• Nie Znaleziono Wyników

A multidimensonal Examination of Prefomences of the Future advanced Transport Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System

N/A
N/A
Protected

Academic year: 2021

Share "A multidimensonal Examination of Prefomences of the Future advanced Transport Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System"

Copied!
22
0
0

Pełen tekst

(1)

Delft University of Technology

A multidimensonal Examination of Prefomences of the Future advanced Transport

Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System

Janic, Milan

Publication date

2016

Document Version

Accepted author manuscript

Published in

MAGLEV 2016: The 23rd International Conference

Citation (APA)

Janic, M. (2016). A multidimensonal Examination of Prefomences of the Future advanced Transport

Systems: The ETT (Evacuated Tube Transport) TRM (Transrapid MAGLEV) System. In MAGLEV 2016:

The 23rd International Conference: Technological Research and Development (Vol. 1)

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

(2)

A MULTIDIMENSIONAL EXAIVl I NATION if

PERFORMANCES OF THE FUTURE ADVANCED

TRANSPORT SYSTEMS: THE ETT (EVACUATED TUBE

TRANSPORT) TRM (TRANSRAPID MAGLEV) SYSTEM

M i l a n Janic

Keywords

A d v a n c e d t r a n s p o r t systems, ETT (Evacuated Tube T r a n s p o r t ) TRM (Trans Rapid Maglev) s y s t e m , p e r f o r m a n c e s , m u l t i d i m e n s i o n a l e x a m i n a t i o n , sustainability

A B S T R A C T

This paper presents a m u l t i d i m e n s i o n a l e x a m i n a t i o n of i n f r a s t r u c t u r a l , t e c h n i c a l / t e c h n o l o g i c a l , o p e r a t i o n a l , e c o n o m i c , e n v i r o n m e n t a l , social, and policy p e r f o r m a n c e s o f t h e f u t u r e a d v a n c e d ETT (Evacuated T u b e Transport) TRM (TransRapid Maglev) s y s t e m . These p e r f o r m a n c e s are e x a m i n e d , analytically m o d e l l e d , and t h e n e s t i m a t e d using t h e case of Trans-Atlantic passenger t r a n s p o r t m a r k e t c u r r e n t l y exclusively served by t h e APT (Air Passenger T r a n s p o r t ) system. The aim is t o assess t h e ETT TRM system's c o m p e t i t i v e capabilities c o m p a r e d t o t h o s e o f t h e c u r r e n t and f u t u r e APT system and p o t e n t i a l c o n t r i b u t i o n t o m i t i g a t i n g Impacts o f b o t h systems on t h e society and e n v i r o n m e n t , I.e., sustainability o f t h e t r a n s p o r t sector, u n d e r given conditions.

1. Introduction

The f u t u r e e c o n o m y and society until and b e y o n d t h e y e a r 2050 w i l l very likely be characterized by: I) Continuous growtli but also aging o f t h e w o r l d ' s p o p u l a t i o n expected t o reach 9-10-10^; ii) Growing developing economies c o n t r i b u t i n g t o s t r e n g t h e n i n g t h e " m i d d l e " class and c o n s e q u e n t l y increasing d e m a n d f o r m o b i l i t y in t h e c o u n t r i e s like China, India, Russia and Brazil; and ili) Urbanization i m p l y i n g t h a t by t h e y e a r 2025 a b o u t t w o - t h i r d s o f t h e w o r l d ' s p o p u l a t i o n w i l l live in (also mega-) cities. C o n s e q u e n t l y , t h e f u t u r e t r a n s p o r t systems w i l l v e r y likely be exposed t o challenges t o : I) Connect large urban a g g l o m e r a t i o n s and marl<ets t h u s f u r t h e r f o s t e r i n g globalization of e c o n o m i c , t r a d e , a n d o t h e r s o c i a l / p o l i c y relationships; ii) Provide transport services of refined quality at reasonable cost/price regarding t h e very d i f f e r e n t i a t e d passenger needs; iii) Further diminishing impacts on the environment and society; and iv) Contribution to the national and global welfare by f u r t h e r Increasing e m p l o y m e n t a n d e x p a n s i o n , i.e., synergies w i t h t h e n e w t e c h n o l o g i e s f r o m o t h e r f i e l d s / a r e a s .

The f u t u r e advanced ETT (Evacuated Tube T r a n s p o r t ) TRM (TransRapid Magelv) system seems t o be o n e able t o c o n t r i b u t e t o f u l f i l l i n g t h e a b o v e - m e n t i o n e d r e q u i r e m e n t s t h r o u g h c o m p e t i t i o n m a i n l y w i t h t h e long-haul APT (Air Passenger T r a n s p o r t ) s y s t e m . In a d d i t i o n , by t a k i n g o v e r a part of t h e APT d e m a n d , as p r e s u m a b l y e n v i r o n m e n t a l l y f r i e n d l i e r s y s t e m / m o d e , it w o u l d c o n t r i b u t e t o m i t i g a t i n g t h e overall t r a n s p o r t s e c t o r - r e l a t e d negative impacts on t h e e n v i r o n m e n t a n d society, and c o n s e q u e n t l y t o its - sector's m o r e sustainable d e v e l o p m e n t .

In a d d i t i o n t o this i n t r o d u c t o r y , this p a p e r consists of f o u r o t h e r sections. Section 2 describes t h e m a i n c o m p o n e n t s and concept of p e r f o r m a n c e s of an ETT TRM system. Section 3 deals w i t h m u l t i d i m e n s i o n a l e x a m i n a t i o n and m o d e l l i n g o f t h e s e p e r f o r m a n c e s . Section 4 presents an a p p l i c a t i o n o f t h e p r o p o s e d approach t o t h e given long-haul passenger t r a n s p o r t w h e r e an ETT T R M c o m p e t e s w i t h t h e APT system according t o t h e " w h a t - i f ( h y p o t h e t i c a l ) scenarios. The last s e c t i o n s u m m a r i z e s s o m e conclusions.

(3)

2. The Components and Concept of Performances of an ETT TRM System

The concept of ETT TRM d e f i n e d as a very high speed long-haul t r a n s p o r t a t i o n system had been e l a b o r a t e d f o r a long t i m e [ 1 ] . Its main c o m p o n e n t s are v a c u u m e d t u b e s , TRM trains, a n d s u p p o r t i n g facilities and e q u i p m e n t f o r t h e energy supply, m a i n t a i n i n g v a c u u m in t h e t u n n e l s , t r a i n / t r a f f i c c o n t r o l / m a n a g e m e n t systems, and fire p r o t e c t i o n system. They all influence t h e ETT TRM system's I n f r a s t r u c t u r a l , t e c h n i c a l / t e c h n o l o g i c a l , o p e r a t i o n a l , e c o n o m i c , e n v i r o n m e n t a l , social and policy p e r f o r m a n c e s , and vice versa, s h o w n in Fig. 1.

• > Bottom-up >• T o p - d o w n

Figure 1 A simplified s c h e m e o f p e r f o r m a n c e s of an ETT TRM system and

t h e i r possible i n t e r r e l a t i o n s h i p s [1]

As s h o w n by a r r o w s , t h e p a r t i c u l a r p e r f o r m a n c e s may influence each o t h e r t o p - d o w n (heavy lines) and b o t t o m - u p ( d o t t e d lines). In such case:

• Infrastructural and technical/technological performances generally relate t o t h e physical, c o n s t r u c t i v e , and t e c h n i c a l and t e c h n o l o g i c a l features of t h e i n f r a s t r u c t u r e - t u b e s , rolling stock-TRM t r a i n s , and s u p p o r t i n g facilities and e q u i p m e n t ;

® Operational performances relate d e m a n d , capacity, t h e i r r e l a t i o n s h i p , i.e., q u a l i t y of services, f l e e t size, and t e c h n i c a l p r o d u c t i v i t y ;

• Economic performances are r e p r e s e n t e d by costs, revenues, a n d t h e i r differences ( p r o f i t s / l o s e s ) . In s o m e cases t h e s e can include savings in t h e cost o f passenger t r a v e l t i m e j u s t d u e t o using this instead of some o t h e r t r a n s p o r t system as a l t e r n a t i v e ;

® Environmental and social performances include scale of impacts o n t h e e n v i r o n m e n t and society such as e n e r g y / f u e l c o n s u m p t i o n and related emissions o f 6 H G (Green House Gases), land use, noise, congestion, and t r a f f i c i n c i d e n t s / a c c i d e n t s (I.e., safety). In s o m e cases, congestion could be c o n s i d e r e d as an o p e r a t i o n a l p e r f o r m a n c e i n f l u e n c i n g t h e o v e r a l l q u a l i t y o f service. If m o n e t i z e d , hese impacts r e p r e s e n t e x t e r n a l i t i e s , w h i c h could also be c o n s i d e r e d as e c o n o m i c p e r f o r m a n c e .

(4)

9 Policy performances reflect c o m p l i a n c e w i t h t h e f u t u r e m e d i u m - t o l o n g - t e r m t r a n s p o r t policy regulations and specified targets mainly related t o particular ( a b o v e - m e n t i o n e d ) e n v i r o n m e n t a l and social i m p a c t s .

3. A Multidimensional Examination of Performances of an ETT TRM System

3.1. Infrastructural performances

The i n f r a s t r u c t u r a l p e r f o r m a n c e s of an ETT TRM system include t h e characteristics of t u b e s / t u n n e l s , s t a t i o n s / t e r m i n a l s , and c o r r e s p o n d i n g n e t w o r k ( s ) .

3.1.1. Tubes/tunnels and stations/terminals

In cases of spreading b e t w e e n t w o c o n t i n e n t s , t h e i n f r a s t r u c t u r e o f an ETT TRM system w o u l d be designed generally as u n d e r g r o u n d t u n n e l s u n d e r t h e seabed or as t h e u n d e r - w a t e r f l o a t i n g t u b e s a n c h o r e d by steel cables t o t h e seabed. The latter c o n c e p t w o u l d be as: I) t w o t r a n s p o r t a n d one separate s e r v i c e / m a i n t e n a n c e t u b e , t h e latest shared w i t h pipelines f o r oil, w a t e r , gas, electric p o w e r t r a n s m i s s i o n , and c o m m u n i c a t i o n lines, etc.; o r ii) a single t u b e divided vertically i n t o t h e m a i n section w i t h t h e t r a i n lines, t h e m a i n t e n a n c e section above, a n d t h e e m e r g e n c y section b e l o w . Fig. 2 shows a s i m p l i f i e d s c h e m e of t w o - t u b e design using t h e TRM t r a i n s , [1], [2], [ 3 ] .

Figure 2 A s i m p l i f i e d scheme of t h e t w o - t u b e design f o r an u n d e r w a t e r ETT TRM system [1]

The f l o a t i n g t u b e s c o u l d be m a d e o f e i t h e r t h e t h e r m a l c o n d u c t i v e p u r e steel g u a r a n t e e i n g a i r - p r o o f at a r a t h e r m o d e r a t e cost o r of t h e c o m p o s i t e materials including steel and c o n c r e t e layer a t t h e i n n e r and o u t s i d e w a l l of t h e t u b e , respectively [4]. The thickness of t h e t u b e s ' walls w o u l d be s u f f i c i e n t t o sustain t h e w a t e r pressure at a given d e p t h f r o m t h e o u t s i d e and a l m o s t zero pressure f r o m t h e inside (at t h e d e p t h of 3 0 0 m t h e o u t s i d e pressure is a b o u t 3 0 a t m , i.e., t h e pressure increases by l a t m f o r each 10m of d e p t h ( a t m - a t m o s p h e r e ) ) . T h e t u b e s w o u l d be c o m p o s e d of p r e f a b r i c a t e d sections j o i n e d t o g e t h e r in o r d e r t o c o m p o s e an a i r t i g h t t u b e . A l t e r n a t i v e l y , an i n t e r l o c k i n g m e c h a n i s m w o u l d be I n c o r p o r a t e d into t h e sections in o r d e r t o keep t h e m assembled. The v a c u u m - l o c k isolation gates at t h e specified distance w o u l d be c o n s t r u c t e d in o r d e r t o e v a c u a t e air f r o m p a r t i c u l a r sections o f t h e t u b e s m o r e e f f i c i e n t l y and t h u s p r e v e n t t h e s p r e a d i n g of p o t e n t i a l l y large scale air leakages t h r o u g h o u t t h e e n t i r e t u b e s . These gates w o u l d consist of

(5)

vertically up and d o w n m o v i n g d o o r s , w h i c h could also f u n c t i o n as part o f t h e f i r e p r o t e c t i o n system. These doors w o u l d be closed d u r i n g t h e initial evacuation of air f r o m t h e t u b e s and in t h e cases of large scale leakages, and o p e n e d o t h e r w i s e [2]. The f l o a t i n g of such tubes at t h e given d e p t h w i t h t h e TRM guideway(s) inside w o u l d d e p e n d as f o l l o w s [ 1 ] : PV^ =M-p„-V = n - L \ R l - R l ^ - s , , . - f - p , r R l \ (1) w h e r e l/Vb is t h e resultant b u o y a n t f o r c e ( t o n ) ; y is t h e v o l u m e of displaced w a t e r by tube(s) (m^); M is t h e mass (weight) of t h e t u b e ( s ) ( t o n , kg); Po is density of sea w a t e r ( t o n / m ' ' ) ; y is t h e v o l u m e o f displaced w a t e r e q u a l t o t h e v o l u m e of tube(s) (m^); Rl, R2 is t h e inside and o u t s i d e radius of t h e t u b e , respectively, (m) {Ri < Rz); a n d L is t h e length of t h e t u b e ( m ) ;

s,v is t h e specific gravity of t u b e ' s m a t e r i a l ( t o n / m ^ ) ;

ƒ Is t h e f a c t o r of increasing t h e t o t a l mass ( w e i g h t ) of t h e t u b e due t o its i n t e r n a l and e x t e r n a l c o n t e n t (71 = 3.14).

If Wb = 0, t h e tube(s) w i l l f l o a t at t h e surface; If Wt < 0, t h e tube(s) w i l l be pushed u p w a r d s i m p l y i n g t h a t t h e y w o u l d need t o be a n c h o r e d t o t h e ocean f l o o r by a cable system in o r d e r t o stay at t h e given d e p t h ; if Wb> 0, t h e tube(s) w i l l sink t o t h e sea f l o o r [ 1 ] , [2] [ 3 ] , [4].

3.1.2. Network

The t u b e s lying mainly u n d e r t h e sea level w i t h a s h o r t p o r t i o n at t h e surface j u s t near t h e coast and d e d i c a t e d passenger s t a t i o n s / t e r m i n a l s at t h e i r ends w o u l d compose t h e EET T R M system n e t w o r k . These t e r m i n a l s w o u l d be located at t h e coast preferably i n c o r p o r a t e d i n t o larger I n t e r m o d a l passenger t e r m i n a l s (i.e., u n d e r t h e " s a m e r o o f ) also a c c o m m o d a t i n g t h e s h o r t and m e d i u m -distance rail- and road-based passenger t r a n s p o r t s y s t e m s / ' f e e d i n g ' n e t w o r k s d r i v i n g passengers b e t w e e n t h e ETT system and t h e i r f i n a l o r i g i n s / d e s t i n a t i o n s . Fig. 3 shows t h e s i m p l i f i e d scheme of an i n t e r c o n t i n e n t a l ETT TRM system w i t h a single l i n e / r o u t e and t h e l i n e s / r o u t e s of its ' f e e d i n g ' n e t w o r k s . In this case, t h e relevant I n f r a s t r u c t u r e p e r f o r m a n c e of end t e r m i n a l s is t h e n u m b e r of tracks t o handle t h e TRM trains, w h i c h can be e s t i m a t e d as f o l l o w s :

= / z r 7 T a , ^ ) - W / , (2)

w h e r e

fErr(d, T) is t h e t r a n s p o r t service f r e q u e n c y on t h e l i n e / r o u t e (d) d u r i n g t i m e (T) ( d e p / T ) ; and tETT/s is t h e t i m e a TRM t r a i n occupies a t r a c k ( m i n , h).

(6)

T^^.Tg- Begin and end terminal, respectively, ofthe ETT system (line/route) Local/regional transport network (tram, bus, metro)

National/continental transport network (conventional/HS rail bus) Direction of operation ofthe ETT system's trains

Figure 3 A s i m p l i f i e d s c h e m e of an I n t e r c o n t i n e n t a l ETT T R M s y s t e m / n e t w o r k w i t h a single l i n e / r o u t e

[1]

In Eq. 1, t i m e (tEn/s) includes t h e t i m e f o r passengers' d i s e m b a r k i n g / e m b a r k i n g , cleaning, e n e r g y / f u e l supply, inspection and o t h e r activities f o r m a k i n g ready t h e TRM train(s) next safe t r i p .

3.2. Technical/technological performances

T e c h n i c a l / t e c h n o l o g i c a l p e r f o r m a n c e s o f an ETT TRM system relate t o t h e v a c u u m p u m p s , TRM t r a i n s , and t r a f f i c c o n t r o l / m a n a g e m e n t s y s t e m .

3.2.1. Vacuum pumps

The v a c u u m p u m p s w o u l d be a p p l i e d t o initially evacuate and later m a i n t a i n t h e r e q u i r e d level o f v a c u u m inside t h e t u b e s . In particular, c r e a t i n g an initial v a c u u m consists o f large scale e v a c u a t i o n a n d later o n r e m o v a l o f s m a l l e r molecules near t u b e w a l l s using h e a t i n g t e c h n i q u e s . These w o u l d r e q u i r e p o w e r f u l v a c u u m p u m p s c o n s u m i n g a s u b s t a n t i v e a m o u n t o f energy. H o w w o u l d t h e p u m p s w o r k ? A t t h e initial stage, t h e y w o u l d be o p e r a t i n g u n t i l achieving t h e r e q u i r e d t u b e evacuation l e v e l , t h e n , a u t o m a t i c a l l y s t o p p e d , and t h e v a c u u m - l o c k Isolation gates o p e n e d . In cases o f air leakage in s o m e section(s), t h e c o r r e s p o n d i n g gates w o u l d be closed and t h e p u m p s activated again. The p u m p s w o u l d be l o c a t e d a l o n g t h e t u b e ( s ) in t h e r e q u i r e d n u m b e r d e p e n d i n g on t h e v o l u m e s o f air t o be e v a c u a t e d , available t i m e , a n d t h e i r e v a c u a t i o n capacity.

3.2.2. Vehicles and propulsion

The vehicles o f an EET TRM system w o u l d be m o d i f i e d (redesigned) G e r m a n T R M 0 7 trains [ 1 ] , [ 5 ] , [ 6 ] , [7]. The m o d i f i c a t i o n s w o u l d be n e e d e d due t h e v e r y high o p e r a t i n g speed o f a b o u t VETT= 6.4

-8 . 0 - l O ^ k m / h a n d t h e h o r i z o n t a l a c c e l e r a t i o n / d e c e l e r a t i o n rate(s) o f a b o u t o = 1 . 5 - 3 . 0 m / s ^ t o be used t h a n k s t o o p e r a t i n g in v a c u u m t u b e s . These TRM trains w o u l d use electric energy f o r t h e i r l e v i t a t i o n , g u i d a n c e , air c o n d i t i o n i n g , h e a t i n g , l i g h t i n g and p o w e r i n g o t h e r facilities and e q u i p m e n t , a n d LH2 (Liquid H y d r o g e n ) p r o p e l l i n g s o m e kind o f t h e rocket e n g i n e f o r p r o p u l s i o n [ 3 ] , [ 8 ] . In particular, d u e a c c e l e r a t i n g / d e c e l e r a t i n g o f T R M train(s) t o / f r o m t h e v e r y high speed (B.O-lO^km/h), respectively, a s u b s t a n t i v e e n e r g y w o u l d be c o n s u m e d , w h i c h can be e s t i m a t e d as f o l l o w s :

(7)

w h e r e

rriETT is t h e mass (weight) of TRM t r a i n (kg, t o n ) ;

VETT is t h e cruising speed of TRM t r a i n ( m / s ; k m / h ) .

The a c c e l e r a t i o n / d e c e l e r a t i o n phase of a t r i p w o u l d r e q u i r e m u c h s t r o n g e r t h a n basic TRM t r a i n s ' engines, w i t h m i n i m u m r e q u i r e d p o w e r / t h r u s t e s t i m a t e d as f o l l o w s :

P/T,„.,,=m^rT-^>t/,r-VETT (3 b)

w h e r e

OEW^' is t h e a c c e l e r a t i o n / d e c e l e r a t i o n rate, respectively, of ETT TRM t r a i n t o / f r o m t h e average cruising speed {VETT) (m/s^).

The o t h e r symbols are analogous t o t h o s e in t h e previous Eqs.

During cruising phase of a t r i p , t h e TRM trains pressurized similarly as m o d e r n c o m m e r c i a l a i r c r a f t (about l a t m ) w o u l d m o v e thanks t o t h e inertial f o r c e gained a f t e r acceleration w i t h o u t a e r o d y n a m i c (due t o v a c u u m ) and rolling (due t o l e v i t a t i o n ) resistance.

Using l o w density LH2 s t o r e d at l o w t e m p e r a t u r e , t h e u l t i m a t e l y larger insulated f u e l - s t o r a g e tanks w o u l d be n e e d e d , w h i c h w o u l d t o g e t h e r w i t h engine(s) v e r y likely increase t h e i r m a s s / w e i g h t . In a d d i t i o n , o p e r a t i n g in t h e v a c u u m tube(s) at t h e very high speeds w o u l d e l i m i n a t e t h e shock w a v e s w h e n breaking t h e sound barrier ( i m p o r t a n t f o r passing trains in a single t u n n e l / t u b e c o n c e p t ) , a n d make negligible air f r i c t i o n and c o n s e q u e n t h e a t i n g of t r a i n s . Nevertheless, heat shields w o u l d be installed at TRM trains as p r o t e c t i o n f r o m f r o m o v e r h e a t i n g caused by u n p r e d i c t a b l e air leakages [4].

3.2.3. Traffic control/management system

The t r a f f i c c o n t r o l / m a n a g e m e n t system at TRM trains w o u l d be fully a u t o m a t e d , i.e., c o n t r o l l e d (guided) very likely analogously t o t h e m o d e r n UAV ( U n m a n n e d Flying Vehicles - designed pilotless a i r c r a f t ) , and m a n a g e d (separated) along t h e l i n e / r o u t e a c c o r d i n g t o t h e TRM o p e r a t i n g principles. This is because t h e drivers s i m p l y w o u l d n o t have t i m e t o react t o u n p r e d i c t e d events d u e t o t r a i n ' s very high o p e r a t i n g speed.

3.4. Operational performances

The o p e r a t i o n a l p e r f o r m a n c e s of an ETT TRM system relate t o d e m a n d , capacity, and q u a l i t y of service, t h e vehicle f l e e t size, and t e c h n i c a l p r o d u c t i v i t y [ 1 ] .

3.4.1. Demand

I) General

The d e m a n d f o r an ETT TRM system o p e r a t i n g in t h e long-haul markets (i.e., at t h e higher level) such as t h o s e b e t w e e n large urban a g g l o m e r a t i o n s located in t h e same or d i f f e r e n t c o u n t r i e s a n d / o r at t h e same a n d / o r d i f f e r e n t c o n t i n e n t s , can be e s t i m a t e d by assuming its c o m p e t i t i o n w i t h t h e APT (Air Passenger T r a n s p o r t ) system using t h e c o n v e n t i o n a l subsonic, super-, a n d / o r hypersonic ( f o r t h c o m i n g ) a i r c r a f t . In t h e s e cases t h e ETT TRM system is assumed t o take o v e r part of t h e APT d e m a n d , collected a n d d i s t r i b u t e d t o / f r o m it by t h e s h o r t - and m e d i u m - h a u l rail and road passenger t r a n s p o r t systems. This prospectively a t t r a c t e d d e m a n d can be e s t i m a t e d by logit m o d e l .

II) Logit m o d e l

The logit m o d e l estimates t h e p r o b a b i l i t y o f choice o f a given a m o n g several a l t e r n a t i v e s , in this case ETT TRM and APT system / m o d e as f o l l o w s [ 1 ] :

(8)

w h e r e

ÜETjid, T) is dis-utility f u n c t i o n o f t h e ETT system o p e r a t i n g o n t h e l i n e / r o u t e (d) d u r i n g t i m e (T); ÜAPTid, T) is dis-utility f u n c t i o n o f t h e APT system o p e r a t i n g o n t h e l i n e / r o u t e fc/;.

The dis-(utility) f u n c t i o n s UEufd, T) and UAPrfd, T) in Eq. 4a consists of t h e generalized costs o f perceived d o o r - t o - d o o r t r a v e l t i m e and t h e p r i c e / f a r e paid f o r a t r i p by t h e ETT TRM s y s t e m and its APT c o u n t e r p a r t , respectively. The dls-(utility) f u n c t i o n UErrfd, T) In Eq. 4a f o r a given c a t e g o r y o f users/passengers can be e s t i m a t e d as f o l l o w s :

U^rj. (d, T ) = a- r^-,-j.i„ + / ? • t^rriir id) + a- r ^ „ v . + PETT id, T ) = a • 1 / 2

T fErrid,T)

+

/?.

(4b) w h e r e

TiTT/a, TETT/I is t h e t i m e of accessing/leaving t h e s y s t e m , respectively ( m i n , h ) ;

a is t h e u n i t cost o f passenger t i m e d u r i n g assessing, w a i t i n g f o r d e p a r t u r e , and leaving

t h e ETT TRM s y s t e m ( $ U S / m i n / p a s s ) ;

tETT/w(d) is t h e in-vehicle t r a n s i t t i m e o n t h e l i n e / r o u t e (d) (h, m i n )

/3 is t h e u n i t cost of passenger in-vehicle t r a n s i t t i m e ( $ U S / m i n / p a s s ) ;

PEuld, T) is t h e p r i c e / f a r e f o r a t r i p by t h e system on t h e l i n e / r o u t e (d) d u r i n g t i m e (T)

($US/pass).

The o t h e r symbols are analogous t o t h o s e in t h e previous Eqs. The dis-(utility) f u n c t i o n UAPT (d, T)

can be e s t i m a t e d analogously.

Ill) The n u m b e r o f passengers

The n u m b e r o f passengers c h o o s i n g t h e n e w l y i m p l e m e n t e d ETT T R M s y s t e m / m o d e , i.e., t a k e n over f r o m t h e existing APT s y s t e m / m o d e , o n t h e l i n e / r o u t e (d) d u r i n g t i m e (T) can be e s t i m a t e d by Eq. 4 a -b as f o l l o w s [ 1 ] :

Q^^ i d , T ) = plU,^^^ id, Ty\ • Q,^., i d , T ) (4c)

w h e r e

QAPM T) is t h e n u m b e r o f passengers on t h e given l i n e / r o u t e (d) d u r i n g t i m e (T) exclusively carried by t h e APT s y s t e m / m o d e at t h e t i m e o f i m p l e m e n t i n g t h e ETT TRM s y s t e m / m o d e .

E q u a t i o n 4c implies t h a t o n l y t h e passenger d e m a n d t a k e n o v e r by t h e EET T R M f r o m t h e APT system Is c o n s i d e r e d and not t h e ETT T R M system's s e l f - g e n e r a t e d d e m a n d .

(9)

3.4.2. Capacity

The service f r e q u e n c y (fcnld, Tj) o f t h e ETT TRM system satisfying t h e e x p e c t e d passenger d e m a n d o n t h e l i n e / r o u t e (d) d u r i n g t i m e (T) can be derived f r o m Eq. 4c as f o l l o w s :

f ( d n = QErr(c/,T) (4d) 'ETT

w h e r e

^.ETT(d, T) is t h e average load f a c t o r o f an ETT TRM t r a i n o p e r a t i n g on t h e l i n e / r o u t e (d) d u r i n g

t i m e (T);

SETfid, T) is t h e seating capacity o f an ETT TRM t r a i n o p e r a t i n g o n t h e l i n e / r o u t e (d) d u r i n g t i m e (T) (seats).

3.4.3. Quality of service

The q u a l i t y o f services o f an ETT T R M system, in a d d i t i o n t o a t t r i b u t e s such as f r e q u e n c y , reliability, and p u n c t u a l i t y , could be particularly i n f l u e n c e d by t h e In-vehicle c o m f o r t d u r i n g a t r i p . This c o m f o r t highly d e p e n d s o n t h e h o r i z o n t a l , v e r t i c a l , an lateral forces a c t i n g o n passengers w h i l e a c c e l e r a t i n g / d e c e l e r a t i n g t h e TRM train(s) t o / f r o m t h e v e r y high speed ( 8 . 0 - l O ^ k m / h ) , respectively. The lateral f o r c e could be m i t i g a t e d t h r o u g h design of t h e ETT t u b e s (preferably as straight as possible in b o t h h o r i z o n t a l and v e r t i c a l plane) and t h e a p p r o p r i a t e a r r a n g e m e n t s o f seats w i t h i n t h e TRM trains. The design w o u l d be r a t h e r c o m p l e x t o achieve In t h e v e r t i c a l plane since, f o r e x a m p l e , t h e l o n g i n t e r c o n t i n e n t a l t u b e s w o u l d have t o align w i t h t h e Earth's c u r v a t u r e ; in t h e h o r i z o n t a l plane t h e s t r a i g h t line s h o r t e s t (Great Circle) distances w o u l d likely be f o l l o w e d . Consequently, t h e o t h e r t w o - h o r i z o n t a l and v e r t i c a l - forces w o u l d r e m a i n . If t h e TRM trains w e r e a c c e l e r a t i n g / d e c e l e r a t i n g at t h e rate of o = 1.5-3.0 m / s ^ t h u s achieving t h e m a x i m u m cruising s p e e d In a b o u t 12.3 - 24.7 m i n , t h e h o r i z o n t a l G-force as a p r o p o r t i o n o f t h e n o m i n a l g r a v i t a t i o n a l f o r c e [g = 9.81m/s^) w o u l d be: 0.152-0.306g - n o t particularly c o m p r o m i s i n g riding c o m f o r t o f passengers.

3.4.4. Fleet size

Given t h e service f r e q u e n c y (fErr(d, Tj) in Eq. 4 d , t h e TRM t r a i n f l e e t size o f a given ETT system can be e s t i m a t e d as f o l l o w s :

N,^,^{d,T) = f r ^ i d , T ) • t , r r , M ) (^^)

w h e r e

tETT/tr(d) is an ETT TRM train's average t u r n a r o u n d t i m e a l o n g t h e l i n e / r o u t e fc/j ( m i n , h).

The t i m e (tEn/trfd)) in Eq. 5a can be e s t i m a t e d as f o l l o w s :

t ETT f Ad) =2 '^^ ETT Is

^'ETT ^ETT

(d)

"ETT

w h e r e

ffTT/5 is t h e average s t o p t i m e o f an ETT TRM t r a i n at t h e e n d t e r m i n a l (h, m i n ) .

The o t h e r s y m b o l s are analogous t o t h o s e In t h e previous Eqs.

(10)

3.4.5. Technical productivity

Technical p r o d u c t i v i t y of an ETT TRM system ( s - k m / h ) can be e s t i m a t e d f o r a single and t h e f l e e t of TRM t r a i n s .

i) Single t r a i n / v e h i c l e :

TP, ElTIv id, T ) = s^ j . (d, T ) • Vj^T^ i d ) (6a)

ii) Fleet of t r a i n s / v e h i c l e s :

(6b)

All o t h e r symbols are as in t h e previous Eqs.

3.5. Economic performances

The e c o n o m i c p e r f o r m a n c e s of an EFT TRM system include t h e cost of i n f r a s t r u c t u r e , rolling stock -TRM t r a i n s , a n d s u p p o r t i v e facilities and e q u i p m e n t , d i r e c t revenues f r o m charging passengers, and Indirect revenues as savings in t h e costs of passenger t i m e and e n v i r o n m e n t a l a n d social i m p a c t s (i.e., externalities) t h o u g h c o m p e t i t i o n w/ith o t h e r t r a n s p o r t s y s t e m s / m o d e s , in this case ATP s y s t e m .

3.5.1. Costs

i) I n f r a s t r u c t u r e

The i n f r a s t r u c t u r e costs of an ETT TRM system include expenses f o r building i n f r a s t r u c t u r e and s u p p o r t i n g facilities and e q u i p m e n t . These costs w o u l d include i n v e s t m e n t s , m a i n t e n a n c e and o p e r a t i n g costs. The i n v e s t m e n t s generally include t h e expenses f o r building t u b e s (2+1), TRM t r a i n g u l d e w a y s , and t e r m i n a l s at b o t h ends o f t h e given l i n e / r o u t e , and facilities and e q u i p m e n t such as v a c u u m p u m p s , t h e p o w e r supply s y s t e m , t r a f f i c c o n t r o l s y s t e m , c o m m u n i c a t i o n s , and f i r e p r o t e c t i o n s y s t e m . The m a i n t e n a n c e costs include t h e expenses of regular and capital m a i n t e n a n c e o f i n f r a s t r u c t u r e and s u p p o r t i n g facilities and e q u i p m e n t . The o p e r a t i o n a l costs m a i n l y include t h e expenses of labor and energy f o r m a i n t a i n i n g v a c u u m in t h e t u b e s [ 9 ] .

ii) Rolling s t o c k - T R M trains

The cost of rolling stock w o u l d consist of t h e i n v e s t m e n t s and o p e r a t i o n a l cost. The f o r m e r relate t o a c q u i r i n g t h e TRM t r a i n fleet. The later includes t h e expenses f o r m a i n t e n a n c e , m a t e r i a l , labor, and e n e r g y / f u e l t o o p e r a t e t h e TRM f l e e t u n d e r given c o n d i t i o n s .

3.5.2. Revenues

T h e revenues o f an ETT TRM system can be direct and indirect. The f o r m e r are m a i n l y o b t a i n e d f r o m c h a r g i n g its passengers. The later can be savings in t h e cost of passenger t i m e and t h e cost o f e n v i r o n m e n t a l and social impacts (i.e., externalities) such as energy c o n s u m p t i o n and r e l a t e d emissions of GHG, noise, c o n g e s t i o n , a n d t r a f f i c i n c i d e n t s / a c c i d e n t s . These later savings occur by r e d u c i n g t h e scale of o p e r a t i o n s of c o m p e t i n g APT s y s t e m / m o d e d u e t o losing passenger d e m a n d t a k e n o v e r by t h e ETT TRM system.

3.6. Environmental and social performances

T h e e n v i r o n m e n t a l and social p e r f o r m a n c e s of an EFT TRM system relate t o its Impacts o n t h e e n v i r o n m e n t ( e n e r g y / f u e l c o n s u m p t i o n a n d related emissions of GHG (Green House Gases) and land u s e / t a k e ) a n d society (noise, c o n g e s t i o n , safety, i.e., t r a f f i c incidents and accidents), all e s t i m a t e d

(11)

according t o t h e scenarios o f c o m p e t i n g w i t h o t h e r t r a n s p o r t m o d e s . The costs of t h e s e impacts (i.e., externalities) can be c o n s i d e r e d in t h e scope of these instead of, as m e n t i o n e d a b o v e , e c o n o m i c p e r f o r m a n c e s .

3.6.1. Energy/fuel consumption and emissions of GHG (Green House Gases)

The e n e r g y / f u e l c o n s u m p t i o n of an ETT TRM system includes t h e energy f o r s e t t i n g u p and t h e n m a i n t a i n i n g v a c u u m in t h e t u b e s , o p e r a t i n g TRM trains ( l e v i t a t i o n , p r o p u l s i o n , guidance), and p o w e r i n g t h e o t h e r s u p p o r t i n g systems, facilities, and e q u i p m e n t . Due t o using LH2 f o r p r o p u l s i o n and electric energy f r o m t h e r e n e w a b l e p r i m a r y sources ( w a t e r , sun, nuclear) f o r l e v i t a t i o n and guidance, t h e TRM t r a i n s o p e r a t i n g in t h e v a c u u m e d t u b e s w o u l d have negligible emissions of GHG and c o n s e q u e n t i m p a c t on t h e e n v i r o n m e n t , particularly c o m p a r e d t o t h o s e f r o m b u r n i n g o f JP-1 f u e l (kerosene) by t h e c o n v e n t i o n a l APT aircraft e m i t t e d directly In t h e a t m o s p h e r e [1].

3.6.2. Land use

An ETT TRM system w o u l d occupy a d d i t i o n a l land only f o r building its coast t e r m i n a l s s h o u l d t h e y n o t already be a part o f t h e larger i n t e r m o d a l passenger t e r m i n a l s I n c o r p o r a t e d w i t h i n existing u r b a n s t r u c t u r e s .

3.6.3. Noise

An ETT TRM system w o u l d n o t g e n e r a t e any noise d i s t u r b i n g p o p u l a t i o n a r o u n d t h e l i n e ' s / r o u t e ' s begin and e n d t e r m i n a l m a i n l y because its TRM trains w o u l d o p e r a t e at low speeds w i t h i n t h e t u b e s in t h e i r vicinity.

3.6.4. Congestion

Due t o t h e n a t u r e o f o p e r a t i o n s , an ETT TRM system w o u l d be f r e e f r o m congestion along t h e l i n e s / r o u t e s . Regarding t h e intensity of o p e r a t i o n s , t h e a u t o m a t e d t r a f f i c m a n a g e m e n t systems w o u l d have t o p r o v i d e a precise guidance in o r d e r t o achieve a l m o s t perfect (in t e r m s of seconds) m a t c h i n g of t h e TRM t r a i n ' s actual and scheduled d e p a r t u r e and arrival t i m e s . H o w e v e r , w h i l e relieving a i r p o r t s f r o m congestion by t a k i n g over s o m e APT d e m a n d , t h e ETT TRM system c o u l d c o n t r i b u t e t o increasing congestion in t h e areas a r o u n d its begin a n d end t e r m i n a l s s i m p l y due t o t h e increased intensity o f m o b i l i t y t h e r e , as described above.

3.6.5. Traffic incidents/accidents (safety)

An ETT TRM system is e x p e c t e d t o be safe at least as its APT c o u n t e r p a r t . This implies t h a t i n c i d e n t s / a c c i d e n t s s h o u l d n o t occur due t o t h e k n o w n reasons. H o w e v e r , t h e p a r t i c u l a r a t t e n t i o n w i l l have t o be d e v o t e d t o t h e safety and security of I n f r a s t r u c t u r e (tubes), f o r e x a m p l e , p r e v e n t i n g e v e n t u a l t e r r o r i s t t h r e a t s / a t t a c k s , m a i n t a i n i n g v a c u u m , and i n t e r v e n i n g in cases o f losing it due t o d i s t u r b i n g and d i s r u p t i v e e v e n t s . Consequently, t h e TRM t r a i n s o p e r a t i n g a t t h e very high speed w o u l d be i m m e d i a t e l y a u t o m a t i c a l l y s t o p p e d .

3.7. Policy performances

An ETT TRM system w o u l d d e m o n s t r a t e its policy p e r f o r m a n c e s b o t h at t h e n a t i o n a l scale as c o n t r i b u t i o n t o c r e a t i n g an i n t e g r a t e d t r a n s p o r t system and i n t e r n a t i o n a l (global) in t e r m s of c r e a t i n g an i n t e g r a t e d global t h e v e r y high speed non-APT s y s t e m / n e t w o r k , w h i c h w o u l d even s t r o n g e r c o n t r i b u t e t o f u r t h e r globalization o f t h e already highly global e c o n o m y and society. A t such, t h e system w o u l d c o n t r i b u t e t o sustainability of t r a n s p o r t sector t h r o u g h c o n t r i b u t i n g t o t h e social e c o n o m i c w e l f a r e a n d r e d u c i n g its overall impacts on t h e e n v i r o n m e n t and society.

(12)

4. An Estimation of Performances oftlie ETT TRM System

4.1. T h e case: Trans-Atlantic APT market

As m e n t i o n e d above, one a m o n g prospective long-haul ( i n t e r c o n t i n e n t a l ) passenger t r a n s p o r t markets f o r I m p l e m e n t a t i o n o f t h e ETT TRM system could be t h e o n e b e t w e e n Europe and N o r t h America (i.e., Trans-Atlantic). At present, this is t h e w o r l d ' s largest i n t e r c o n t i n e n t a l air passenger m a r k e t served by APT (Air Passenger T r a n s p o r t ) system. Some estimates indicate t h a t t h e average share of this m a r k e t in t h e t o t a l global APT^ m a r k e t of a b o u t 8.3% In 2 0 1 1 w o u l d decrease t o a b o u t 6.5% or 5.4% in 2 0 3 1 , thus Indicating its increasing m a t u r i t y o v e r t i m e i m p l y i n g l o w e r g r o w t h rates(s). Consequently, Fig. 4 shows t h e past and f o r e c a s t e d / p r o s p e c t i v e d e v e l o p m e n t o f t h e APT d e m a n d in this m a r k e t f o r t h e period 2004-2060 [ 1 0 ] , [ 1 1 ] , [ 1 2 ] .

— Realized

• • Forecasted

Annual growth rates: 2 0 1 5 - 2 0 2 5 - 4 . 0 % / y r 2025-2035 - 3.0%/yr 2035-2050 - 2.5%/yr 2050-2070 - 2.0%/yr .Xf 2 0 0 0 2010 2020 2 0 3 0 2040 2050 2 0 6 0 Year

Figure 4 Possible l o n g - t e r m d e v e l o p m e n t o f APT (Air Passenger T r a n s p o r t ) d e m a n d In T r a n s - A t l a n t i c

m a r k e t ( b o t h directions) [ 1 ] , [ 1 0 ] , [ 1 1 ] , [ 1 2 ] , [16] (Airbus, 2 0 1 2 ; Boeing, 2 0 1 4 ; FAA, 2013; Janic, 2 0 1 4 ; h t t p : / / c e n t r e f o r a v i a t l o n . c o m / a n a l y s i s / t h e n o r t h a t l a n t i c t h e s t a t e o f t h e m a r k e t f i v e y e a r s o n -f r o m - e u - u s - o p e n - s k i e s - 1 0 0 3 1 5 )

As can be seen, u n d e r t h e assumed average annual g r o w t h rates d u r i n g particular sub-periods o f t h e given l o n g t e r m p e r i o d i n d i c a t i n g gradual m a t u r a t i o n o f t h e m a r k e t and w e a k e n i n g its m a i n d e m a n d -driving forces on b o t h sides of Atlantic, t h e annual n u m b e r of passengers ( b o t h d i r e c t i o n s ) is e x p e c t e d t o increase t o a b o u t CLAPI = igS-lO*^ in t h e year 2 0 5 0 , and 240 -10*^ in t h e year 2 0 6 0 . A t t h e

year 2 0 5 0 / 5 1 , t h e i m p l e m e n t e d EET TRM system is s u p p o s e d t o i m m e d i a t e l y a t t r a c t a part o f this e x p e c t e d APT d e m a n d consisting mainly of business ( p r e m i u m class) passengers c o n s i d e r i n g t h e t r a n s p o r t t i m e as o n e of t h e most I m p o r t a n t a t t r i b u t e s f o r choice of t h e t r a n s p o r t s y s t e m / m o d e . These passengers w o u l d access t h e ETT TRM system at b e g i n / e n d t e r m i n a l at b o t h ends o f t h e r o u t e / l i n e by ( i n t e g r a t e d ) f e e d e r services p r o v i d e d by t h e a b o v e - m e n t i o n e d t r a n s p o r t s y s t e m s / m o d e s . Later o v e r t i m e , t h e ETT TRM system c o u l d also b e c o m e increasingly c o n v e n i e n t f o r m o r e massive use also by t h e e c o n o m i c class-passengers.

' Generally, for t h e period ( 2 0 1 1 - 2 0 3 0 / 3 1 ) , both Boeing and Airbus predict t h e annual APT g r o w t h In t e r m s of RPK (Revenue Passenger Kilometers) of a b o u t 5% [10], [11].

(13)

4.2. Infrastructural scenario

The length of t h e ETT TRM l i n e / r o u t e in t h e a b o v e - m e n t i o n e d Trans-Atlantic ATP m a r k e t t o be built over t h e p e r i o d o f 20 years (2031-2050) w o u l d be d = 5 6 6 4 k m (similarly as t h e length of r o u t e b e t w e e n London and New York). As s h o w n in Fig. 1, at t h e ETT TRM system design w i t h t w o t r a n s p o r t and single s e r v i c e / m a i n t e n a n c e t u b e , t h e inside and outside d i a m e t e r of each t r a n s p o r t t u b e w o u l d be a b o u t : D2 = 2R2 = 6.2m and Di = 2Ri = 6 . 0 m , and t h a t of t h e service t u b e : Ds2 = 2Rs2 = 3.2m and Dsi = 2Rsi = 3.0m, respectively. This implies thickness of all tubes o f 2 0 0 m m [13]. They w o u l d a c c o m m o d a t e t h e TRM t r a i n ' s height and w i d t h of 4 . 1 6 m and 3 . 7 0 m , respectively, and height of guideway(s) of 1.25m (Fig. 2; Table 1) [1]. For e x a m p l e , let t h e density of ocean w a t e r be: po = 1 . 0 2 7 t o n / m ^ t h e dimension of t h e t u b e s as above; t h e f a c t o r : ƒ = 2 f o r installing guideway(s) and o t h e r systems inside, and t h e average specific gravity o f t h e t u b e s ' m a t e r i a l : Sw = 5.67 t o n / m ^ (i.e., 6 0 / 4 0 % mix o f steel (specific g r a v i t y : Ss = 7.85 t o n / m ^ ) and c o n c r e t e (specific gravity: Sa = 2400 t o n / m ^ ) ) . T h e n , based on Eq. 1 t h e b u o y a n t force of t u b e of length of I m w o u l d be: Wb = 21.72 -29.02 = -7.3kg < 0, w h i c h implies t h a t t h e t u b e w o u l d f l o a t and thus m u s t be a n c h o r e d t o t h e seabed. In a d d i t i o n , t h e b u o y a n t force w o u l d be used t o specify t h e need f o r a n c h o r i n g cables. The q u a n t i t y of m a t e r i a l used t o build t w o t r a n s p o r t and o n e s e r v i c e / m a i n t e n a n c e t u b e w i t h 2 0 0 m m t h i c k walls and t h e specific gravity o f t h e m i x t u r e of m a t e r i a l ( 5 . 6 7 t o n / m ^ ) w o u l d a m o u n t t o a b o u t 1 5 2 - l O ^ t o n . In a d d i t i o n , a b o u t 200 v a c u u m p u m p s (units), each w i t h capacity of l O O m V m i n and energy c o n s u m p t i o n o f 260KWh w o u l d be located at a distance of a b o u t 28km along t h e line. The v o l u m e of air t o be evacuated f r o m t w o tubes w o u l d be: Vor = 2-3.14-5564-10^-3' = 3 2 0 • l ü ' ^ m ^ initially d u r i n g a b o u t 1 1 . 1 days [1], [2], [3], [4].

4.3. T e c h n i c a l / t e c h n o l o g i c a l s c e n a r i o

The ETT TRM system w o u l d c o n s u m e m o s t e n e r g y / f u e l f o r p r o p u l s i o n , i.e., a c c e l e r a t i n g / d e c e l e r a t i n g o f TRM train(s) t o / f r o m t h e i r m a x i m u m cruising speed of: VETT = 8.0-10^ k m / h . If, f o r e x a m p l e , t h e

gross w e i g h t o f five-car TRM t r a i n was 3 2 0 t o n , t h e energy needed t o accelerate it t o / f r o m t h e a b o v e - m e n t i o n e d m a x i m u m cruising speed w o u l d be e s t i m a t e d by Eq. 3a as: EEu/a/d = l/2-320-10^-(8.0-1073.6-10^)^ = 790.2-lO^J = 2 1 9 . 5 M W h . This acceleration phase w o u l d t a k e a b o u t : ütErr/a/d=VETTT/aETT= [(8.0-1073.6-10^)/3.0]/60 = 12.3min (the average a c c e l e r a t i o n / d e c e l e r a t i o n rate is OETT = ±3m/s^). A f t e r t h a t , t h e TRM t r a i n w o u l d c o n t i n u e t o be driven by inertial f o r c e w i t h o u t

c o n s u m i n g a d d i t i o n a l energy f o r p r o p u l s i o n . At t h e end o f r o u t e , t h e TRM train(s) w o u l d spend again t h e same as above a m o u n t of e n e r g y a n d t h e t i m e f o r deceleration and s t o p . Consequently, t h e m i n i m u m r e q u i r e d p o w e r of t h e rocket engine e s t i m a t e d by Eq. 3b w o u l d be: P/TEn/e= l/2-[320-10^-(8.0-1073.640^)-3.0] = 1066.7-10S|<g-m7s^= 1 0 6 6 . 7 M W . The m a s s / w e i g h t o f this engine w o u l d be: mre = 1.7-6.3ton [1], [ 1 4 ] . If LH2 (Liquid Hydrogen) w i t h t h e energy c o n t e n t o f 1 4 2 M J / k g was used, its c o n s u m p t i o n d u r i n g a c c e l e r a t i o n / d e c e l e r a t i o n phase of a t r i p w o u l d be a b o u t Fc/a/d-EETT/a/d/142 = 7 9 0 1 2 3 . 5 / 1 4 2 = 5.6ton each, and t h e t o t a l c o n s u m p t i o n 11.2ton i m p l y i n g t h e capacity of reservoirs o n b o a r d t h e TRM o f Cr = 1 2 t o n . Giving t h e density of LH2 of: D = 7 0 . 8 6 k g / m ^ t h e v o l u m e of t h e s e reservoirs w o u l d be: Vr = Cr/D = 1 2 0 0 0 / 7 0 . 8 5 ~ 170m^ [ 1 5 ] . These all a b o v e - m e n t i o n e d m o d i f i c a t i o n s including t h e w e i g h t o f insulated reservoirs w o u l d increase t h e gross w e i g h t o f t h e TRM t r a i n t o a b o u t : mETT= 3 4 0 t o n . T h e n , t h e energy c o n s u m p t i o n d u r i n g a c c e l e r a t i o n / d e c e l e r a t i o n w o u l d be: ferr/o/d = 2 3 3 . 2 M W h (Fc/a/d = (2-839520.5)/142 = 11.9ton), and t h e m i n i m u m r e q u i r e d p o w e r of t h e rocket engine: P/TEir/e - 1 1 3 3 . 3 M W . The resulting differences b e t w e e n t h e main t e c h n i c a l / t e c h n o l o g i c a l and o p e r a t i o n a l p e r f o r m a n c e s o f t h e basic and m o d i f i e d TRM t r a i n , t h e later t o be o p e r a t e d by t h e ETT system Is given in Table 1.

(14)

Table 1 Technical/technological and o p e r a t i o n a l perfornnances o f t h e basic and

m o d i f i e d ETT TRIVI (TransRapid MAGLEV) 07 train [ 1 ] , [ 5 ] , [ 6 ] , [7]

Characteristic Value^' Value^'

Carriages/sections per t r a i n 5 5

Length of t r a i n (m) 128.3 128.3

W i d t h of carriage (m) 3.70 3.70

Height of carriage (m) 4.16 4.16

W e i g h t of e m p t y t r a i n t o n ) 247 247 Gross w e i g h t of a train^' (ton) 3 1 8 - 3 2 0 340

Seating capacity (max) (seats) 4 4 6 4 0 0

Gross w e i g h t / s e a t ratio (average) 0 . 7 1 0.85 Axle load - gross w e i g h t ( t o n / m ) 2.47-2.479 2.65 Technical curve radius (m) 2 8 2 5 - 3 5 8 0 2 8 2 5 - 3 5 8 0

M a x i m u m engine p o w e r ( M W ) 25 1133.3

Lateral t i l t i n g angle (°) 12-16 12-16

M a x i m u m o p e r a t i n g speed ( k m / h ) 4 0 0 - 4 5 0 8000 M a x i m u m a c c e l e r a t i o n / d e c e l e r a t i o n (m/s^) 0.8-1.5 3 ^

il Non-vacuum; 2)Vacuum; ^'Approxlmately 64ton/carriage including the weight of passengers

and their baggage

4.4. Operating scenario

4.4.1. General

The " w h a t - i f " o p e r a t i n g scenario is d e v e l o p e d f o r t h e year 2 0 5 0 / 5 1 w h e n t h e EET TRM system is supposed t o be i m p l e m e n t e d b e t w e e n Europe and N o r t h America (over N o r t h - A t l a n t i c ) and as such s t a r t c o m p e t i n g w i t h t h e w e l l - e s t a b l i s h e d APT system.

T h r e e o p e r a t i o n a l c o m p e t i n g scenarios are considered regarding t h e APT system exclusively o p e r a t i n g :

1) C o n v e n t i o n a l sub-sonic aircraft f l e e t w i t h t h e cruising speed of a b o u t 0 . 8 5 M at t h e a l t i t u d e s o f a b o u t 33-lO^ft ( I M = 1 0 7 8 k m / h at t h e a l t i t u d e o f 3 3 ' l O ^ f t (M - M a c h n u m b e r ) (ETT-APT/C); ii) Fleet of STA NASA (Supersonic T r a n s p o r t Aircraft-NASA High-Speed Civil T r a n s p o r t ) b e y o n d t h e

year 2030 w i t h t h e cruising speed o f 2.0-2.4M at t h e altitudes o f 60-lO^ft ( I M = 1062 k m / h a t t h e a l t i t u d e o f eO-lO^ft; 1ft = 0 . 3 0 5 m ) (EET-APT/STA NASA); and

ill) Fleet of ECH M 5 C (EC Hydrogen M a c h 5 Cruiser A2) b e y o n d t h e y e a r 2030 w i t h t h e cruising speed of M 5.0 at t h e a l t i t u d e s o f eO-lO^ft ( I M = 1062 k m / h at t h e a l t i t u d e of 60-103ft; 1ft = 0.305m) (EFT-APT/ECH M5C) [ 1 ] .

4.4.2. Estimation of passenger demand

A c c o r d i n g t o t h e f o r e c a s t e d passenger d e m a n d in Fig. 4, t h e a b o v e - m e n t i o n e d APT system is e x p e c t e d t o carry o u t a b o u t 199'10^ in t h e y e a r 2 0 5 1 and a b o u t 2 4 0 ' 1 0 ^ passengers in t h e year 2060. Based o n t h e past experience and assuming t h a t it w i l l c o n t i n u e in t h e f u t u r e , a b o u t 1618%, i.e., 3 2 -33-10^ o f t h e s e m a i n l y business ( p r e m i u m class) passengers w o u l d be e x p e c t e d t o choose b e t w e e n t h e APT system o p e r a t e d by d i f f e r e n t a b o v e - m e n t i o n e d aircraft categories and t h e n e w l y i m p l e m e n t e d EETTRM system [ 1 6 ] .

U n d e r an a s s u m p t i o n t h a t t h e cost o f access t i m e and prices are g o i n g t o be a p p r o x i m a t e l y equal f o r b o t h systems, t h e t r a v e l t i m e b e t w e e n origin and d e s t i n a t i o n airport(s) of t h e ATP and b e t w e e n b e g i n / e n d t e r m i n u s of ETT TRM appears t o be t h e m a i n a t t r i b u t e of s y s t e m / m o d e choice. Some

(15)

relevant o p e r a t i o n a l characteristics ( a l t i t u d e , cruising speed) and c o n s e q u e n t average r o u t e t r a v e l t i m e relevant f o r t h e m o d a l choice are e s t i m a t e d and given in Table 2.

Table 2 Some o p e r a t i n g characteristics of t h e EET TRM and t h e APT system In t h e given case -

Trans-A t l a n t i c m a r k e t [1], [ 2 7 ] , [ 2 8 ] , [29] (Coen, 2 0 1 1 ; EC, 2006, 2 0 0 8 ; Janic, 2014; NTrans-AS, 2001)

Transport mode Length Operating Average block Average door-to-door of route altitude^' speed^' travel time^'

d H V da +rij+ti,(d) (km) (lO^ft) ( M ; k m / h ) (h) ETT 5564 - 1 . 0 5.5; 6700 3.5 + 0.83 = 4.33 APT/C 5564 + 33 0.7; 740 1.5 + 7.5 = 9.0 APT/STA NASA 5564 + 60 2.0-2.4; 2 1 2 4 - 2 5 4 9 1.5 + 2.66 = 3.16 APT/ECH M 5 C 5564 + 60 5.0; 5310 1.5+ 1.09 = 2.59

ETT- Evacuated Tube Transport; APT/C-Air Passenger Transport/Conventional; APT/STA NASA - Air Passenger Transport/NASA High-Speed Civil Transport; APT/ECH IV15C-Air Passenger Transport/EC Hydrogen IVlach 5 Cruiser A2; M - Mach number; D Above MLS (IVliddle Sea Level); 1ft = 0.305m; ^1 Including acceleration and deceleration rate of: 0*/- = +3 m/s, respectively, t o / f r o m the maximum corresponding cruising speed of 8.0*10^ km/h in the vacuum tube.

As can be seen, t h e ETT is supposed t o have t h e s h o r t e r d o o r - t o - d o o r t i m e t h a n its APT/C c o u n t e r p a r t , t h u s presumably d e m o n s t r a t i n g capability f o r a t t r a c t i n g t h e a b o v e - m e n t i o n e d passenger d e m a n d . However, It w o u l d not be s u p e r i o r c o m p a r e d t o its APT/STA NASA and APT/ECH M 5 C c o u n t e r p a r t , mainly due t o t h e m u c h longer accessing/leaving t i m e .

Based on this d o o r - t o - d o o r t r a v e l t i m e , t h e m a r k e t share and t h e c o r r e s p o n d i n g v o l u m e s of passenger d e m a n d expected t o be a t t r a c t e d by t h e ETT system u n d e r given c o n d i t i o n s are e s t i m a t e d means by Eq. 4a-c and given in Table 3.

Table 3 M a r k e t share and d e m a n d o f t h e EETTRM in t h e c o m p e t i n g scenarios w i t h t h e APT system in

t h e given case - Trans-Atlantic m a r k e t

Competing modes (Scenario) Market share of ETT Pm-(%)

Demand for ETT (Year 2050/51)

Qm

(lO'^pass/yr)

Demand for ETT (Year 2 0 5 0 / 5 1 ) QETT (lO^pass/day/dir)^' ETT-APT/C 32 - 3 6 0.990 31.70 - 3 5 . 9 6 4 3 . 4 - 4 8 . 8 EET-APT/STA NASA 32 - 3 6 0.458 14.66 - 1 6 . 4 9 2 0 . 0 - 22.6 EET-APT/ECH M 5 C 32 - 3 6 0.149 4 . 7 7 - 5 . 3 6 6 . 5 - 7 . 3

ETT- Evacuated Tube Transport; APT/C- Air Passenger Transport/Conventional; APT/STA NASA - Air Passenger Transport/ NASA High-Speed Civil Transport; APT/ECH MSC - Air Passenger Transport / EC Hydrogen Mach 5 Cruiser A2; dir - direction; y r - y e a r ; Average during the day per direction ( l y e a r = 365 days)

As can be s e e n , if c o m p e t i n g exclusively w i t h t h e ATP/C, t h e ETT w o u l d a t t r a c t a l m o s t its e n t i r e ( p r e m i u m class) passenger d e m a n d . If c o m p e t i n g w i t h t h e APT/STA NASA and APT/ECH M 5 C , it w o u l d a t t r a c t a b o u t 4 6 % and 15%, respectively, of t h e t o t a l ATP/C ( p r e m i u m class) passenger d e m a n d .

If an ETT TRM t r a i n have t h e seating capacity SETT = 400seats and t h e average load f a c t o r of AETT = 0.90, t h e service f r e q u e n c y e s t i m a t e d by Eq. 4 d based on t h e passenger d e m a n d in Table 3 is given in Table 4 .

(16)

Table 4 Service f r e q u e n c y o f t h e ETT TRIVI system In t h e c o m p e t i n g scenarios

w i t h t h e APT system in t h e given case - Trans -Atlantic m a r k e t

Competing modes D e m a n d by ETT Daily service Hourly service

(Scenario) (Year 2 0 5 0 / 5 1 ) frequency frequency

QETT Em fm

(lO^pass/day/dir)^' ( d e p / d a y / d i r ) ( d e p / h / d i r ) ^ '

ETT-APT/C 4 3 . 4 - 4 8 . 8 6 0 - 6 8 3-4

EET-APT/STA NASA 2 2 . 0 - 22.6 2 8 - 3 1 2-2

EET-APT/ECH M 5 C 6 . 5 - 7 . 3 9 - 1 0 1-1

11 Operating time during the day: 18h; Sen = 400seats; AETT = 0.90 (dir -direction)

As can be seen, in t h e case o f c o m p e t i t i o n b e t w e e n t h e ETT and APT/C, t h e d e p a r t u r e s on t h e given l i n e / r o u t e w o u l d take place every 1 5 2 0 m i n giving t h e average passenger schedule delay o f l / 2 ( 1 5 -20) = 7.5-10.0 m i n . In t h e case of c o m p e t i t i o n b e t w e e n t h e EET and APT/STA NASA, t h e d e p a r t u r e s w o u l d t a k e place every 3 0 m i n w i t h an average schedule delay of 1 5 m i n . In t h e case o f c o m p e t i t i o n b e t w e e n t h e EET and APT/ECH M5C, t h e d e p a r t u r e s w o u l d be carried once per h o u r ( 6 0 m i n ) a n d t h e schedule delay w o u l d be 3 0 m i n .

T h e r e q u i r e d TRM f l e e t c o m p e t i n g w i t h t h e EET- APT/C scenario based o n Eq. 5a w o u l d b e : NEET = (3¬

4) -5.66 = 17-23tralns, and 19-25 t r a i n s , if a 10% reserve was i n c l u d e d . Respecting t h a t t h e s t o p t i m e o f each EET t r a i n at b o t h e n d t e r m i n a l s w a s : tErr/s = 2h (120min) (mainly d u e t o safe r e f u e l i n g w i t h

LH2), t h e t u r n a r o u n d t i m e based on Eq. 5b w o u l d be: tETT/Td = 2- (0.83+2) = 5.66h. As w e l l , by Eq. 2, t h e

r e q u i r e d n u m b e r of tracks at each t e r m i n a l t o handle d e p a r t i n g a n d arriving TRM trains in t h e scenario EET-APT/C w h e n each of t h e m stops f o r an average t i m e of: tErr/s = 2h ( 1 2 0 m i n ) w o u l d be: no,= (3-4)-(2)=6-8 tracks. T h e length o f each track w o u l d be m i n i m u m 1 5 0 - 2 0 0 m t o enable a c c o m m o d a t i o n of t h e TRM trains a n d t h e i r c o m f o r t a b l e e m b a r k i n g and d i s e m b a r k i n g . The a d d i t i o n a l tracks (1-2) need also t o be p r o v i d e d at each t e r m i n a l f o r TRM trains t e m p o r a r y n o t in service.

The t e c h n i c a l p r o d u c t i v i t y o f a single TRM t r a i n f o r t h e scenario EET-APT/C is e s t i m a t e d by Eq. 6a as: TPErr/v= 4 0 0 - 6 . 8 - 1 0 ^ = 2 . 7 2 0 - 1 0 V k m / h . In a d d i t i o n , t h e t e c h n i c a l p r o d u c t i v i t y of t h e TRM t r a i n f l e e t d u r i n g o n e h o u r e s t i m a t e d by Eq. 6b w o u l d be: TPETT//= (3-4)-400-6.8-10^(km/h) =

8.16-10.90s-k m / h / h . Table 5 summarizes s o m e of t h e above m e n t i o n e d t h e ETT system's o p e r a t i o n a l p e r f o r m a n c e s in particular c o m p e t i n g scenarios.

Table 5 Some Infrastructural and o p e r a t i o n a l p e r f o r m a n c e s o f t h e ETT TRM system in t h e

c o m p e t i n g scenarios w i t h t h e APT system in t h e given case - Trans-Atlantic m a r k e t

Competing modes Service Tracks at Required Technical

(Scenario) frequency end terminals T R M fleet productivity

£m Ut NETT ( d e p / h / d i r ) ^ ' ( t r a c k s / t e r m i n a l ) (trains) (10^ s-k m / h / h ) EET-APT/C 3 - 4 6 - 8 17 - 23^'/19 - 25^' 8 . 1 5 - 1 0 . 9 EET-APT/STA NASA 2 - 2 4 / 5 1 1 / 1 3 5.5 EET-APT/ECH M5C 1 - 1 2 / 3 6 / 6 2.7

(17)

4.4. Economic scenario

According t o t h e " w h a t - i f " e c o n o m i c scenario, t h e ETT system in t h e given case is assumed t o p r o v i d e a r e t u r n on i n v e s t m e n t , i.e., positive or zero c o s t - b e n e f i t ratio o v e r a p e r i o d o f 4 0 years a f t e r being i m p l e m e n t e d .

4.4.1. Costs

The i n v e s t m e n t costs f o r building t u b e s a p p e a r t o be very u n c e r t a i n but s o m e estimates Indicate t h a t t h e y could be a b o u t 14.6-20.2-10'^$US/km (i.e., S l - l l S - l O ^ S U S f o r t h e e n t i r e l i n k / l i n e o f length o f 5 5 6 4 k m including t h e passenger t e r m i n a l s at b o t h ends) [ 1 7 ] . The cost of t h e TRM guldeways in t h e t u b e s in a single d i r e c t i o n w o u l d be similar as at t h e t o d a y ' s T R M - a b o u t 16.8-10'^$US/km (i.e., f o r t w o tracks t h i s gives t h e t o t a l i n v e s t m e n t cost of 5564-2-16.8-10^ = 187-10^$US). Thus, If t h e system was built over t h e 20-year period b e t w e e n 2030 and 2 0 5 0 , t h e t o t a l i n f r a s t r u c t u r e (tubes, TRM g u i d e w a y s , t e r m i n a l s ) and t h e cost o f facilities and e q u i p m e n t ( v a c u u m p u m p s , p o w e r supply s y s t e m , t r a f f i c c o n t r o l s y s t e m , and f i r e p r o t e c t i o n system) w o u l d be a b o u t 268-302-10^$US, o r w i t h o u t t a k i n g i n t o account t h e interest rate(s), 13.4-15.l-lO^SUS/yr. As an i l l u s t r a t i o n , t h e share of t h e i n v e s t m e n t costs in t h e c u m u l a t i v e GDP of Europe (EU) ( 6 9 0 . 3 4 - 1 0 " $US) and N o r t h A m e r i c a (USA, Canada) ( 7 7 1 . 4 - 1 0 " $US) d u r i n g t h a t period w o u l d be a b o u t 0.018 - 0.026%, respectively [ 1 ] , [ 1 8 ] .

The costs o f o p e r a t i n g i n f r a s t r u c t u r e w o u l d a m o u n t t o a b o u t 10% of t h e i n v e s t m e n t costs, w h i c h w o u l d give t o t a l i n f r a s t r u c t u r e costs o f a b o u t : Q = 14.74-16.61-10''$US/yr. A s s u m i n g t h a t t h e passenger d e m a n d in each year of t h e i n v e s t m e n t - r e t u r n i n g 40-year p e r i o d w o u l d be a t least t h e same as in 2 0 5 0 / 5 1 , a n d t h e o p e r a t i o n a l cost of a TRM t r a i n C o = 0 . 0 9 5 $ U S / p - k m , t h e t o t a l unit costs (ct) of an EET TRM system f o r d i f f e r e n t c o m p e t i n g scenarios in Table 3 are estihnated and given in Table 6.

Table 6 Some e c o n o m i c p e r f o r m a n c e s o f t h e ETT TRM system f o r t h e c o m p e t i n g scenarios w i t h t h e

APT system in t h e given case - Trans-Atlantic m a r k e t

Competing modes Passenger Infrastructure Operational Total

(Scenario) demand^' (unit) cost^' (unit) cost (unit) cost

QET^ Co Ql

( l O ^ p - k m / y r ) ($US/p-km) (SUS/p-km) ( $ U S / p - k m )

EET-APT/C 1 7 9 . 5 - 2 0 7 . 5 0.087-0.076 0.095 0 . 1 8 2 - 0 . 1 7 1 EET-APT/STA NASA 8 3 . 0 - 9 3 . 2 0.189-0.168 0.095 0 . 2 8 4 - 0 . 2 6 3 EET-APT/ECH M 5 C 2 7 . 0 - 3 0 . 4 0.580-0.516 0.095 0 . 6 7 5 - 0 . 6 1 0

QETT*=QEn-d; ^* The average annual total costs of infrastructure are estimated to be: G =

[(14.74+16.61)*10^]/2 = 15.68 • 10^$US/yr; p-km-passenger-kilometer; yr-year

4.4.2. Revenues

The revenues gained f r o m o p e r a t i n g t h e EET system u n d e r given c o n d i t i o n s can be considered t o be direct, i.e., t h o s e f r o m charging users/passengers, and i n d i r e c t , i.e., savings in t h e cost of passenger in-vehicle t i m e u n d e r given c o m p e t i n g scenarios w i t h APT.

The ETT system d i r e c t revenues are i l l u s t r a t e d by t h e r e l a t i o n s h i p b e t w e e n t h e EET average cost-c o v e r i n g f a r e per passenger and t h e a n n u a l v o l u m e of passenger d e m a n d d i v e r t e d f r o m t h e APT in t h e a b o v e - m e n t i o n e d c o m p e t i n g scenarios in t h e given case as s h o w n on Fig. 5.

(18)

4 2 0 0

7 0 0 I ' ' ' ' ' ' ' '

O 5 10 15 20 25 30 35 40 Q C T T - Passenger demand - lO^passengers/yr

Figure 5 Relationship b e t w e e n t h e average f a r e and t h e a n n u a l ( p r e m i u m ) passenger d e m a n d at t h e

ETT TRIVI system in t h e given case - Trans-Atlantic m a r k e t

As can be seen, t h e o n e - w a y fare c o v e r i n g t h e cost varies b e t w e e n a b o u t P(QETT) = 970 and 3500$US/pass, and decreases m o r e t h a n p r o p o r t i o n a l l y w i t h increasing of t h e annual ( p r e m i u m class) passenger d e m a n d . As based on t h e average t o t a l cost, this f a r e also reflects existence o f e c o n o m i e s of d e m a n d d e n s i t y at t h e EET TRM system u n d e r given c o n d i t i o n s . The ETT TRM system i n d i r e c t revenues, i.e., saving in t h e passenger cost d o o r - t o - d o o r t i m e , in d e p e n d e n c e o f t h e a n n u a l ( p r e m i u m class) passenger d e m a n d are s h o w n on Fig. 6.

10

-4 I '

Q E J T - Passenger demand - lO^pass/yr

Figure 6 Relationship b e t w e e n t h e savings in cost of passenger d o o r - t o - d o o r t i m e and t h e v o l u m e o f

a n n u a l ( p r e m i u m ) passenger d e m a n d at t h e ETT TRM system in t h e given case - T r a n s - A t l a n t i c m a r k e t [ 1 ] , [19], [20] (Janic, 2 0 1 4 ; Landau et al., 2015; USDT, 2011)

As can be seen, t h e r a t h e r e n o r m o u s savings in t h e costs o f passenger d o o r - t o - d o o r t r a v e l t i m e w o u l d be achieved at t h e EET-APT/C c o m p e t i n g scenario. These savings w o u l d be negative and not in f a v o r o f t h e ETT system in t h e o t h e r t w o scenarios (particularly at ETT-APT/ECH M5C) m a i n l y d u e t o t h e relatively low a t t r a c t e d passenger d e m a n d u n d e r given c o n d i t i o n s (Table 3) [ 1 ] , [ 1 9 ] , [ 2 0 ] .

(19)

4.5. Environmental/social/policy scenario

The ETT TRM system o p e r a t i n g in t h e given case is assumed t o be f r e e o f t h e e n v i r o n m e n t a l impacts such f u e l / e n e r g y c o n s u m p t i o n f r o m t h e n o n - r e n e w a b l e sources, related emissions of GHG (Green House Gases), and land u s e / t a k e . It is also f r e e f r o m t h e social Impacts such as noise, c o n g e s t i o n , and t r a f f i c incidents/accidents (safety), t h e latest n o t t o happen due t o k n o w n reasons. As such, it w o u l d possess substantive p e r f o r m a n c e s c o n t r i b u t i n g t o policies a i m i n g at reducing t h e overall impacts o f t r a n s p o r t sector on t h e society and e n v i r o n m e n t . Nevertheless, its " w h a t - i f e n v i r o n m e n t a l scenario mainly relate t o savings in t h e a b o v e - m e n t i o n e d impacts due t o reducing t h e scale of o p e r a t i o n s of t h e APT system thanks t o a t t r a c t i n g passenger d e m a n d f r o m it u n d e r given c o n d i t i o n s .

The rocket-engine propellants used by t h e ETT TRM trains and b u r n i n g o u t w i t h i n t h e t u b e s w o u l d n o t p r o d u c e emissions of GHG i m p a c t i n g t h e outside e n v i r o n m e n t [30]. The (electric) energy f o r o p e r a t i n g t h e ETT TRM system's s u p p o r t i n g facilities and e q u i p m e n t w o u l d be c o m p l e t e l y o b t a i n e d f r o m t h e n o n - r e n e w a b l e (nuclear) and r e n e w a b l e (solar, w i n d , w a t e r ) sources thus i m p l y i n g t h a t t h e emissions of GHG f r o m o p e r a t i n g t h e ETT TRM system w o u l d be negligible c o m p a r e d t o t h a t f r o m b u r n i n g crude oil-based JP-1 f u e l - k e r o s e n e . Under such c o n d i t i o n s , t a k i n g over t h e passenger d e m a n d f r o m t h e APT system w o u l d reduce t h e v o l u m e s of its o p e r a t i o n s and c o n s e q u e n t l y t h e c o r r e s p o n d i n g impacts on t h e e n v i r o n m e n t and society. This w o u l d be particularly in t h e ETT TRM -APT/C c o m p e t i n g scenario, w h e n t h e APT system was assumed to exclusively o p e r a t e t h e aircraft similar t o t o d a y ' s B 7 8 7 - 8 / 9 and A 3 5 0 - 8 0 0 / 9 0 0 aircraft w i t h t h e average f u e l c o n s u m p t i o n of a b o u t :

/ A P T / I = 0.0206 kg/s-km orfAPT/2= 0.0257 k g / p - k m (the load f a c t o r was supposed t o he AAPT = 0.80) [ 2 1 ] ,

[22]. The emission rate of JP-1 f u e l is: = 5.25 l<gC02e/l<g, w h i c h gives t h e average GHG emission rates of a b o u t : eAPi/i = 0.108 kgC02e/s-km or CAPTA = 0.135 kgC02e/p-km. T h e n , t h e costs of COze

emissions as t h e saved externalities by t h e ETT TRM f r o m t h e APT system are e s t i m a t e d f o r t h e a b o v e - m e n t i o n e d c o m p e t i n g scenarios and given in Table 7.

T a b l e 7 Some e n v i r o n m e n t a l p e r f o r m a n c e s - savings in externalities - o f t h e ETT TRM system f o r t h e c o m p e t i n g scenarios w i t h t h e APT system in t h e given case - Trans-Atlantic m a r k e t [ 1 ] , [14],

[ 2 4 ] , [25] L — • J / L — - ' J Competing modes (Scenario) Passenger demand^' Qnr (lO^p-km/yr) Savings in cost of C02e (103$US/yr)

Savings in total costs -externalities"'

( 1 0 ^ $ U S / y r )

EET-APT/C 179.5 - 2 0 7 . 5 9.0 -10.421 1 6 . 4 - 1 8 . 5 EET-APT/STA NASA 8 3 . 0 - 9 3 . 2 0 . 5 - 0 . 8 4 ^ ' 6 . 5 - 7 . 3 EET- APT/ECH M 5 C 2 7 . 0 - 3 0 . 4 0 . 2 4 - 0 . 2 7 ^ ' 2 . 1 - 2 . 4

1' QETT* = QETT • d; ^1 Ce = 0.050$US/p-km (BAU - Business As Usual scenario); 3) Ce = 0.009$US/p-km (Unit cost of C02e externalities); "> c,e = 0.078SUS/p-km (Total cost of the social and environmental impacts-externalities); p-km-passenger-kilometer; yr-year

As can be seen, t h e savings in externalities w o u l d be substantive and d e p e n d e n t mainly o n v o l u m e o f s w i t c h e d APT d e m a n d and t h e aircraft t e c h n o l o g i e s o p e r a t e d by t h e ATP system u n d e r given c o n d i t i o n s .

5. Conclusions

This paper has dealt w i t h t h e m u l t i d i m e n s i o n a l e x a m i n a t i o n of i n f r a s t r u c t u r a l , t e c h n i c a l / t e c h n o l o g i c a l , o p e r a t i o n a l , e c o n o m i c , e n v i r o n m e n t a l , social, and policy p e r f o r m a n c e s o f t h e advanced f u t u r i s t i c ETT TRM system o p e r a t e d by t h e TRM (TransRapid Maglev) trains. These all

(20)

have been m o d e l e d a n d t h e n e s t i m a t e d according t o t h e " w h a t - l f " scenario a p p r o a c h of c o m p e t i t i o n o f t h e ETT TRM w i t h APT (Air passenger T r a n s p o r t ) system in t h e given long-haul ( i n t e r c o n t i n e n t a l ) passenger m a r k e t . The results have s h o w n t h e f o l l o w i n g :

i) The ETT TRM system o p e r a t i n g a p p r o p r i a t e l y redesigned TRM (TransRapid Maglev) trains c o u l d successfully c o m p e t e in t h e given ( N o r t h - A t l a n t i c ) and p r e s u m a b l y o t h e r long-haul markets w i t h t h e APT system exclusively o p e r a t i n g t h e c o n v e n t i o n a l (kerosene-fueled) aircraft. This implies its c o n t r i b u t i o n t o savings in t h e APT system's Impacts on t h e society (cost of passenger t i m e , local noise, c o n g e s t i o n , and t r a f f i c i n c i d e n t s / a c c i d e n t s (safety)) and e n v i r o n m e n t ( e n e r g y / f u e l c o n s u m p t i o n and related emissions of GHG (Green House Gases)), and land use; and

ii) The ETT TRM system c o m p e t i n g w i t h t h e APT system exclusively o p e r a t i n g t h e super and h y p e r -sonic aircraft in t h e given ( N o r t h - A t l a n t i c ) and o t h e r long-haul markets w o u l d be less successful due t o a t t r a c t i n g m u c h l o w e r passenger d e m a n d and c o n s e q u e n t l y c o n t r i b u t i n g much l o w e r if at all t o savings in t h e a b o v e - m e n t i o n e d social and e n v i r o n m e n t a l Impacts.

In a d d i t i o n , this e x a m i n a t i o n has indicated s o m e advantages and disadvantages of t h e ETT TRM system itself and its p o t e n t i a l c o n t r i b u t i o n t o t h e overall sustainability of t r a n s p o r t sector.

The ETT TRM system's main advantages w o u l d be as f o l l o w s : i) The very high speed of t r a n s p o r t services by t h e TRM t r a i n s ;

ii) Substantive f u e l (LH2) c o n s u m p t i o n f o r p r o p u l s i o n of TRM trains d u r i n g acceleration and d e c e l e r a t i o n phase o f a t r i p ;

iii) Free f r o m impacts o n t h e e n v i r o n m e n t and society such as emissions of GHG (Green House Gases), land use, noise, and c o n g e s t i o n ; and

iv) I n h e r e n t c o m p l e x i t y challenging i n t e r n a t i o n a l c o o p e r a t i o n in p l a n n i n g , design, i m p l e m e n t a t i o n , and o p e r a t i o n .

The ETT TRM system's main disadvantages could be as f o l l o w s : i) Redesign of basic c o n f i g u r a t i o n of TRM train(s);

ii) High v u l n e r a b i l i t y (exposure) t o d i f f e r e n t (external) d i s t u r b i n g / d i s r u p t i v e events;

iii) C o n t i n u o u s need f o r m a i n t a i n i n g v a c u u m in t h e a b o v e - m e n t i o n e d v u l n e r a b l e (exposed) t u b e s ; and

iv) High i n f r a s t r u c t u r e b u i l d i n g and o p e r a t i n g ( m a i n t e n a n c e ) costs including t h e cost of m a i n t a i n i n g p e r m a n e n t v a c u u m in t h e t u b e s .

Summary

M u l t i d i m e n s i o n a l e x a m i n a t i o n of p e r f o r m a n c e s of t h e f u t u r e advanced ETT (Evacuated T u b e T r a n s p o r t ) system o p e r a t e d by TRM (TransRapidMaglev); assessment o f t h e ETT TRM s y s t e m c o n t r i b u t i o n t o sustainability of t h e f u t u r e t r a n s p o r t s e c t o r t h r o u g h its c o m p l e t i o n w i t h APT (Air Passenger T r a n s p o r t ) system In t h e given case - long-haul ( N o r t h - A t l a n t i c ) passenger t r a n s p o r t m a r k e t .

References

1. Janic, M . , (2014), Advanced Transport Systems: Analysis, Modelling, and Evaluation of

Performances, Springer, L o n d o n , UK

2. Salter, R.M., (1972), "The V e r y High Speed Transit S y s t e m " , The Rand Corporation, p. 4 8 7 4 , Santa M o n i c a , California, USA, p. 18

Cytaty

Powiązane dokumenty

Nasycanie materiałów glinokrzemianowych lejnymi zawiesinami tlenku glinu i tlenków glinu i krzemu powoduje korzystne zmiany mikrostruktury, po- legające na redukcji

Obrazy rzeczywiste są reprezentacją realnych obiektów, powstają w wyniku ich oddziaływania na czułą na to oddziaływanie powierzchnię, będącej miejscem powstania obrazu.

The existing methods for spatial network analysis such as those of Space Syntax and alike or those of Transport Planning do not adequately address walking and cycling in

–cegła dziurawka tworząca wewnętrzną ścianę studia, odsunięta na Ch-ka czasu pogłosu przeciętnego studia: 1- po zamontowaniu adaptacji, 2- przed

Dodaj nazwy akordów (komenda Shift+K). Przepisz do programu MuseScore następujący fragment utworu. Za podanie tytułu tej kompozycji oraz popularnej amerykańskiej piosenki,

Conform´ ement ` a la m´ ethode pr´ esent´ ee dans le chapitre I, bas´ ee sur le th´ eor` eme de Nash et Moser, nous allons montrer successivement que P est lisse apprivois´ ee, que

[r]

Observations of infants inwardly 'contemplative' states of mind suggest that right from birth an infant can have some kind of creative experience of being alone with the feelings