• Nie Znaleziono Wyników

The positive and negative influences of VMA's on the robustness of fresh self-compacting concrete

N/A
N/A
Protected

Academic year: 2021

Share "The positive and negative influences of VMA's on the robustness of fresh self-compacting concrete"

Copied!
14
0
0

Pełen tekst

(1)

F a r i d V a n D e r V u r s t , S t e f f e n G r ü n e w a l d , a n d G e e r t D e S c h u t t e r

The Positive and Negative itifiusnces of VIVIA's on tiie

Robustness of Freshi Seif-Compacting Concrete

A b s t r a c t

O v e r t i m e , several mix design m e t l i o d s l i a v e b e e n d e v e l o p e d to obtain a self-c o m p a self-c t i n g self-c o n self-c r e t e ( S C C ) with suitable fresh a n d h a r d e n e d self-c o n self-c r e t e properties. T h e very fluid c o n c r e t e with no n e e d for external c o m p a c t i o n is a c h i e v e d by using a higher p o w d e r c o n t e n t a n d the use of c h e m i c a l a d m i x t u r e s . S e g r e g a t i o n a n d bleeding are p r e v e n t e d by either an a p p r o p r i a t e yield stress, a high plastic viscosity, or i n t e r m e d i a t e v a l u e s of both ( a s s u m i n g t h e B i n g h a m m o d e l ) . T o avoid rejection of b a t c h e s , it is important for a n S C C to have a sufficient r o b u s t n e s s : the ability to w i t h s t a n d small variations in the mix proportions, material properties, a n d m e t h o d s of c a s t i n g . T h i s e x p e r i m e n t a l s t u d y e x a m i n e d the effect of t w o V M A ' s with different w o r k i n g m e c h a n i s m s on the r o b u s t n e s s of S C C mixtures. T h e influence of attapulgite clay, d i u t a n g u m , a n d no V M A addition on the r o b u s t n e s s of the s l u m p flow, V - f u n n e l time, sieve stability, a n d rheological p a r a m e t e r s of a S C C m i x t u r e stabilized by a relatively high yield stress a n d a S C C mixture stabilized by a high plastic viscosity is studied in this e x p e r i m e n t a l p r o g r a m .

1. Introduction

1.1. S e l f - c o m p a c t i n g c o n c r e t e ( S C C )

S e l f - c o m p a c t i n g c o n c r e t e , also referred to as self-consolidating concrete or S C C , is a highly flowable type of concrete not requiring a n y e x t e r n a l c o m p a c t i o n . A high p o w d e r c o n t e n t a n d the use of c h e m i c a l a d m i x t u r e s in this type of concrete allow the air b u b b l e s to e s c a p e under the w e i g h t of the fresh c o n c r e t e after casting. Eliminating the n e e d of labor-intensive a n d e n e r g y - c o n s u m i n g vibration of the fresh c o n c r e t e , this t y p e of c o n c r e t e b e c o m e s v e r y suitable for the precast industry a n d applications in w h i c h external c o m p a c t i o n w o u l d result in big difficulties a n d risks, s u c h as m a s s i v e f o u n d a t i o n s or casting with c o m p l e x f o r m w o r k [1].

1.2. T h e r o b u s t n e s s of f r e s h S C C

In spite of the m a n y a d v a n t a g e s , s e l f - c o m p a c t i n g c o n c r e t e has not a lot of m a r k e t s h a r e . B e s i d e s the fact a high p o w d e r content m a k e s concrete m o r e e x p e n s i v e a n d s o m e t i m e s m o r e susceptible t o s h r i n k a g e cracks, the higher sensitivity to small variations in the mix proportions and material properties affects the choice b e t w e e n S C C and v i b r a t e d concrete. This higher sensitivity, also referred to as a lower r o b u s t n e s s , results f r o m a m o r e c o m p l e x mix d e s i g n w i t h in general m o r e constituents and a lower yield stress w h i c h increases the risk of s e g r e g a t i o n [2, 3].

Starting with a p r o p e r mix d e s i g n , the r o b u s t n e s s a g a i n s t small c h a n g e s in the w a t e r c o n t e n t can be i m p r o v e d by optimizing the g r a d i n g curve of the a g g r e g a t e s [4-6], the right c h o i c e of superplasticizer [7], a n d the use of a V M A [5, 8-16]. H o w e v e r , V M A ' s can also r e d u c e the r o b u s t n e s s of S C C [8, 16].

(2)

1.3. T h e r h e o l o g y of f r e s h S C C

A s illustrated in the generally a c c e p t e d g r a p h of a p p r o p r i a t e B i n g h a m p a r a m e t e r c o m b i n a t i o n s for S C C (Figure 1, originally m a d e by O l a f u r a n d J o n W a l l e v i k [17]), different stability m e c h a n i s m s can be a c h i e v e d to m e e t both the contradictory d e m a n d s of a sufficient flowability a n d sufficient stability against s e g r e g a t i o n and b l e e d i n g .

160 I

1 1 1

1

120 ro 3

AO

Min. ^lump-flovy to obtain

O 550 mnfi

SCC

fl_tnm 0 30 60 90 120

Plastic viscosity [Pa s] (Mk/CT/BML-values)

Figure 1: Range of suitable rheological characteristics of SCC [17]

Results of an earlier e x p e r i m e n t a l s t u d y in w h i c h no V M A ' s w e r e included [18] g a v e the i m p e t u s for the investigation d e s c r i b e d in this paper. S C C mixtures w i t h a low plastic viscosity a n d relatively high yield stress (left side of the g r a p h ) are mainly stabilized by their high yield stress and t h e r e f o r e especially the r o b u s t n e s s of this yield stress is i m p o r t a n t for the probability of a c c e p t a n c e of t h e s e mixtures. T h e flowability and s e g r e g a t i o n resistance of S C C mixtures with a high plastic viscosity a n d a low or e v e n no yield stress (on the right side of the g r a p h ) is g o v e r n e d by their high plastic viscosity. T h e r o b u s t n e s s of this high plastic viscosity therefore d e t e r m i n e s the r o b u s t n e s s of s u c h a mixture [18].

T h i s p a p e r investigates w h e t h e r the influence of two V M A ' s on the r o b u s t n e s s of a S C C mixture with high yield stress a n d low plastic viscosity is the s a m e as o n a S C C mixture with low yield stress a n d high plastic viscosity. C h a n g e s in the w a t e r content of ± 10 l/m^ w e r e applied to the S C C mixtures to s t u d y the robustness.

2. Materials a n d m e t h o d s 2.1. Materials

All S C C mixtures w e r e m a d e with Portland c e m e n t C E M I 5 2 . 5 N (density 3 1 1 6 kg/m^ a n d a Blaine f i n e n e s s of 368 m^/kg), limestone p o w d e r (density 2 6 7 4 kg/m^), a P C E superplasticizer (concentration of 3 5 % ) , Rhine s a n d , river gravel 2/8, a n d river g r a v e l 8/16 (density respectively 2 5 7 5 , 2 6 6 8 , and 2 6 5 8 kg/m^). T h e g r a d i n g c u r v e s of the a g g r e g a t e s , c e m e n t and limestone p o w d e r are s h o w n in Figures 1 a n d 2. T h e c h e m i c a l c o m p o s i t i o n s of the c e m e n t a n d limestone filler are given in T a b l e 1.

C e m e n t [%] L i m e s t o n e filler [%] C a O 6 3 . 0 1 0 . 0 0 C a C O s 0 . 0 0 9 8 . 8 SIO2 1 8 . 5 5 0 . 1 1 AI2O3 5 . 8 3 0 . 0 4 F e j O s 4 . 0 9 0 . 0 4 M g O 1.22 0 . 3 2 K2O 0 . 6 0 0 . 0 0 N a z O 0 . 5 3 0 . 0 1 SO3 2 . 9 7 0 . 0 2 S 0 . 0 4 0 . 0 1 ci^- 0 . 0 8 6 < 0 . 0 0 8 L.O.I. 1.24 -I n s o l u b le r e s t 0 . 9 4

-Table 1: Chemical composition of the cement

(3)

T w o t y p e s of V M A are u s e d in tliis experimental p r o g r a m : d i u t a n g u m a n d purified attapulgite clay. Diuan g u m is a high molecular w e i g h t microbial p o l y s a c c h a r i d e , fixing part of the mixing w a t e r with h y d r o g e n b o n d s . T h e p o l y m e r c h a i n s e n t a n g l e at rest a n d align during s h e a r f l o w [9, 19]. Attapulgite clay consists of small needles with negative c h a r g e s along its m a i n axis a n d p H - d e p e n d e n t c h a r g e s at t h e e n d s , strongly increasing the floe strength In c e m e n t pastes [20, 21].

Figure 1: The particle size distributions of the aggregates 1 0 0 0 , 0 0 1 . 0 , 0 1 , , 0 , 1 P a r t i c l e s i z e ( m m ) C E M I 52.5 N Limeston e powder

Figure 2: The particle size distributions of the cement and limestone filler

2.2. Mix p r o p o r t i o n s

T h e mixture c o m p o s i t i o n s of this test p r o g r a m are s u m m a r i z e d in T a b l e 2. A s r e c o m m e n d e d by the manufacturer, the d o s a g e of diutan g u m w a s c h o s e n as 0 . 0 5 % of the w a t e r w e i g h t and the d o s a g e of attapulgite clay w a s c h o s e n as 0 . 1 5 % of the c e m e n t w e i g h t . W h e n diutan g u m w a s a d d e d , the superplasticizer d o s a g e w a s a d j u s t e d in order to obtain an o p t i m u m flowability for this m i x t u r e . T h e r o b u s t n e s s is studied by c h a n g i n g the w a t e r content with ± 1 0 l/m^ water. Mix A M i x B River gravel 8/16 [kg/m^] 470 470 River gravel 2/8 [kg/m'l 266 265 Rhine sand 0/5 [kg/m^j 835 834 Limestone filler [kg/m^] 160 250 Cement [kg/m^j 390 350 Water [kg/m^] 195 175 Superplasticizer [l/m^] 1.86 4.00

Table 2: Mixture compositions

2.3. M e t h o d s

All mixtures are m a d e in a planetary pan m i x e r of 50 liters using a fixed mixing p r o c e d u r e a n d timing o f t h e workability tests to eliminate additional influences:

• The aggregates, cement, and limestone powder are mixed for 1 minute;

0 The water is added to the mixer and mixing continues for 1 minute;

• The superplasticizer is added and mixing continues for 1 minute. When a VMA is included in the mix design, it is added 30 seconds after adding the superplasticizer during this step;

• 3 minutes of rest;

• Start of the workability tests: measurement of the slump flow, the V-funnel time, the sieve stability index (S.S.I.), the density and air content, and the rheological parameters of the produced mixture.

Figure 3: The rotational velocity profile applied during the rheometer tests.

(4)

T h e rheological p a r a m e t e r s w e r e d e t e r m i n e d in an ICAR r h e o m e t e r with a 6 - b l a d e d v a n e with a d i a m e t e r of 127 m m a n d a height of 127 m m in a ribbed cylindrical bucket with a d i a m e t e r of 2 8 6 m m . T h e t o r q u e n e c e s s a r y to rotate the v a n e a c c o r d i n g to a fixed rotation s p e e d profile including a s e g r e g a t i o n point, as illustrated in Figure 3, is m e a s u r e d . T h e data m e a s u r e d during the last 2 s e c o n d s of e v e r y rotational velocity s t e p w a s u s e d to calculate the Modified B i n g h a m rheological p a r a m e t e r s [22] ( E q . 1). W h e n plug f l o w o c c u r r e d , a plug f l o w correction w a s applied during the analysis [ 2 2 ] .

T = T o + / / - y + c - y ^ ( E q u a t i o n 1)

3. R e s u l t s a n d d i s c u s s i o n

T a b l e 3 s u m m a r i z e s the fresh properties of t h e reference mixtures A a n d B in w h i c h diutan g u m , attapulgite clay, a n d no V M A w e r e a d d e d . T w o mixtures in w h i c h diutan g u m is a d d e d to mix B w e r e c o n s i d e r e d : o n e with a lower superplasticizer d o s a g e w h i c h w a s v e r y sensitive to a d e c r e a s e of the w a t e r content, a n d o n e with a higher s u p e r p l a s t i c e r d o s a g e w h i c h w a s very sensitive to an increase of the w a t e r content a n d s u f f e r e d f r o m b l e e d i n g . M i x t u r e S P d o s a g e S l u m p f l o w v-f u n n e l t i m e s . s . i . D e n s i t y A i r c o n t e n t Y i e l d s t r e s s To M o d . B . p i . v i s e , fl M o d . B . 2"" o r d . c o ë f f . [l/m^] [ m m ] [ s ] [%] [kg/mT [%] [ P a ] c [ P a s^] M i x A 1.06 7 2 0 3.8 1 0 . 8 2 3 5 0 1.6 2 9 3 8 0 M i x B 4 . 0 0 7 0 5 9 . 5 1 4 . 5 2 3 6 0 2 . 0 0 3 4 1 0 M i x A -D i u t a n G u m 3 . 2 9 6 8 0 7 . 6 1 1 . 9 2 3 5 0 1.8 3 7 6 9 0 M i x B -D i u t a n G u m 1 6 . 5 7 6 9 5 1 4 . 8 1 5 . 0 2 3 6 0 2 . 0 2 3 8 1 6 M i x B -D i u t a n G u m 2 8 . 0 0 7 8 5 1 0 . 9 2 1 . 2 2 3 7 0 1.7 8 4 9 4 M i x A -A t t a p u l g i t e c l a y 2 . 0 0 6 7 5 4 . 6 8.2 2 3 6 0 1.7 5 1 4 5 0 M i x B -A t t a p u l g i t e c l a y 3 . 1 4 6 6 0 1 0 . 1 9 . 4 2 3 7 0 2 . 6 3 4 6 0 13

Table 3: The fresh state properties the SCC mixes

T h e r o b u s t n e s s , defined as the c a p a c i t y of a mixture to tolerate small c h a n g e s in the w a t e r content ( ± 1 0 l/m^), w a s e v a l u a t e d using three p a r a m e t e r s for e a c h workability test: the c h a n g e of the test r e s p o n s e (e.g. A S F ) , the c h a n g e of the test r e s p o n s e per liter w a t e r (e.g. A S F / 20 l/m^) a n d the ratio of the interval divided by the m e a n value ( e . g . A S F / SFref). T h e plastic viscosity listed in T a b l e 4 is the first derivative of the s h e a r stress to the s h e a r rate at 5 s'^ f o r the mixtures having a Modified B i n g h a m rheological behavior (Equation 2). All test results are plotted in Figures 4 to 7.

(5)

Mix A Mix A Mix A Mix B M I x B Mix B Mix B No V M A D i u t a n A t t a p u l g i t No V M A D i u t a n D i u t a n A t t a p u l g i t f j U l l ) e c l a y g u m 1 g u m 2 e c l a y S l u m p f l o w 720 080 675 705 695 785 660 [ m m ] A S F 245 113 203 95 210 65 330 ASF / 20 l/m^ 12.3 5.6 10.1 4.8 10.5 3.3 16.5 ASF / SFref [-] 0.34 0.17 0.30 0.14 0.30 0.08 0.50 V - f u n n e l t i m e [s] 3.8 7.6 4.6 9.5 14.8 10.9 10.1 A V F 4.1 5.1 3.5 4.9 43.7 5.7 5.4 AVF / 20 l/m^ 0.20 0.26 0.17 0.25 2.19 0.29 0.27 A V F / V F , e r [ - l 0.25 0.68 0.75 0.52 2.95 0.52 0.54 S.S.I. [%] 10.8 11.9 8.2 14.5 15.0 21.2 9.4 ASSI 10.5 11.1 11.7 8.0 21.3 4.8 22.5 ASSI / 20 l/m= 0.53 0.55 0.59 0.40 1.06 0.24 1.12 A S S I / S S I „r [-] 0.97 0.93 1.43 0.55 1.42 0.23 2.40 Y i e l d s t r e s s [Pa] 29 37 51 0 23 8 34 AYS 123 36 63 17 227 17 58 AYS / 20 I/m' 6.2 1.8 3.1 0.8 11.4 0.8 2.9 A Y S / Y S r e f [-] 4.30 0.97 1.23 - 9.71 2.17 1.69 P l a s t i c 38 68 45 138 145 93 193 v i s c o s i t y [Pa s] 38 68 45 138 145 A P V 51 54 41 164 270 101 209 APV / 20 I/m' 2.5 2.7 2.0 8.2 13.5 5.0 10.4 A P V / P V , e f [-] 1.32 0.78 0.91 1.18 1.87 1.08 1.08

Table 4: The influence of VMA's on the sensitivity to changes in the water content

A s illustrated in Figure 4, mixtures A, with a high yield stress a n d low plastic viscosity r j s ^ - i (the first derivative of the s h e a r stress to the s h e a r rate at 5 s'^) react different o n the inclusion of a V M A in the mix design t h a n the mixtures B, with a high plastic viscosity a n d low yield stress.

T h e r o b u s t n e s s of the yield stress of mixtures A increases significantly w h e n a V M A is included in the mixture. Both diutan g u m a n d attapulgite clay had only a small influence o n t h e r o b u s t n e s s of the plastic viscosity of mixtures A. W h e n the superplasticizer d o s a g e w a s adjusted in order to reach a similar flowability as the original mixture B (low yield stress a n d high plastic viscosity), both V M A ' s d e c r e a s e d t h e r o b u s t n e s s of yield stress and plastic viscosity for mixtures B. Especially a s m a l l d e c r e a s e of the w a t e r content had a p r o n o u n c e d effect on the r h e o l o g y of m i x t u r e s B. In order to c o u n t e r a c t this high sensitivity, a n o t h e r mixture B w a s t e s t e d , including diutan g u m and a larger d o s e of superplasticizer ( s l u m p flow 7 8 5 m m ) . This mixture had an i m p r o v e d r o b u s t n e s s of the B i n g h a m p a r a m e t e r s , but s u f f e r e d f r o m s e v e r e bleeding and s e g r e g a t i o n . ! i . 1 5 0 « B 100 50 100 200 300 V i s c o s i t y n(6 8 ' ) [Pa s ] é / / / / / / / / • / / / / / / / / 1 / / / ^^^^ A ••'HH-n--*' O - W i x A - N o V M A

-Mix A - Diutan gum

—<j—MixA - Attapulgite d a y - O - M i x B - N o VMA - • O - M i x B - Diutan gum 1 - i ^ - M i x B - Diutan gum 2 - . ( V - M i x B - Attapulgite clay 400

(6)

Similar t r e n d s are o b s e r v e d for the workability tests:

• Slump flow (Figure 5): Adding a VMA increased the slump flow robustness of the mixture A with a high yield stress and low plastic viscosity and decreased the slump flow robustness of the mixture B with a high plastic viscosity and minimal yield stress. • V-funnel time (Figure 6): Although all other mixtures had a similar V-funnel robustness,

the V-funnel robustness of mixture B is significantly affected when diutan gum is added to the mix design: a very viscous mixture was obtained when the water dosage is decreased with 10 l/m^ When the same mixture was produced with a higher dosage of superplasticizer, a similar robustness as for the original mixture was measured.

• S.S.I. (Figure 7): The use of VMA's in mixture A resulted in a more sensitive S.S.I, to an excess of water and a less sensitive S.S.I, to a reduction of the amount of water, resulting in a more or less similar robustness of the sieve stability test. The measured S.S.I, of mixtures B were above the maximum limits for SCC when VMA's were included in the mix design. However, no pronounced segregation or bleeding were observed during the workability tests. Only 'Mixture B - Diutan Gum 2' with a very high superplasticizer dosage suffered from severe bleeding and segregation.

900

l.ltnimuiii S C C (EFNARC)

- : _ Mi«A-NoVr,1A

-Mix A-Diutan gum

-MixA-Altapulgileclay •15 -10 -5 0 5 10 15 Watcrvarlatlon[i;mT A o - ' " S'

« • • • Minimum S C C (EFNARC) — C — M i x B - N o V h t A

)--Mix B - Diutan gum 1

- • - - M i x B • Qulan gum 2

- . T > - M i x B • Attapulgite ciay

-16 .6 5 Water varialiontl/mT

Figure 5: The robustness of the slump flow test

ii

iio

^ ' • Maximum S C C (EFNARC)

-Mix A - NeVt.lA

-Mix A - Diutan gum

-Mix A-Attapulgite clay

-15 -6 S 15 Water variation p / m l Up to 54.4 s ,.v 1 1 t 1 1 1 1 » •>. • • Maximum S C C (EFNARC) - - , > - M i x B - N o V ( , 1 A - K > - M i x B - Dutan gum 1 - « - - M i x B - D i u l a n 9 u m 2 . ^ j . - M i x B - Attapui^teclay • 15 -5 5 15 Water variation [I/m')

(7)

• • • Maximum S C C (EFNAHC) -Mix A . No VMA - M i x A - Diutan gum -MixA-Altapuigite clay -15 -5 5 Water variation P'mT 25 20

... •iJ'

/ A • • • • Maxiinum S C C (EFNARC) • • ) - - M i x B - N o V t , 1 A - - O - M i x B - Diutan gum 1

--Mix B - Dutan gum 2

--•—-Mix B - AttapuIgilQ clay

•15 -5 5 15 Watervariatlonll/ni')

Figure 7: Tine robustness of ttie S.S.I.

Diutan g u m a n d purified attapulgite clay have different w o r k i n g m e c h a n i s m s in S C C . T h e diutan g u m p o l y s a c c h a r i d e m o l e c u l e s dissolve in the mixing w a t e r , d e v e l o p attractive f o r c e s , a n d intertwine with e a c h o t h e r [9, 19]. T h i s increases the viscosity of the mixing w a t e r at rest, resulting in a n increased yield stress a n d plastic viscosity of the concrete mix. Attapulgite clay particles are c h a r g e d n e e d l e s w h i c h increase flocculation rate a n d yield stress of the c o n c r e t e mixture [ 2 0 , 2 1 ] . T h e influence of the V M A ' s on the rheology is partly c o m p e n s a t e d by an increased superplasticizer d o s a g e . B e c a u s e mixtures B with a low yield stress a n d high plastic viscosity are already on the limit of bleeding, an increase of the superplasticizer d o s a g e e n d a n g e r s the stability of the m i x t u r e s . T h e r o b u s t n e s s of t h e s e mixtures d e c r e a s e s b e c a u s e o f t h e m o r e n a r r o w r a n g e of a c c e p t a b l e superplasticizer d o s a g e limited by e x c e s s i v e bleeding a n d a too v i s c o u s mixture. T h e r e f o r e , small variations in the w a t e r content affect this delicate equilibrium a n d a d e c r e a s e of the r o b u s t n e s s of these mixtures is o b s e r v e d .

For mixtures with a high yield stress a n d low plastic viscosity, t h e larger a m o u n t of free w a t e r allows the fixation of part of the mixing water. T h e mixtures are less sensible to bleeding a n d therefore a n increase of the superplasticizer content c a u s e s less p r o b l e m s . Diutan g u m increases t h e plastic viscosity of S C C , providing m o r e resistance to c h a n g e s of the w a t e r c o n t e n t c o m p a r e d to attapulgite clay.

4. C o n c l u s i o n s

T h e influence of V M A ' s on the r o b u s t n e s s of the s l u m p f l o w d e p e n d s on the m e c h a n i s m s e n s u r i n g the stability of the mixture. Mixtures with a high yield stress a n d low plastic viscosity, w h i c h include m o r e free water, benefit f r o m the fixation of part of the w a t e r by diutan g u m or a n i n c r e a s e d floe strength originating f r o m the purified attapulgite clay. T h e r e d u c e d flowability can be c o m p e n s a t e d with an increase of the superplasticizer content. W h e n V M A ' s are included in m i x t u r e s with a low yield s t r e s s , a l r e a d y o n the limit of b l e e d i n g , an increase of the superplasticizer d o s a g e r e d u c e s the c a p a c i t y of the mixture to a d s o r b small variations in the w a t e r content.

5. A c k n o w l e d g e m e n t s

T h e a u t h o r s w o u l d like to e x p r e s s t h e i r s p e c i a l t h a n k s a n d g r a t i t u d e t o T o m S t u l e m e i j e r f o r h i s a s s i s t a n c e a n d c o o p e r a t i o n d u r i n g t h e e x p e r i m e n t a l w o r k . T h e S c i e n c e F o u n d a t i o n F l a n d e r s ( F W O ) is g r a t e f u l l y a c k n o w l e d g e d f o r its f i n a n c i a l s u p p o r t .

(8)

6. R e f e r e n c e s

[ I ] De Schutter G, Bartos P J M , D o m o n e P, Gibbs J . S e l f - c o m p a c t i n g c o n c r e t e . D u n b e a t h , S c o t l a n d , UK: Whittles Publishing 2 0 0 8 .

[2] Bonen D, D e s h p a n d e Y, Olek J , Shen L, Struble L, Lange DA, et al. Chapter 1 . Robustness of S C C . In: L a n g e DA, ed. Self-consolidating concrete. Urbana, IL, U.S.A.: T h e Center for A d v a n c e d C e m e n t Based Materials ( A C B M ) 2 0 0 7 : 4 - 2 2 .

[3] Naji S, H w a n g S-D, K h a y a t K H . R o b u s t n e s s of self-consolidating concrete incorporating different viscosity-enhancing a d m i x t u r e s . A C I Materials J o u r n a l . 2 0 1 1 ; 1 0 8 ( 4 ) : 4 3 2 - 8 .

[4] K w a n A K H , Ng lYT. O p t i m u m superplasticiser d o s a g e a n d a g g r e g a t e proportions for S C C . M a g a z i n e of C o n c r e t e R e s e a r c h . 2 0 0 9 ; 6 1 ( 4 ) : 2 8 1 - 9 2 .

[5] Bonen D, D e s h p a n d e Y, O l e k J , Shen L, Struble L, L a n g e DA, et a l . R o b u s t n e s s of self-consolidating c o n c r e t e . In: D e Schutter G, Boel V, e d s .

5th International RILEM Symposium on Self-Compactlng Concrete. G h e n t , B e l g i u m : R I L E M

Publications S A R L 2 0 0 7 : 3 3 - 4 2 .

[6] J o n a s s e n J-E, Nilsson M, Utsi S, S i m o n s s o n P, E m b o r g M. Designing robust S C C for industrial construction with cast in place c o n c r e t e . In: S h a h S P , e d . Second North American Conference on the Design

and Use of Self-Consolidating Concrete; Fourth International RILEM Symposium on Self-Compacting Concrete. Chicago, IL, U S A : Hanley W o o d , L L C

2 0 0 5 : 1 2 5 1 - 7 .

[7] H a l d e n w a n g R, Fester V G . T h e influence of different superplasticisers o n the flowability a n d reproducibility of a S C C mix. In: W a l l e v i k O, K h r a p k o M, e d s . 9th International Symposium on High

Performance Concrete. R o t o r u a , N e w Z e a l a n d : N e w Z e a l a n d C o n c r e t e Society 2 0 1 1 . [8] Billberg P, W e s t e r h o l m M. R o b u s t n e s s of fresh V M A - m o d i f i e d S C C t o varying a g g r e g a t e moisture. N C R J o u r n a l . 2 0 0 8 ; 3 8 ( 7 ) : 1 0 3 - 1 9 . [9] Sakata N, Y a n a i S, Y o s h i z a k i M, Phyfferoen A, M o n t y H. Evaluation of S - 6 5 7 B i o p o l y m e r as a n e w viscosity-modifying a d m i x t u r e for self-compacting c o n c r e t e . In: O z a w a K, O u c h i M, eds. Second

International Symposium on Self-Compacting Concrete. T o k y o , J a p a n 2 0 0 1 : 2 2 9 - 3 6 .

[10] Phyfferoen A, Monty H, S k a g s B, S a k a t a N, Yanai S, Yoshizaki M. Evaluation of t h e biopolymer, diutan g u m , for use in s e l f - c o m p a c t i n g concrete. In: S h a h S P , D a c z k o JA, Lingscheit J N , e d s . First North

American Conference on the Design and Use of Self-Consolidating Concrete. E v a n s t o n , IL, U S A 2002:147¬

52.

[ I I ] G r ü n e w a l d S, W a l r a v e n J C . T h e effect of viscosity agents o n t h e characteristics of self-c o m p a self-c t i n g self-conself-crete. In: S h a h S P , e d . Seself-cond North

American Conference on the Design and Use of Self-consolidating Concrete / 4th International RILEM Symposium on Self-Compacting Concrete. A d d i s o n , IL,

USA: Hanley W o o d 2 0 0 5 : 9 - 1 5 .

[12] D o m o n e PL. S e l f - c o m p a c t i n g concrete: A n analysis of 11 years of c a s e studies. C e m e n t & C o n c r e t e C o m p o s i t e s . 2 0 0 6 ; 2 8 ( 2 ) : 1 9 7 - 2 0 8 .

[13] Berke N S , C o r n m a n C R , J e k n a v o r i a n A A , Knight GF, W a l l e v i k O. T h e effective use of superplasticizers a n d viscosity-modifying agents in

self-consolidating c o n c r e t e . In: S h a h S P , D a c z k o JA, Lingscheit J N , e d s . First North American Conference

on the Design and Use of Self-Consolidating Concrete.

E v a n s t o n , IL, U S A : North W e s t e r n University 2 0 0 2 : 1 7 3 - 8 .

[14] Sakata N, Yanai S, Y o k o z e k i K, M a r u y a m a K. Study on n e w viscosity agent for c o m b i n a t i o n use t y p e of s e l f - c o m p a c t i n g concrete. Journal of A d v a n c e d C o n c r e t e T e c h n o l o g y . 2 0 0 3 ; 1 ( 1 ) : 3 7 - 4 1 .

[15] Garcia L, V a l c u e n d e M, B a l a s c h S, F e r n a n d e z - L e b r e z J . S t u d y of robustness of self-c o m p a self-c t i n g self-c o n self-c r e t e s m a d e w i t h low fines self-content. Journal of Materials in Civil Engineering. 2 0 1 3 ; 2 5 ( 4 ) : 4 9 7 - 5 0 3 .

[16] Billberg P H . Influence o f powder type a n d V M A c o m b i n a t i o n o n certain key fresh properties of S C C . In: W a l l e v i k O, K h r a p k o M, e d s . 9th International

Symposium on High Performance Concrete. Rotorua,

N e w Z e a l a n d : N e w Z e a l a n d C o n c r e t e Society 2 0 1 1 . [17] Wallevik O H , W a l l e v i k J E . Rheology as a tool in concrete s c i e n c e : T h e use of r h e o g r a p h s a n d workability boxes. C e m e n t a n d C o n c r e t e R e s e a r c h . 2 0 1 1 ; 4 1 ( 1 2 ) : 1 2 7 9 - 8 8 .

[18] V a n Der V u r s t F, G r ü n e w a l d S, Feys D, De S c h u t t e r G. T h e c o m b i n e d influence of t h e p a s t e v o l u m e and w a t e r - t o - p o w d e r v o l u m e ratio o n the robustness o f f r e s h s e l f - c o m p a c t i n g c o n c r e t e . 27th

Biennial National Conference of the Concrete Institute of Australia; 69th RILEM Week Conference.

M a l b o u r n e , Australia: R I L E M 2 0 1 5 : i n press.

[19] S c h m i d t W , B r o u w e r s J, K ü h n e H-C, M e n g B. Effects of superplasticizer a n d viscosity-modifying agent o n f r e s h c o n c r e t e p e r f o r m a n c e of S C C at v a r i e d a m b i e n t t e m p e r a t u r e s . In: Khayat K H , Feys D, e d s .

Design, Production and Placement of Self-Consolidating Concrete. M o n t r e a l , C a n a d a : R I L E M ,

Springer 2 0 1 0 : 6 5 - 7 7 .

[20] T r e g g e r NA, Pakula M E , S h a h S P . Influence of clays o n the rheology of c e m e n t pastes. C e m e n t a n d C o n c r e t e R e s e a r c h . 2 0 1 0 ; 4 0 ( 3 ) : 3 8 4 - 9 1 .

[21] K a w a s h i m a S, C h a o u c h e M, Corr DJ, S h a h S P . Rate of thixotropic rebuilding of c e m e n t pastes modified with highly purified attapulgite clays. C e m e n t a n d C o n c r e t e R e s e a r c h . 2 0 1 3 ; 5 3 : 1 1 2 - 8 .

[22] Feys D, W a l l e v i k J E , Y a h i a A, K h a y a t K, Wallevik O H . Extension of t h e Reiner-Riwiin equation to d e t e r m i n e modified B i n g h a m parameters m e a s u r e d in coaxial cylinders r h e o m e t e r s . Materials and Structures. 2 0 1 3 ; 4 6 ( 1 - 2 ) : 2 8 9 - 3 1 1 .

7. A u t h o r s

Ir. Farid V a n Der V u r s t Dr. ir. Steffen G r ü n e w a l d Prof. dr. ir. G e e r t De Schutter

M a g n e l L a b o r a t o r y for C o n c r e t e R e s e a r c h , G h e n t University

T e c h n o l o g i e p a r k - Z w i j n a a r d e 9 0 4 9 0 5 2 G h e n t , B e l g i u m

(9)

Die

'19. Internationale Baustofftagung'

wird vom F.A. Finger-lnstitut für Baustoffkunde

der Bauhaus-Universitat Weimar veranstaltet.

Danksagung

Der Veranstalter bedankt sich für die vielfaltige und freundliche

Unterstützung (Stand 30.06.2015) bei:

• Deutsche Forschungsgenneinschaft

o Zementwerke Karsdorf, Wössingen und Sötenich

o CEMEX Deutschland AG

• HeidelbergCement AG

• Deutsche Bauchemie e.V.

• Jungbunzlauer International AG

(10)

F.A. Finger - Institut fyr Baustoffkund

Bauhaus - Uniwersitat Weimar

19. Internationale Baustofftagung

16. - 1 8 . September 2015

Weimar

Bundesrepublik Deutschland

(11)

F.A. Finger - Institut für Baustoffkunde

Bayhays = Uiniiwef'sitit Weimat'

19. Internationale Baustofftagung

16. - 1 8 . September 2015

Weimar

(12)

Vorbemerkung

Leider w u r d e der vorgegebene Termin zur Einsendung der V o r t r a g s m a n u s k r i p t e in einigen Fallen nicht eingehalten. U m diese d e n n o c h in den Tagungsbericht a u f z u n e h m e n w a r e n w i r deshalb angehalten, die Vortrage nicht nur in ihrer Vortragsfolge s o n d e r n auch e n t s p r e c h e n d i h r e m zeitlichen Eingang zu b e a r b e i t e n .

Das Inhaltsverzeichnis ist aus diesem Grunde t h e m a t i s c h gegliedert und erieichtert Ihnen s o m i t das A u f f i n d e n sachlich relevanter Vor-t r a g s m a n u s k r i p Vor-t e .

W i r h o f f e n auf Ihr Verstandnis f ü r diese Entscheidung des Tagungs-k o m i t e e s .

* * *

Im Tagungsbericht sind alle t e r m i n g e r e c h t eingegangenen Beitrage abgedruckt. Die im Inhaltsverzeichnis a n g e f ü h r t e A b k ü r z u n g

"n.e." = nicht eingereicht

b e d e u t e t , dass der a n g e m e l d e t e V o r t r a g zurückgezogen w u r d e o d e r nicht t e r m i n g e r e c h t ( 3 1 . M a i 2015) im Tagungsbüro vorlag.

Für den Inhalt der abgedruckten Beitrage sind ausschlieRlich die A u t o r e n v e r a n t w o r t l i c h .

* * *

Das Inhaltsverzeichnis e n t n e h m e n Sie b i t t e ausschlieRlich d e m Tagungsband 1.

(13)

Herausgeber:

F.A. Finger-lnstitut für Baustoffkunde Prof. Dr.-lng. H.-M. Ludwig

Redaktion:

Dr.-lng. H.-B. Fischer, C. Boden, M. Neugebauer

Bezugsmöglichkeiten:

Der Tagungsbericht in zwei Banden ist zum Preis von insgesamt 200,- €

(inklusive Versandkostenanteil und Verrechnungsspesenpauschale für auslandische Interessenten) über folgende Anschrift zu erwerben:

Dr. H.-B. Fischer o d e r B a u h a u s - U n i v e r s i t a t

FIB i b a u s i l - o f f i c e @ u n i - w e i m a r . d e D - 9 9 4 2 1 W e i m a r

19. Internationale Baustofftagung, Tagungsbericht

Band 1 - 1500 Seiten Band 2 - 1 5 1 2 S e i e n

Auflage: 7 0 0 Exemplare Redaktionsschluss: 15. Juli 2015

F.A. Finger-lnstitut für Baustoffkunde,

Bauhaus-Universitat W e i m a r , D - 99421 W e i m a r

© 2015, W e i m a r

(14)

2 0 - 14 D.M.A. Huiskes, A. Keulen, Q.L. Yu, H.J.H. Brouwers Design a n d p e r f o r m a n c e evaluation of ultra-lightweight g e o p o l y m e r c o n c r e t e

n.e. 2 0 - 1 5 Ehrlicfi, N.

P l a n u n g , K o n s t r u k t i o n und B a u v o n Stadt- und L a n d s t r a f l e n aus Beton

2 1 - 01 Neunzig, C, Scfimidt, S., Jasper, D., Schulleri, R., Bramesliuber, W., Brectier, C.

Z e m e n t g e b u n d e n e r Beton unter h o c h d y n a m i s c h e r 2 1 - 0 2 iVloffatt, J.S., Haist, M., Stiefel, S., Muller, HS.

Probabilistic M i x - D e s i g n M e t h o d s as Basis for t h e D e v e l o p m e n t of R o b u s t C e m e n t - R e d u c e d H i g h - P e r f o r m a n c e C o n c r e t e s

Probabilistischer M i s c h u n g s e n t w u r f als G r u n d l a g e robuster, z e m e n t r e d u z i e r t e r H o c h l e i s t u n g s b e t o n e

2 1 - 0 3 Dr.-lng. Patrick Scliaffel, Dr.-lng. Sebastian Palm, Daniel Scliempershofe

V e r g u s s m ö r t e l zur R i n g r a u m v e r f ü l l u n g v o n O f f - S h o r e W i n d e n e r g i e a n l a g e n - E r k e n n t n i s s e a u s Z u l a s s u n g s u n t e r s u c h u n g e n

2 1 - 0 4 Waida, S., Bier, Tli.A.

Einfluss v o n Flieflmittein auf d a s E r s t a r r u n g s v e r h a l t e n hoch-fester Mortel

2 1 - 0 5 Sctimidt, M.; Scheffler, B.; Piotrowski, S.

Multifunktionale und l a r m m i n d e r n d e B e t o n d e c k e n a u s U H P C -Material, B e m e s s u n g und K o n s t r u k t i o n s m e t h o d e n

2 1 - 0 6 Piotrowski, S.; Wetzel, A.; Umbach, C; Middendorf, B.

V o r s a t z b e t o n s c h i c h t e n für T e r r a s s e n p l a t t e n a u s u l t r a h o c h f e s t e m Beton mit e i n e m W a s s e r / B i n d e m i t t e l - W e r t von 0,40

2 1 - 0 7 Butters, V.; Kowald, D.; Mahjoori, T.; Trettin, R.

W e c h s e l w i r k u n g e n v o n o b e r f l a c h e n m o d i f i z i e r t e n C a r b o n N a n o t u b e s mit z e m e n t a r e n B i n d e m i t t e l s y s t e m e n

2 1 - 08 Yu, R.; Spiesz, P.; Brouwers, H.J.H.

D y n a m i c p e r f o r m a n c e of a sustainable Ultra-High P e r f o r m a n c e Fibre R e i n f o r c e d C o n c r e t e ( U H P F R C ) u n d e r high velocity projectile i m p a c t

2 2 - 01 Lohaus L, Cotardo, D., Abebe Y. A.

M e t h o d e n zur Quantifizierung last- und z e i t a b h a n g i g e r rheologischer E i g e n s c h a f t e n v o n L e i m e n mittels R o t a t i o n s v i s k o s i m e t e r

2 2 - 0 2 Krankei, Th.; Lowke, D.; Gehlen, Chr.

Entwicklung hochthixotroper S V B zur Herstellung o b e r f l a c h e n g e n e i g t e r B e t o n s t r u k t u r e n

2 2 - 0 3 Farid Van Der Vurst, Steffen Grünewald, and Geert De Schutter T h e Positive a n d Negative Influences of V M A ' s o n the R o b u s t n e s s of Fresh S e l f - C o m p a c t i n g C o n c r e t e

Cytaty

Powiązane dokumenty

Use the 690+ Quick Start (HA4700631) guide to set up the drive and Autotune the drive in the Closed Loop Vector mode. Set the desired Distance, Velocity &amp; Acceleration values,

Does the paper include new scientific content or value of utility (specify to what extent).. yes no

SECENT BOY WEARNING GRAY T-SHIRT, BLUE TROUSERS AND DRIVING A SKATEBOARD.. IN 0:27 SECOND SECENT BOY TO KNOCK OVER AND FERST BOY

Since the fo- liation F given by a closed 1-form ω, F = ker ω, is an R-Lie foliation, we have that, for a compact manifold M [H-H], F admits a closed transversal, and that any

In particular, compact convex sub- sets of R n with nonempty interior, fat subanalytic subsets of R n and sets in Goetgheluck’s paper [G] (where a first example of Markov’s

In 1920’s, Hardy and Littlewood introduced an ana- lytic method for solving Waring’s problem: That is, they showed that every sufficiently large natural number can be expressed as a

On the other hand, it is clear that the category Mod(T ) may be identified with the full subcate- gory of Mod(R) consisting of all right R-modules M such that M = M T , and this

Port A is defined to be the origin of a set of coordinate axes and port B is located at the point (70, 30), where distances are measured