul om et ri c f r a c t i o n s in pe r ce nt

a i203 Fe203 T i0 2 UaO UgO K20 Na20 p2o3 To ta l

2 . 7 8 0 . 7 2 0 . 1 3 0 .1 4 0 . 3 8 0 . 7 1 0 . 2 3 0 . 0 4 58.47 3 . 4 8 2 . 9 1 0 . 3 4 0 . 4 4 0 . 5 9 0 . 7 4 0 . 3 1 0 . 0 7 37 .33 7 . 0 0 2 . 6 6 0. 4 0 0 . 3 9 0 . 9 6 1 .0 2 0 . 3 2 0 . 1 2 95 .5 6 8 . 7 1 3 . 3 2 0 . 4 0 0 . 9 9 2 . 1 7 1 . 1 9 0 . 3 9 0. 13 9 4 . 7 8 1 0 .4 6 4 . 2 3 0 . 4 3 3 . 1 2 1 .6 1 O.9 2 0 . 3 1 0 .2 3 9 8 . 9 1 16. 9 3 6 . 2 0 0 . 7 3 0 . 4 1 1 .6 3 1 .1 9 0 . 2 6 0 . 1 2 54 .0 3 5 . 8 7 3 . 4 1 0 . 5 6 0 . 5 3 0 . 5 5 0. 9 5 0 . 4 4 0 . 1 3 55 .3 4 3 . 9 0 0 . 3 8 0 . 0 2 0 . 3 0 0 .1 3 0 . 6 7 0 . 3 9 0 . 0 2 55. 45 ! 3 . 6 6 0 . 2 8 0 . 0 2 0 . 1 7 1. 4 3 0 .4 4 0 . 1 9 0 . 0 3 101.44 3 . 5 7 1 . 3 7 0 .2 3 0. 3 7 1 .6 7 0 .6 5 0 . 2 7 0 . 0 3 5 3 . об ; 4 . 4 9 0 . 7 6 0 . 3 6 0 . 5 0 0 . 3 9 1 . 2 0 0. 5 5 0 . 0 3 99 .2 2 6 .2 7 1 .0 4 0 . 4 3 0 . 8 5 0 . 5 9 1 .5 6 0 . 8 1 0. 03 97 .5 1 ! 11. 47 2 . 5 9 0 . 7 4 0 . 6 4 0 .5 3 2 . 1 5 0 . 7 6 0 . 0 5 38 .1 9 ! 14 .3 7 3 . 5 5 1 . 0 4 0 . 4 8 1 . 0 0 2 . 3 7 0 . 6 8 0 . 0 3 9 6 . 4 2 8 . 7 3 2 . 7 9 0 . 4 3 0 . 2 4 0 . 8 3 1 . 3 3 0 . 8 2 0 . 0 3 5 9 . 5З 6 .4 4 0 .8 5 0 . 0 7 0 . 7 5 0 . 1 2 0 . 9 3 O.6 9 0 . 1 2 93 . 7 3 5 . 5 4 0 . 6 4 0 .0 6 1 .0 6 2 . 4 4 0 . 6 1 0 . 3 5 0 . 1 4 55 .5 4 3 . 2 7 0 . 9 2 0 . 1 0 0 . 7 0 1 . 2 4 0 . 7 8 0 . 3 1 0 . 0 8 98 .5 4 j 5 . 2 7 1 . 6 5 0 . 3 3 1 . 3 7 2 . 8 7 0 . 8 7 0 . 5 2 0 . 0 3 5 8 . 0 2 , 7 .6 9 2 . 0 3 0 . 5 1 0 . 7 5 0 . 5 7 2 . 1 7 0 . 9 9 0 .1 0 58. 0 1 1 11 .3 5 2 . 6 4 0 . 7 0 4 . 1 2 1 . 8 8 2 .7 5 1 . 0 2 0 . 1 1 9 8 . 4 2 ! 1 5 . 9 0 4 . 0 1 1 .1 5 4 . 3 6 2 . 0 9 3 . 2 1 1 . 1 2 0 . 1 5 9 8. 5 7 ! 15 .9 8 7 . 9 8 0 . 5 6 1 . 2 1 2 . 7 5 2 . 9 0 0 . 8 4 0 . 1 8 95 .7 2 n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . 0 . 7 4 0 . 8 0 0 . 3 2 0 . 1 2 0 . 0 8 0 . 2 3 0 .3 4 0 . 0 1 1 0 1 .5 6 2 . 1 5 0 . 9 6 0 . 4 9 0 . 2 4 0 . 0 4 0 . 2 0 0 . 1 0 0 . 0 2 9 8 . 7 6 0 . 1 7 1 . 1 2 0 . 7 6 0 . 1 2 0 . 0 2 0 . 4 8 0 . 1 8 0 . 0 2 10 0.93 ! 1 . 9 7 1 . 4 5 1 . 3 0 0 . 1 4 0. 0 7 0 . 9 8 0 . 2 3 0 . 0 2 1 0 0. 02 j 11. 04 2. 2 3 1 . 4 6 0 . 3 7 0 . 4 7 1. 20 0 . 2 7 0 . 0 2 9 6 . 4 2 j 1 6 .3 9 6 . 1 6 0 . 5 2 1 . 1 5 1. 6 3 1 . 1 3 0 . 2 9 0 . 1 0 9 4 . 3 8 1 n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n . o . n. 0 . n . o . n. 0 . n . o . n . o . n . o . n . o . n. 0 . n . o . 4 . 8 5 0 . 6 8 0. 7 3 0 . 4 5 0 . 0 7 0 .6 5 0 . 3 8 0 . 0 3 9 9 . 1 3 2 . 8 2 3 . 7 6 0 . 5 2 1 . 1 8 n . o . 0 . 7 5 0 . 4 2 0 . 0 5 -7 . 8 4 0 . 9 6 0 . 4 5 1 . 5 1 0 . 0 0 0 . 9 8 0 . 5 8 O.O6 97 .7 6 8 . 1 5 1 . 8 4 0 . 7 7 0 .6 0 O.6O 1 . 3 6 0 . 7 3 0 . 0 5 96 .2 7 4 . 3 9 4 . 7 2 1. 1 7 0 . 5 9 1 . 2 3 I .6 0 0 . 7 2 0 . 0 9 9 6. 59 7 . 0 2 5 . 5 6 0 . 6 1 0 . 2 1 1 .4 4 1 . 5 1 0 . 8 6 0 . 1 1 9 3 .2 6 a l s o f o r loamy s o i l s ( I I I » IV and V)

(12)

A g en eral sim ila rity w as a sce rta in ed b etw een the d istrib u tio n of trace

elem ents in the fractio n s of th e tw o san d sam ples an d th ese of th e loam

sam ples.

T he g rea test p a rt of th e to ta l c o n ten t of copper and cobalt in th e w hole

sam ples u su a lly (Tab. 7) ap p ears in th e colloidal clay fraction . M anganese

is a c cu m u lated in th e colloidal fra c tio n s only in th e loam s an d th e clay.

A gain, m o ly b denu m does not show d istin c t accu m u latio n in th e colloidal

clay fra c tio n s (excepting th a t of th e clay rock), and is d istrib u te d r a th e r

u n ifo rm ly . The occurrence of tra c e elem en ts in th e loess is d iffe re n t. In

sp ite of low co n ten ts of th e tra c e elem en ts in th e fine san d fra c tio n s th e

loess show s th e larg est re la tiv e accu m u latio n in th e fin e sand (relativ e to

th e to ta l c o n ten t in th e sam ple) owing to th e large pro p o rtio n of th is

fra c tio n in th e loess rock.

T a b l e 7 Trace element content o f fr a c tio n « separated Iroo d iffe r e n t e o ile (in ppa)

; s o ! ^ j Bo and diameter ! fr a c tio n a of s o i l s j Uc Cu Co Uo ° f \ ; I -I I 1 : i i i - jlV-T i VI V ll I -I I j I I I - IV-V VI v i ; ! ’ i-i i I I I -IT-T 1 ! VI 1 1 VII I - I I IT-YI I I - VI I VII : i i 1 1 -0 .5 40 ! 1 160 - 5.93 7.71 0 .53 1.08 1 j 1 I - 0.87 0 .92

-! 2 -!

0 .5 -0 .2 5 , 53

!

* 280 ЗЛ 4 6.87 1 25.00 0.11 0 .53 1 1.99 0.7 1 0.97 3.00 3 0 .2 5 -0 .1 98 i 82 1875 210 3.5 9 3.17 1 213.00) 5 .00 1.50 0.37 17.50 0 .9 1 0.93 0 .87 10.00 1.25 4 0 .1 -0 .0 5 loo i 167 833 190 6 .19 13.12 139-78 1 7.50 1.07 1.16 12.04 1.12 0 .8 2 1.04 5 .81 1.12 5 ' 0 .0 5 -0 .0 2 ■ 133 ! 172 j 527 70 9 .37 13.12 90.791 6.25 1.6o 2.2 2 8.5 « 1.12 1.09 1.12 3 .3 3 1.00 ! 6

:

0 .0 2 -0 .0 0 5 ! 262 I 230 265 120 28.08 22.29 50.00 16.62 7.65 5 .71 5 .3 2 4 .6 6 1.24 1.18 2 .0 0 0 .8 7 ! 7 0 .0 0 5 -0 .0 0 2 230 !

562

! 270 190 31.52 45.28 4 5 .0 0 32.50 13.12 11.62 12.22 10.07 2 .2 2 2.08 2 . 5 * 1.75 8 ■ 1 i < 0.002 J 215 '■327 190 1 120 56.56 58.3 5 3.00 51.25 10.32 9.98 14Л 6 10.91 1.87 1.83 3 .0 0 1.50 T a b l e 8 T ra c e ele m e n t c o n t e n t o f s o i l s ( i n ppm) S o i l s Un Cu Co Uo T P D T Ï I) T F D T F D Sand 45 42 3 5.62 6.04 0.42 0.58 0.57 0 .01 0.50 0.37 0.13 Loamy sand^ 285 103 182 11.25 8.08 3.17 2.29 2.10 0.19 2.25 1.58 0.67 Sandy loam 285 142 142 23.75 23.40 0.40 4.80 3.68 1.12 2.75 1.31 1.44 Loam 400 212 188 22.81 22.64 0.17 7.10 5.23 1.87 2.50 1.82 0.68 C lay loam 355 128 227 34.00 33.99 0.01 7.49 5.97 1.52 3.80 1.03 2.77 C lay 425 221 204 68.00 54.98 13.02 24.55 13.46 11.09 3.75 2.99 0.76 L o e s s 240 127 113 17.81 14.45 3.35 4.33 3.06 1.27 3.00 1.15 1.85 T - t o t a l c o n t e n t F - c o n t e n t in a l l s e p a r a t e d s o i l f r a c t i o n s D - t r a c e e le m e n t s s o l u b l e d u r in g f r a c t i o n a t i o n o f s o i l sa m p le

(13)

T he ch em ica l and p h y sic a l p ro p erties 15

The tra c e elem en ts contain ed in th e organic substance and th e soluble

fe rric h y d ro x y d es are rem oved from th e sam ple d u rin g fractio n atio n . The

c o n ten t of th ese form s of tra c e elem ents w as calcu lated from th e d iffe re n ­

ce b etw een th e w hole c o n ten t in th e sam ple and th e am o u n t found in all

th e fra c tio n s (Tab. 8). The larg est co n ten t of soluble form s w as fou nd for

m anganese. Cobalt and m oly b d enu m w ere soluble in m oderate am ounts.

A gain, copper w as m ost stro n g ly bou n d w ith th e soil m inerals.

C O N C L U SIO N S

F rom the perfo rm ed inv estig atio n s th e follow ing conclusions m ay be

d raw n :

1. T he re su lts of m in e ral com position d e te rm in a tio n s speak for th e

co n tin u an ce of th e ex istin g classification of g rain size fractio n s according

to P S S S norm s.

2. A ccording to specific g rav ity d e te rm in a tio n s th re e groups of te x tu ­

r a l fractio n s m ay be discerned: th e lig h t fractio n s — m ore th a n 0.02 m m

d iam e te r, th e m ed iu m h e a v y fractio n s 0.02— 0.002 m m, and th e h eav y

fra c tio n s — less th a n 0.002 m m d iam eter.

3. T he d e te rm in a tio n s of m ax im u m hygro scop icity allow to discern

follow ing te x tu r a l groups: v e ry low h y groscopicity (MH less th a n

0 .2 0 % )— p a rticle size 1.0— 0.05 m m , m o d erate hygroscopicity (MH =

0.20— 3.0P/o)—p a rticle size 0.05— 0.002 m m , and a large, su d d e n ly in c re ­

asing hygro scop icity (MH = about

16%) — p a rticle

size

less th a n

0.002 m m.

4. A ccording to th e p F cu rves th e P S S S classification is co rrect fo r

th e lim it 0.1 m m (betw een san d an d fine sand). T he lim it 0.02 m m b e­

tw een fine fine san d and coarse silt) is open to discussion as th e coarse

silt fra c tio n absorbs w a te r sim ila rly to th e fin e fin e sand fraction.

5. The base exchange cap acity of san d an d fine sand is v e ry low (it

does not exceed th e values o b tain ed for q u a rtz an d felspars). The lim it

0.1 m m (betw een sand an d fine sand) gives no v e ry d istin ct changes. The

base exchange cap acity stro n g ly increases in th e fractio n s less th a n

0.02 m m an d less th a n 0.002 m m d iam eter. T h erefo re th e P S S S fra c tio n

classification is correct in resp ect to base exchange capacity.

6. The co n ten t of m acroelem en ts u su a lly allow s to stre ss th e lim its

0.05 m m an d 0.005 m m as th e p rin cip les of classification.

7. The c o n ten t of tra c e elem en ts in th e b o u ld er loam s and th e loess

sp eak for th e co n tinuan ce of th e ex istin g classification into fractio n s ac­

(14)

cording to P S S S norm s. T he clay d iffers som ew hat: tra c e elem en t co n ten t

(not e x tra c te d d u rin g sam ple p rep aratio n ) decreases co n sid erab ly a lth o ­

u gh u n ifo rm ly to g eth e r w ith p a rticle size decrease dow n to 0.005 m m;

a fu rth e r p a rticle size decrease causes some increase in tra c e elem en t

content.

8. The classification of fractio n s used by th e P olish Society of Soil

Science (i.e. sand 1— 0.1 m m, fine sand 0.1— 0.02 m m, silt an d clay less

th a n 0.02 m m diam eter) is correct in m ost cases for th e pro p erties of th e

rocks in v estig ated here. In th e fu tu re ad d itio n al rese a rc h should be m ade

on th e com parison of th e p ro p ertie s of fra c tio n s w ith p a rticle size less

th a n 0.02 m m and less th a n 0.01 m m — to elu cid ate w hich of these should

be used as th e u p p er lim it of th e silt an d clay fraction.

9. W hen c h aracterizin g th e soils on th e base of th e ir m echanical com ­

position, th e con tent of colloidal clay (less th a n 0.002 m m p a rticle size)

should be u n iv ersa lly reck oned w ith in our investigations.

R EFEREN CES

[1] K r ó l i k o w s k i L. and a l.: E x p e r im e n ta l d eterm in a tio n of th e lo w er lim it of the soil sk eleto n . R oczn. G lebozn., dodatek do t. 14, 1964.

L . K R Ó L I K O W S K I , В . A D A M C Z Y K , J . B O R K O W S K I , H . K R Ó L , Z . P R U S I N K I E W I C Z , S . R Z Ą S A , E. S L U S A R C Z Y K , C. Ś W I Ę C I C K I , S . T R Z E C K I , T . W O C Ł A W E K

PR O PR IÉ T ÉS P H Y SIQ U E S ET C H IM IQ U ES DE D IF FE R E N T E S F R A C T IO N S G R A N U LO M É TR IQ U E S DE C ER T A IN E S R O C H ES-M ÉR ES

R é s u m é

A u cours du C ongrès In tern a tio n a l de P é d o lo g ie ten u à B u carest en 1964 la C om m ision de P h y siq u e des Sols de la S o ciété P o lo n a ise de P éd o lo g ie (PTG) a p ré­ se n té le s r ésu lta ts de ses rech erch es co n cern a n t la d éterm in a tio n de la lim ite in férieu re du sq u e le tte des sols. On con çoit com m e sq u e le tte le s p a rticu les a u -d essu s d’un m ilim ètre.

L es rech erch es ont été co n tin u ées pour caractériser les d iffé r e n te s fra ctio n s g ra n u io m étriq u es d istin g u ées par PTG et pour v é r ifie r les b ases de cette c la s sific a ­ tion. A cette fin on a ch oisi des r o ch es-m ères, com m e n ’a y a n t pas été ch a n g ées par les p rocessu s p éd o g en étiq u es. On a p rocéd é à des a n a ly ses de sab les, d’a rgiles m orain iq u es, d’a rg ile T ertia ire et de lo ess. On a p r é le v é des éch a n tillo n s: de lim on m o y en et lourd — dépôts du W ürm , de lim o n léger, de sa b le fa ib le m e n t a r g ile u x et de sa b le fr ia b le — dépôts du R iss. L ’argile T ertia ire p ro v en a it d e la B a sse S ilé sie , le lo ess — du P la tea u d e L ublin.

(15)

T he ch em ica l and p h y sic a l p ro p erties 17

On a préparé le s sols selo n la m éth o d e d e Jack son et on a e n su ite séparé le s fra ctio n s su iv a n tes:

1 — sa b le g rossier (1,0— 0,5 m m ); 2 — sa b le m o y en (0,5— 0,25 m m ); 3 — sa b le fin (0,25— 0,1 m m ); 4 — lim o n g rossier (0,1— 0,05 m m ); 5 — lim on fin (0,05— 0,02m m );

6 — a rg ile lim o n e u se gro ssière (0,02— 0,005 m m ); 7 — a rg ile lim o n e u se fin e (0,005— 0,002m m ); 8 — a rg ile ( < 0,002 m m ).

C es rech erch es ont p erm is de p résen ter le s co n clu sio n s su iv a n tes:

1. La com p osition m in éra le s ’accord e b ien a vec le s fra ctio n s g ra n u lo m étriq u es d istin g u ées par PTG .

2. En se b asan t sur le p oids sp é c ifiq u e on p eu t p rop oser les groupes de fra ctio n s su iv a n tes: fra ctio n s lég èr es ( > 0 ,0 2 m m ), fra ctio n s de p oid s m oyen (0,02— 0,002 m m ) et fra ctio n s lou rd es ( < 0,002 m m ).

3. On p eu t grouper les fra ctio n s d’après leu r h y g ro sco p icité m axim u m : fra ctio n s à h y g ro sco p icité fa ib le (MH > 0,20 % et d iam ètre 1,0— 0,05 m m ), fra ctio n à h y ­ groscop icité m o y en n e (MH = 0,20— 3,0 % et d iam ètre 0,05— 0,002 mm ) et fra ctio n s à fo rte h y g ro sco p icité (MH ca 16% et d ia m ètre < 0,002 mm ).

4. Pour le s courbes de pF la lim ite en tre le sa b le et le lim o n s ’accorde a v ec la n o m en cla tu re de PTG . On doit, au contraire, d iscu ter la lim ite en tre le lim on et la fra ctio n lé v ig a b le (à d iam ètre < 0,02 m m ), car la fra ctio n d’a rg ile lim o n e u se grossière absorbe l ’eau p a r e ille m e n t à la fra ctio n de lim on fin .

5. La ca p a cité d’éch a n g e ca tio n iq u e du sa b le et du lim o n est très b asse, com m e pour le qu artz et les feld sp a th s. L a lim ite en tre le sab le et le lim on n ’est pas nette. La cap acité d’éch a n g e de cation s accroît co n sid éra b lem en t dans la fra ctio n < 0,02 m m et su rtou t la fra ctio n < 0,002 m m . L a com p osition gra n u lo m étriq u e d’après PTG est donc ju ste dans la m a jo rité des cas s ’il fa lla it la b aser sur la cap acité d’éch an ge cation iq u e.

6. P ou r l ’a n a ly s e ch im iq u e to ta le (m acroélém en ts) il est p refera b le de se baser sur les fra ctio n s à d ia m ètre < 0,05 m m et < 0,005 m m .

7. L e ta u x d ’o lig o élém en ts dans les dépôts m o ra in iq u es et dans le lo e ss cor­ respond à la com p osition g ra n u lo m étriq u e d’après PTG . L ’argile T ertia ire d iffère un peu car la d im in u tion de d ia m ètre de fra ctio n s ’accorde d irectem en t a vec la d im in u tio n de ta u x d’o lig o élém en ts ju sq u ’au d iam ètre 0,005 m m , et e n su ite le ta u x des o lig o élém en ts s ’é lè v e à n ou veau .

8. La com p osition g r a n u lo m étriq u e u sité e par PTG (sable 1,0— 0,1 m m , lim o n 0,1— 0,02 m m et p a rticu les lé v ig a b le s à d ia m ètre < 0,02 mm ) correspond dans la m ajorité a u x p rop riétés des roch es étu d iées. Il fau d ra p ro ch a in em en t a n a ly ser des fra ctio n s à d iam ètre < 0,02 et < 0,01 m m pour choisir u n e d’elle s com m e la lim ite p rop osée de la fra ctio n lév ig a b le.

9. D ans le s rech erch es p éd o lo g iq u es il fa u t pren d re cas a u x p a rticu les à d iam ètre < 0,002 m m .

(16)

L . K R Ó L I K O W S K I , В . A D A M C Z Y K , J . B O R K O W S K I , H . K R Ó L , Z . P R U S I N K I E W I C Z , S . R Z Ą S A , E. Ś L U S A R C Z Y K , C. Ś W I Ę C I C K I , S . T R Z E C K I , T . W O C Ł A W E K

K E N N Z E IC H N U N G DER P H Y S IK A L IS C H E N U N D C H EM ISC H EN E IG E N SC H A F T E N EIN ZELN E R M EC H AN ISC H ER FR A K T IO N E N

DER M U TT E R G EST E IN E

Z u s a m m e n f a s s u n g

In B ezu g au f den 1964 in B u k a rest a b g eh a lten en B od en k u n d ek on greß , h atte die K o m m issio n fü r B o d en p h y sik der P o ln isc h e n G e s e llsc h a ft fü r B od en k u n d e, U n tersu ch u n g serg eb n isse über d ie G renzen der E in teilu n g in S k e le tt- und F ein erd e- T eile der B öden v o r g e ste llt, w o b e i die K o m m issio n v o rsch lä g t, als G ren zw ert 0 1 m m und n ich t 2 m m a n zu n eh m en .

D ie v o r lie g e n d e A rb eit w u rd e durch d ie K om m ission u n tern om m en , um die v o n der P o ln isch en G e se llsc h a ft fü r B od en k u n d e a u sg eso n d erten m ech a n isch en F ra k tio n en der B öden zu k en n zeich n en und die B illig k e it der a n g en o m m en en E in te i­ lu n g zu bergTünden.

P roben zur U n tersu ch u n g w u rd en en tn o m m en aus dem M u tterg estein , also aus ein em M aterial, das den B o d en b ild u n g sp ro zessen n ich t u n terlieg t. M an a n a l y ­

sierte Sande und G esch ieb eleh m , tertiä ren Ton und Löß; L ehm und sch w erer L ehm w u rd en von dem G eb iete des W ürm (Bez. O lsztyn), a h n lem ig er Sand (Bez. Poznań) und F lu gsan d (Bez. K ielce) von dem G eb iet des R iss en tn om m en . D er Ton kom m t von N ie d e r sc h le sie n und Löß v o n der L u b lin e r -H o c h e b e n e her.

D ie P rob en h a tte m an nach der J a ck so n -M eth o d e fra k tio n iert, w o b ei fo lg en d e F rak tion en ab geson d ert w ü rd en ;

1 — G robsand ( 0 1,0— 0,5 m m ); 2 — fe in e r e r G robsand ( 0 0,5— 0,25 mm ); 3 — gröberer F ein sa n d ( 0 0,25— 0,1 mm); 4 — m ittlerer F ein sa n d ( 0 0,1— 0,05 mm); 5 — fe in e r e r F ein sa n d ( 0 0,05— 0,02 mm); 6 — S c h lu ff ( 0 0,02— 0,005 mm ); 7 — fe in e r S c h lu ff ( 0 0,005— 0,002 mm ) und 8 — k o llo id a ler T on ( 0 < 0,002).

A u f G rund der d u rch g efü h rten U n tersu ch u n g en , k ö n n en fo lg e n d e S ch lü sse gezogen w erd en :

1. U n tersu ch u n g serg eb n isse fü r m in e r a lisc h e Z u sa m m en setzu n g sp rech en fü r die E rh altu n g der b ish erig en E in te ilu n g in F rak tion en , n ach d en durch d ie P o ln isch e G e se llsc h a ft fü r B od en k u n d e b estim m ten N orm en.

2. A u f G rund des sp ezifisch en G ew ich ts k ön n en drei F ra k tio n en g ru p p en a b g e ­ son d ert w erd en . Es sind: le ic h te F ra k tio n en < 0,02 m m , m itte lsc h w e r e 0,02— 0,002 mm und sc h w ere F ra k tio n en > 0,002 m m .

3. A u f G rund der m a x im a le n H y g ro sk o p izitä t k ö n n en die F ra k tio n en in fo lg en d e

G ruppen e in g e te ilt w erd en : G ruppen von seh r n ied rig er H yg ro sk o p izitä t

(MH < 0,20ю/о), — F ra k tio n sd u rch m esser 1,0— 0,05 m m ; von m ittle r e r H y grosk op izität (MH = 0,20— 3,0%) — F ra k tio n sd u rch m esser 0,05— 0,002 m m und von hoher, stark a n ste ig e n d e r H y g ro sk o p izitä t (MH ca 16°/o) — F ra k tio n en < 0,002 m m .

4. Für p F -K u r v e n ist d ie a n g en o m m en e E in teilu n g rich tig fü r Sand und obere G renze des F ein sa n d es. D ie u n tere F ein sa n d g ren ze und die obere der a b sch lä m m b a

(17)

-T he ch em ica l and p h y sic a l p rop erties 19

ren T e ile b leib en d isk u tab el, da die S c h lu ffr a k tio n den der fe in e r e n F ein sa n d fra k tio n n ah e S o rp tio n seig en sch a ften , h in sic h tlic h des W assers, a u fw e ist.

5. D ie A u sta u sch k a p a zitä t des S a n d es und der fe in e r e n F ein sa n d fra k tio n ist seh r n ied rig (sie ü b ersch reitet n ich t d ie W erte fü r Q uarz und F eld sp at). D ie A b g ren ­ zung des S a n d es v o n der fe in e r e n F ein sa n d fra k tio n ist ziem lich sch w a ch ausgeprägt. S ie ist d eu tlich er in den F ra k tio n en < 0,02 m m und < 0,002 m m . D ie durch die P o ln i­ sch e G e s e llsc h a ft fü r B o d en k u n d e v e r w e n d e te E in teilu n g in F ra k tio n en ist also h in sic h tlic h der A u sta u sch k a p a zitä t a llg em ein richtig.

6. H in sich tlich der ch em isch en Z u sa m m en setzu n g an M ak roelem en ten , k ön n en als E in teilu n g sg ru n d la g e T eilch en 0 < 0,05 m m und 0 < 0,005 m m dienen.

7. D er G eh alt an M ik ro elem en ten in G e sc h ie b e b ild n isse n und im Löß sp rich t fü r das E rh alten der b ish erig en E in teilu n g nach der P o ln isch en G e se llsc h a ft für B od en k u n d e. D er T on v e r h ä lt sich etw a s an d ers — der G eh alt an S p u ren elem en ten (w en n sie w ä h ren d der P räp arieru n g der B oden p rob en n ich t e x tr a h ie r t w erd en ) nim m t, m it der M inderung des D u rch m essers bis 0,005 m m ziem lich stark ab, w äh ren d e in e w e ite r e M in d eru n g des D u rch m essers ein e g e w iss e Z u n ah m e des M ik ro elem en teg eh a lts b ew irk t.

8. D ie, durch d ie P o ln isc h e G e se llsc h a ft fü r B o d en k u n d e a n g e w e n d e te E in te i­ lung’ in m ech a n isch e B o d en fra k tio n en (Sand 0 1— 0,1 m m , fe in e r e F ein san d frak tion ,

0 o ,l— 0,02 m m und ab sch läm m b are T e ile < 0,02 mm ) ist fü r die im R ahm en der A rb eit u n tersu ch ten E ig e n sc h a fte n der a n a ly sie r te n B ild n isse, in der M eh rh eit der F ä lle als rich tig an zu n eh m en . In der Z u k u n ft so llte m an zu sä tzlich e U n tersu ch u n g en über den V erg leich der E ig e n sc h a fte n der T e ile m it 0 < 0,02 m m und 0 < 0,01 m m u n tern eh m en um es au fzu k lären , w e lc h e r v o n d iesen D u rch m essern als obere G renze der ab sch läm m b aren T eile a n zu n eh m en ist.

9. B ei der K en n zeich n u n g der B öden au f G rund ih rer m ech a n isch en Z u sa m m en ­ setzu n g, so ll in u n seren U n tersu ch u n g en a llg e m e in d ie A u fm erk sa m k eit dem G eh alt an k o llo id a le n T eilch en g e w id m e t w erd en .

L . K R Ó L I K O W S K I , В . A D A M C Z Y K , J . B O R K O W S K I , H . K R Ó L , Z. P R U S I N K I E W I C Z , S . R Z A S A , E. S L U S A R C Z Y K , C. Ś W I Ę C I C K I , S . T R Z E C K I , T . W O C Ł A W E K

C H A R A K T E R Y ST Y K A W ŁA ŚC IW O ŚCI FIZY C ZN Y C H I CHEM ICZNYCH POSZC ZEG Ó LNY C H FR A K C JI M ECH A N IC ZN YC H S K A Ł M A C IER ZY STY C H

GLEB

S t r e s z c z e n i e

K o m isja F iz y k i G leb P o lsk ieg o T o w a rzy stw a G leb ozn aw czego, w zw iązk u z od ­ b y w a ją c y m się M ięd zyn arod ow ym K on gresem G leb o zn a w czy m w 1964 r. w B u k a ­ reszcie, p rzed sta w iła w y n ik i badań nad u sta le n ie m g ra n icy p od ziału na części sz k ie ­ le to w e i części ziem iste gleb , p rop on u jąc p o w szech n e p r z y jęcie 0 1 m m a n ie 2 m m — jako w a r to śc i gran iczn ej.

N in ie jsz ą pracę K om isja p o d jęła celem sch a ra k tery zo w a n ia w y ró żn ia n y ch przez PT G leb fr a k c ji m e c h a n iczn y ch g leb oraz u za sa d n ien ia w jak im sto p n iu p rzy jęty pod ział je s t słu szn y .

Do badań pobrano próbki z m a teria łu n ie o b jętego p ro cesa m i g leb o tw ó rczy m i, a w ię c ze sk a ł m a cierzy sty ch gleb. A n a lizo w a n o p ia sk i i g lin y z w a ło w e, ił trzecio ­

(18)

rzęd o w y i less. G lin ę śred n ią i ciężką pobrano z teren u osta tn ieg o zlo d o w a cen ia (w oj. O lsztyn), a g lin ę lek k ą (w oj. W arszaw a), p ia sek sła b o g lin ia sty (woj. Poznań) i p ia sek lu źn y (w oj. K ielce) — z teren u z lo d o w a cen ia śro d k o w o -p o lsk ieg o . Ił pochodzi z D oln ego Ś lą sk a , a le s s z W y ży n y L u b elsk iej.

P róbki fr a k cjo n o w a n o m etod ą Jack son a, w y d z ie la ją c z n ich n a stęp u ją ce frak cje: 1 — p ia sek gruby ( 0 1,0— 0,5 m m );

2 — p ia sek śred n i ( 0 0,5— 0,25 m m ); 3 — p iasek drobny ( 0 0,25— 0,1 m m ); 4 — p y ł gruby ( 0 0,1— 0,05 mm ); 5 — p y ł drobny ( 0 0,05— 0,02 m m ); 6 — ił p y ło w y gruby ( 0 0,02— 0,005 mm ); 7 — ił p y ło w y drobny ( 0 0,005— 0,002 mm ); 8 — ił k o lo id a ln y ( 0 < 0,002 mm ).

N a p o d sta w ie p rzep row ad zon ych badań m ożn a w y c ią g n ą ć n a stęp u ją ce w n io sk i: 1. W yn ik i otrzym an e dla sk ład u m in era ln eg o p rzem a w ia ją za u trzym an iem do­ ty ch cza so w eg o p od ziału na fra k cje w g norm P T G leb.

2. N a p o d sta w ie ciężaru w ła śc iw e g o m ożna w y o d ręb n ić trzy grupy frak cji: fra k cje le k k ie > 0,02 m m , fr a k c je śred n io cięż k ie 0,02— 0,002 m m i fra k cje cięż k ie < 0,002 m m .

3. N a p o d sta w ie m a k sy m a ln ej h ig ro sk o p o w o ści m ożna p od zielić fra k cje na n a stęp u ją ce grupy: o bardzo n isk iej h ig ro sk o p o w o ści (MH < 0,20fl/o),— średnica fra k cji 1,0— 0,05 m m ; o śred n iej h ig ro sk o p o w o ści (MH = 0,20— 3,0%) — śred n ica fr a k ­ cji 0,05— 0,002 m m i dużej, g w a łto w n ie w zra sta ją cej h igrosk op ow ości (MH -= ca 16°/o) — fr a k c je < 0,002 m m .

4. D la k rzy w y ch pF p rzy jęty p o d zia ł je st słu szn y dla p iask u i g'ôrnej gran icy p yłu . D olna gran ica p y łu i górna części sp ła w ia ln y c h p ozostaje sp raw ą d ysk u sy jn ą , p o n iew a ż fra k cja iłu p y ło w eg o grubego m a w ła śc iw o ś c i so rp cy jn e w zg lęd em w ody z b liżo n e do fra k cji p yłu .

5. P o jem n o ść sorp cyjn a k a tio n o w a p iask u i p y łu jest bardzo n isk a (nie p rze­ kracza w a r to śc i u zy sk a n y ch dla k w arcu i sk alen i). G ranica m ięd zy p ia sk iem i p y ­ łem zaznacza się dość słabo. W yraźn ie w zra sta ona w e fra k cja ch < 0,02 m m i < 0,002 m m . P od ział na fra k cje sto so w a n y p rzez P T G leb. jest w ię c na ogół w od ­ n ie sie n iu do p o jem n o ści sorp cyjn ej słu szn y .

6. W o d n iesien iu do sk ła d u ch em iczn ego m a k ro p ierw ia stk ó w ogółem za p o d sta w ę p od ziału m ogą słu ży ć części o 0 < 0,05 m m i o 0 < 0,005 mm .

7. Z aw artość m ik ro elem en tó w w utw orach zw a ło w y ch i w le s s ie p rzem a w ia za u trzym an iem d otych czasow ego p o d zia łu P T G leb. Ił za ch o w u je się n ieco od ręb n ie — za w artość p ie r w ia stk ó w śla d o w y ch (nie w y e k str a h o w a n y c h z próbek w trak cie p rep arow an ia gleb y) obniża się zn aczn ie choć ró w n o m iern ie ze zm n iejszen iem się śred n icy cząstek do 0,005 m m , d alsze z m n iejszen ie się śred n ic p o w o d u je p e w ie n w zrost za w a rto ści m ik ro elem en tó w .

8. S to so w a n y przez PTG leb. p od ział na fra k cje m ech a n iczn e (piasek 0 1— 0,1 mm, p y ł (Z) 0,1— 0,02 m m i części sp ła w ia ln e < 0,02 mm ) jest w w ię k sz o śc i przyp ad k ów słu szn y dla p rzeb ad an ych w ram ach p racy w ła śc iw o ś c i a n a lizo w a n y ch utw orów . W p rzyszłości n a leża ło b y podjąć d od a tk o w e bad an ia nad p o ró w n a n iem w ła śc iw o ś c i części o 0 < 0,02 m m i o 0 < 0,01 m m celem w y ja śn ie n ia , którą z tych średnic n a leży p od aw ać jako górną gran icę części sp ła w ia ln y ch .

9. P rzy ch a ra k tery sty ce gleb na p o d sta w ie ich sk ła d u m ech a n iczn eg o n a leży w n aszych b ad an iach p o w szech n ie zw racać u w a g ę na zaw artość części k o lo id a ln y ch .

Cytaty

Powiązane dokumenty

Na podstawie wyżej omówionych badań moż− na wyciągnąć wnioski: średnia długość i szerokość mezjodensów jest znacznie mniejsza niż zębów prawidłowych; kształt

Ze względu na znaczącą rolę muzealnictwa przyrodniczego w regionie, zarówno w zakre- sie upowszechniania złożonej tematyki związa- nej z ochroną przyrody, jak i zabezpieczenia

Zastałem tu dawny przepych, liczną służbę, w ykw intny stó ł i rozległe apartam enty urządzone w najnow szym stylu, ale biedny biskup nie ma ani szeląga w

Fabryka wyszła z zawieruchy wojennej cało. Protokolarne prze­ kazanie obiektu przez przedstawicieli Armii Czerwonej reprezen­ tantom G rupy O peracyjnej KERM m iało

Wspólnie z bra- tem Bogdanem Wojciechem założył w 1995 Muzeum Ziemi Choszczeńskiej i Regionalne Towarzystwo Historyczne Ziemi Choszczeńskiej, opracowali też projekty herbów i

13 Pieczęć klasztoru cysterek w Pełczycach, zob. 1) SBPK Berlin, Oelrichs Sammlung, Nr. Syska, Dokumenty Gorzowa, dz. Pieczęć miejska Pełczyc, zob. 1) SBPK Berlin, Oelrichs

32 Zdarzenie takie opisuje w swych wspomnieniach Franciszek Karpiński. Opowiada, jak starszy brat, który byt w klasie retoryki i przygotowywał się do stanu duchownego,

Pisarz w całym dziele dużo uwagi pośw ięca d ociekaniom etym ologicznym , i ten postulat ja k o au­ tor przew odnika dla lustratorów świata realizuje bardzo