• Nie Znaleziono Wyników

We prove that for all positive integers r  R

N/A
N/A
Protected

Academic year: 2021

Share "We prove that for all positive integers r  R "

Copied!
31
0
0

Pełen tekst

(1)

The ternary Goldba h problem in arithmeti progressions

by

Jianya Liu and Tao Zhan (Jinan)

ForalargeoddintegerN and apositiveintegerr;de neb=(b

1

;b

2

;b

3 )

and

B(N;r)=fb2N 3

:1b

j

r;(b

j

;r)=1and b

1 +b

2 +b

3

N (modr)g:

It isknownthat

#B(N;r)=r 2

Y

pjr

pjN

(p 1)(p 2)

p 2

Y

pjr

p-N p

2

3p+3

p 2

:

Let "> 0 be arbitrary and R = N 1=8 "

: We prove that for all positive

integers r  R ; with at most O(Rlog A

N) ex eptions, the Diophantine

equation



N =p

1 +p

2 +p

3

;

p

j

b

j

(mod r); j=1;2;3;

with prime variables is solvable whenever b 2 B(N;r); where A > 0 is

arbitrary.

1. Introdu tion and statement of results. For given odd integers

N weshall be on ernedwith thesolubilityof theequation

(1:1) N =p

1 +p

2 +p

3

inprimevariablesp

j

;thisisknownastheternaryGoldba h problem. Hardy

andLittlewood[HL℄provedin1923 thatsubje ttothegeneralizedRiemann

hypothesis (GRH hereafter) thenumberJ(N) of solutionsof (1.1) satis es

1991 Mathemati sSubje tClassi ation: 11P32,11L07.

Key wordsandphrases: ternary Goldba hproblem,exponentialsumoverprimesin

arithmeti progressions,mean-valuetheorem.

Proje t supported by the Trans-Century Training Programme Foundation for the

TalentsbytheStateEdu ationCommissionandtheNationalNaturalS ien eFoundation

ofChina.

(2)

an asymptoti formula

(1:2) J(N)=(N)

N 2

2log 3

N

(1+o(1)):

Here(N) isthesingularseries,andone has(N)1foroddN. In 1937

Vinogradov [Vi℄ obtained for the rst time a nontrivial estimate of expo-

nentialsumsoverprimes, andmanaged to establish(1.2) un onditionally.

Sin e 1923, many authors have onsidered the orresponding problems

withrestri tive onditionsposedon thethree primevariablesin(1.1). One

ofthesegeneralizationswasgivenbyRadema her[R℄in1926. Forapositive

integer r;de neb=(b

1

;b

2

;b

3 )and

(1:3) B(N;r)

=fb2N 3

:1b

j

r; (b

j

;r)=1and b

1 +b

2 +b

3

N (modr)g:

Then,a ording to Liuand Tsang[LT℄,

(1:4) #B(N;r)=r 2

Y

pjr

pjN

(p 1)(p 2)

p 2

Y

pjr

p-N p

2

3p+3

p 2

:

Radema her[R℄showed,subje ttoGRH,thatifr isa xedpositiveinteger,

and J(N;r;b)the numberof solutionsof theequation

(1:5)



N =p

1 +p

2 +p

3

;

p

j

b

j

(mod r); j=1;2;3;

thenwehave, forodd N and all b2B(N;r);

(1:6) J(N;r;b)=(N;r) N

2

2log 3

N

(1+o(1));

and thesingularseries(N;r) satis es

(N;r)= C(r)

r 2

Y

pjr p

3

(p 1) 3

+1 Y

pjN

p-r

(p 1)((p 1) 2

1)

(p 1) 3

+1 (1:7)

 Y

p>2



1+ 1

(p 1) 3



1;

wherep>2throughout,C(r)=2foroddr,andC(r)=8forevenr. Follow-

ing thework of Vinogradov [Vi℄, several authors establishedRadema her's

result un onditionally;seefor exampleAyoub [A℄ and Zulauf[Zu℄.

The arguments of [A℄ and [Zu℄ with some minormodi ationsa tually

give (1.6) forall r log A

N; whereA >0 is arbitrary. A natural problem

is whether (1.6) is stilltrue for largerr. The purposeof the present paper

(3)

all positive modulir N 1=8 "

and all b 2B(N;r):Pre iselyspeaking, we

have thefollowing

Theorem 1.Let N bea xed large odd integer,">0 arbitrarily small

and

R=N 1=8 "

:

Let also A >0 be arbitrary. For a positive integer r; de ne B(N;r) as in

(1.3). Then for all positive integers r  R ; with at most O(Rlog A

N)

ex eptions, the Diophantine equation (1.5) with prime variables is solvable

whenever b2B(N;r); and the number of solutions is given by (1.7).

The above resultis a onsequen e ofthefollowingmean-valuetheorem.

Theorem 2.Let N bea xed large odd integer,">0 arbitrarily small

and

R=N 1=8 "

:

Let also A >0 be arbitrary. For a positive integer r; de ne B(N;r) as in

(1.3). Then

(1:8)

X

rR

r max

b2B(N;r)

X

N=n

1 +n

2 +n

3

n

j

b

j (modr)

(n

1 )(n

2 )(n

3

) (N;r) N

2

2

N 2

log A

N;

where(n) denotes the von Mangoldt fun tion.

Remark. If ther's in thetheorems are restri tedto primes, then the

exponent1=8 anbeimprovedto3=20:Thisimprovementisusefulinstudy-

ingtheternaryGoldba hproblemwiththethreeprimesummandsrestri ted

to a thin subset of primes. This problemhas been investigated in another

paper[Li℄.

Sin ethederivationofTheorem1fromTheorem2isimmediate,wegive

ithere.

Proof of Theorem 1. LetE(R )bethesetofpositiveintegersrR

forwhi h

max

b2B(N;r)

X

N=n1+n2+n3

n

j

b

j (modr)

(n

1 )(n

2 )(n

3

) r(N;r) N

2

2

>

r

' 3

(r)

 N

2

logN :

Then one dedu esfromTheorem 2that

X

r2E(R) r

2

' 3

(r)

log A

N

(4)

#E(R )= X

r2E(R) 1R

X

r2E(R) r

' 3

(r)

Rlog A

N:

Sin e

(1:9)

r

' 3

(r)

(N;r) r

' 3

(r)

;

one sees that (1.6) is true for all r 62 E(R ) and all b 2 B(N;r): This

ompletes theproof ofTheorem1.

Now itremainsto establish Theorem2.

The proof of Theorem 2 is motivated by a paper of Wolke [W℄, whi h

ontains several new ideas to study the problem under onsideration and

the ternary Goldba h problem with the prime summands restri ted to a

thin subset of prime numbers. His method a tually gave Theorem 2 for

almost all primemodulir =pN 1=11

:

Thebasi toolofourproof,as anbeexpe ted,isthe ir lemethod. On

the minor ar s, one needs a nontrivial estimate for exponential sums over

primesin arithmeti progressions to every individualand largemodulusr:

All known results of this kind are, however, nontrivialwhen the hoi e of

minor ar s is very \thin". Consequently, the major ar is mu h \larger"

than usual. By de ning the major and minor ar s in this way, the minor

ar s an then be treated easily by a result of Balog and Perelli [BP℄ on

exponential sums over primes in an arithmeti progression (see Lemma 1

below). Themain diÆ ultyof theproof omes from themajorar s,where

we usethefollowingideas:

(a) The starting point is Lemma 2 in x2, where we establish a new

formulafor

X

nN

nb(modr)

(n)e(n )

interms ofDiri hlet hara ters. It plays asimilarrole astheformula

X

nN

(n)e



n



a

q +



= 1

'(q) X

modq

G(a; ) X

nN

(n)e(n)

does in the treatment of the original ternary Goldba h problem, where

G(a;)is theGaussiansum de nedas

G(a;)= k

X

n=1

(n)e



an

k



:

Consequently,ageneralizationoftheGaussiansum,namelyG(b;f;m;

g

;k)

de nedasin x2,o urs. We needupperestimates forG(b;f;m;

g

;k); and

(5)

(b) Thetreatment of themajorar seventuallyredu es tothe following

form ofmean-valueestimates forexponentialsumsoverprimes:

Theorem 3.For any A>0,thereexistsa onstant E=E(A)>0 su h

that if

(1:10) 1K x

1=3

L E

; =K 3

L E

;

then

X

qK max

yx max

(a;q)=1 max

jj

X

ny

(n)e



n



a

q +



(q)

'(q) X

ny e(n)

xL A

:

Inx 4,ageneralresult(Theorem4) ontainingthistheoremisestablished.

These mean-value estimates play important roles in the proof of Theorem

2,and theexponent 1=8 resultsfromthem.

It shouldbementionedthatMaier and Pomeran e[MP℄, Balog[B℄and

Mikawa [Mi℄ studied the distribution of prime twins with one of them in

arithmeti progressions. Theirmethods an deal withthebinaryGoldba h

problemwithoneofthesummandsinarithmeti progressions,butwe annot

applythem to theproblem onsideredinthepresent paper.

We usestandardnotations in numbertheory. Inparti ular,the letterr

inthesequel standsalwaysforpositive integers,whileLforlogN ex eptin

x4whereL=logx:TheletterÆdenotesasuÆ ientlysmallpositivenumber,

whosevalue mayvaryindi erent o urren es. Forexample,we an write

N Æ

L 5

N Æ

; N

Æ

N Æ

N Æ

:

The expression r  R means 1

2

R < r R : A Diri hlet hara ter modq

willbewritten as

q

ifne essary.

2. Outlineof the proof of Theorem 2. Let

(2:1) RN

1=8 "

;

and

(2:2) P =R

2

L 3C

; Q=NR 2

L 4C

;

the onstant C will be spe i edlater. For ea h positive integer r R , the

majorar of the ir le methodis de nedas

E

1 (R )=

[

qP q

[

a=1

(a;q)=1



a

q 1

qQ

; a

q +

1

qQ



:

Sin e 2P <Q; no two majorar s interse t. The minorar is de nedas

E

2 (R )=



1

;1+ 1



E

1 (R ):

(6)

Write 2[0;1℄intheform

(2:3) =a=q+; 1aq; (a;q)=1:

It followsfrom Diri hlet's lemmaon rationalapproximationsthat

E

2

(R )=f :P <q Q; jj1=(qQ)g:

Let (n)be thevon Mangoldtfun tion,e( )=e 2i

asusual,and

(2:4) S( ;r;b) =

X

nN

nb(modr)

(n)e(n ):

ThenthestatementofTheorem2isequivalenttothat, forarbitraryA>0;

X

rR

r max

b2B(N;r)

1

\

0

S( ;r;b

1

)S( ;r;b

2

)S( ;r;b

3

)e( N )d (N;r) N

2

2

N 2

L A

:

It thussuÆ esto prove

(2:5)

X

rR

r max

b2B(N;r)

\

E1(R)

S( ;r;b

1

)S( ;r;b

2

)S( ;r;b

3

)e( N )d

(N;r) N

2

2

N 2

L A

;

and

(2:6)

X

rR

r max

b2B(N;r)

\

E

2 (R)

S( ;r;b

1

)S( ;r;b

2

)S( ;r;b

3

)e( N )d

N 2

L A

:

The estimate of S( ;r;b) with (b;r) = 1 on the minor ar s is given in

thefollowinglemma.

Lemma 1. Let A > 0 be arbitrary and 2 E

2

(R ): If C is suÆ iently

large,then

(2:7) S( ;r;b) 

N

rlog A

N

;

uniformly for rR :

Proof. We need the following result of Balog and Perelli [BP℄: For

M N and h=(r;q);

(2:8)

X

nM

(n)e



a

q n



L 3



hN

rq 1=2

+ q

1=2

N 1=2

h 1=2

+ N

4=5

r 2=5



:

(7)

(AsimilarresultwasalsoobtainedbyLavrik[La℄.) Nowthedesiredestimate

an beeasilyderived from(2.8) via partialsummation.

We an nowgive

Proof of (2.6). Itfollows fromLemma1 thattheintegraloverE

2 (R )

is

\

E

2 (R)

S( ;r;b

1

)S( ;r;b

2

)S( ;r;b

3

)e( N )d

 max

2E

2 (R)

jS( ;r;b

1 )j

 1

\

0

jS( ;r;b

2 )j

2

d



1=2

 1

\

0

jS( ;r;b

3 )j

2

d



1=2

 N

2

r 2

L A+1

;

uniformly for r  R : Hen e the quantity on the left-hand side of (2.6) is

N 2

L A

;whi hproves (2.6).

Theorem2nowredu esto(2.5),whi hwillbeestablishedinthefollowing

fourse tions.

The startingpoint of theproofof (2.5) is Lemma2 below, whi htrans-

forms the exponential sum S( ;r;b) into hara ter sums. To state the

lemma,weneed some morenotations.

Let d;f;g;k;m be xed positive integers, and 

g

a Diri hlet hara ter

mod g:De ne

(2:9) G(d;f;m;

g

;k)= k

X

n=1

(n;k)=1

nf(modd)

(n)e(mn=k):

Obviously,thisis ageneralization ofthe Gaussiansum G(m;).

Forpositiveintegersr and q;let

(2:10) h=(r;q):

Then r; q andh an be writtenas

r=p 1

1 :::p

s

s r

0

; (p

j

;r

0 )=1;

q=p

1

1 :::p

s

s q

0

; (p

j

;q

0 )=1;

h=p 1

1 :::p

s

s

;

where

j

;

j and

j

arepositiveintegerswith

j

=min(

j

;

j

);j=1;:::;s:

De ne

(2:11) h

1

=p Æ

1

1 :::p

Æ

s

s

;

whereÆ

j

=

j

or0 a ordingas

j

=

j

ornot. Then h

1

jh: Write

(2:12) h =h=h :

(8)

Then

(2:13) h

1 h

2

=h; (h

1

;h

2 )=1;



r

h

1

; q

h

2



=1:

Lemma 2. Let a;q;r be positive integers, and h, h

1 , h

2

de ned as in

(2.10), (2.11) and (2.12) respe tively so that (2.13) holds. Then

S



a

q

+;r;b



=

1

'(r=h

1 )'(q=h

2 )

X

modr=h1

(b) X

modq=h2

G(h;b;a;;q)

 X

nN

(n)(n)e(n)+O(L 2

);

whereG(h;b;a;;q) is de ned as in (2.9).

Proof. It is easilyseenthat

S



a

q

+;r;b



= q

X

=1

( ;q)=1 e



a

q



X

nN

nb(modr)

n (modq)

(n)e(n):

The inner sum is empty unless  b (mod h); we an therefore add the

restri tion b (modh) to thesum over : Ontheother hand, under the

ondition b (modh); thesimultaneous ongruen es

nb (mod r); n (modq)

areequivalent to

nb (mod r=h

1

); n (modq=h

2 )

a ording to (2.13). And onsequently,

S



a

q

+;r;b



= q

X

=1

( ;q)=1

b(modh) e



a

q



X

nN

nb(modr)

n (modq)

(n)e(n)

= q

X

=1

( ;q)=1

b(modh) e



a

q



X

nN

nb(modr=h1)

n (modq=h

2 )

(n)e(n):

Introdu ingtheDiri hlet hara ters modr=h

1

and modq=h

2

,one has

S



a

q

+;r;b



=

1

'(r=h

1 )'(q=h

2 )

q

X

=1

( ;q)=1 e



a

q



X

modr=h

1

(b)

(9)



modq=h

2

( )

nN

(n)(n)e(n)+O(L 2

)

=

1

'(r=h

1 )'(q=h

2 )

X

modr=h

1

(b) X

modq=h

2

G(h;b;a;;q)

 X

nN

(n)(n)e(n)+O(L 2

):

Thisprovesthelemma.

3.ThegeneralizedGaussiansumG(d;f;m;

g

;k). Letd; f; g; m; k

be xed positiveintegers, and modg a Diri hlet hara ter. The purpose

ofthisse tionistogiveupperestimatesforthesumG(d;f;m;

g

;k)de ned

asin(2.9).

The mainresult ofthisse tion isthefollowing

Lemma 3. Let djk, gjk and (m;k) = (f;k) = 1: Let also modg be

indu ed by the primitive hara ter



modg



:Then

jG(d;f;m;

g

;k)jg

1=2

:

In thespe ial aseg=k;de ne

(3:1) G(d;f;m;)=G(d;f;m;

k

;k)= k

X

n=1

nf(modd)

(n)e(mn=k):

Then Lemma3 isa onsequen eof thefollowing

Lemma 4.Let djk and (m;k)=(f;k)=1:Letalso modk beindu ed

by the primitive hara ter



modk



: Then

jG(d;f;m;)jk

1=2

:

Now we deriveLemma 3from Lemma4.

Proof of Lemma 3. Let 0

k

betheprin ipal hara ter modk:Then



g

 0

k

isa hara ter mod k;and onsequently,

G(d;f;m;

g

;k)=G(d;f;m;

g

 0

k ):

Thedesiredresultfollowsfrom Lemma4onnotingthat

g

 0

k

modk isalso

indu edby theprimitive hara ter 



modg



:

It remainsto prove Lemma 4. To this end, we investigate G(d;f;m;)

forsomespe ial hara tersmodkinthefollowingLemmas5{7. Theproof

(10)

Lemma 5. Let djk;and modk be primitive. Then

(3:2) G(d;f;m;)= k

d

 1

() e



mf

k



G



k

d

; m;f;



;

and onsequently,

(3:3) jG(d;f;m;)jk

1=2

:

Hereand in the sequel () isde ned by

()= k

X

n=1

(n)e(n=k):

Proof. Makingthe substitutionn=jd+f;onesees that

G(d;f;m;)= k=d

X

j=1

(jd+f)e



m(jd+f)

k



(3:4)

=e



mf

k



k=d

X

j=1

(jd+f)e



mj

k=d



:

Nowweappeal to theidentity

(a)= 1

( ) k

X

n=1

(n)e



an

k



;

whi h holdsfortheprimitive hara termodk:Therefore,

k=d

X

j=1

(jd+f)e



mj

k=d



= 1

() k

X

n=1

(n)e



fn

k



k=d

X

j=1 e



njd

k



e



mj

k=d



= 1

() k

X

n=1

(n)e



fn

k



k=d

X

j=1 e



(n+m)j

k=d



:

The innersum equals k=dor 0 a ording as n+m 0 (mod k=d) ornot.

Hen e theright-handsideabove isequalto

k

d

 1

( )

k

X

n=1

n m(modk=d)

(n)e



fn

k



= k

d

 1

() G



k

d

; m;f;



:

Thisin ombination with(3.4) gives(3.2).

The inequality(3.3) followsfrom thewell-knownfa tthat j()j=k 1=2

andthetrivialestimatejG(k=d; m;f;)jd:This ompletestheproofof

(11)

Lemma 6.Let djk,(m;k) =1and modk beindu ed by the primitive

hara ter 



modk



:If k



satis es

pjk)pjk



;

then

(3:5) jG(d;f;m;)jk

 1=2

:

Proof. Fromtheassumption of thelemma,one dedu e that

G(d;f;m;)= k

X

n=1

nf(modd)





(n)e(mn =k):

The followingargument isdividedinto2 ases.

Spe ial ase. We start from the simplest ase where k = p

for some

prime p and positive integer : Sin e k



jk and djk; we an suppose that

k



=p

and d= p

; where and areintegers satisfying1  and

0  . Itis obvious thatone has eitherk



jd ordjk



:

If k



jd; thenon setting n=du+f the above sum be omes

G(d;f;m;)= k=d

X

u=1





(ud+f)e



m(ud+f)

k



=



(f)e



mf

k



k=d

X

u=1 e



mu

k=d



:

Sin e (m;k)=1;thelastsum vanishes,and onsequently,

(3:6) G(d;f;m;)=0:

If djk



;thenon making thesubstitutionn=uk



+v one has

G(d;f;m;)= k=k



X

u=1 k



X

v=1





(uk



+v)e



m(uk



+v)

k



;

where the double sums over u;v are further restri ted by the ondition

uk



+vf (modd): Therestri tion uk



+vf (mod d)isequivalent to

vf (modd): Therefore theabove quantity an be writtenas

k=k



X

u=1 e



mu

k=k





k



X

v=1

vf(modd)





(v)e



mv

k



:

The rstsum vanishesunless k=k



;hen e fork



6=k one has

(12)

While fork



=k one obtains

G(d;f;m;)= k



X

v=1

vf(modd)





(v)e



mv

k





=G(d;f;m;



);

hen e byLemma 4,

(3:8) jG(d;f;m;)jk

1=2

:

We therefore on lude from(3.6){(3.8) that (3.5) holdsfork=p

:

General ase. We now turn to general k: To this end, we rst prove

that G(d;f;m;) is multipli ative with respe t to k: Let k = k

1 k

2 with

(k

1

;k

2

) = 1: Then for modk there exist a unique ouple of hara ters



1 modk

1

and 

2 modk

2

su h that  = 

1



2

: Therefore, on making the

substitutionn=k

2 n

1 +k

1 n

2

;one has

(3:9) G(d;f;m;)= k

1

X

n

1

=1 k

2

X

n

2

=1



1



2 (k

2 n

1 +k

1 n

2 )e



m(k

2 n

1 +k

1 n

2 )

k

1 k

2



;

wherethedoublesumsare furtherrestri tedby

(3:10) k

2 n

1 +k

1 n

2

f (modd):

Onnotingthatdjk;we setd=d

1 d

2

withd

1 jk

1 and d

2 jk

2

:It followsfrom

(k

1

;k

2

)=1that (d

1

;d

2

)=1;hen e (3.10) isequivalentto

(3:11) n

1

fk

2

(mod d

1 ); n

2

fk

1

(modd

2 );

wherek

1 andk

2

arede nedbyk

1 k

1

1 (mod d

2

) andk

2 k

2

1 (modd

1 ).

Now(3.9) be omes

(3:12) G(d;f;m;)

=

k

1

X

n

1

=1

n

1

f



k

2 (modd

1 )



1 (k

2 n

1 )e



mn

1

k

1



k

2

X

n

2

=1

n

2

f



k

1 (modd

2 )



2 (k

1 n

2 )e



mn

2

k

2



=

1 (k

2 )

2 (k

1 )G(d

1

;fk

2

;m;

1 )G(d

2

;fk

1

;m;

2 ):

Now let

k =p 1

1 p

2

2 :::p

s

s

be the anoni al de omposition of k; where p

j

stands for primes, and

j

positiveintegers. A ordingly,k



andd an be writtenas

k



=p 1

1 p

2

2 :::p

s

s

and d=p 1

1 p

2

2 :::p

s

s

;

where

j

and

j

are integers satisfying 1 

j



j

and 0 

j



j .

It follows thatthere are primitive hara ters



j modp

j

j

;j =1;:::;s; su h

that



=







:::



;and ea h



modp

j

indu es

j

modp

j

:

(13)

Making the substitution n = n

1 K

1 +n

2 K

2

+:::+n

s K

s

; where K

j is

de nedbyp

j

j K

j

=k;one sees that

G(d;f;m;)= s

Y

j=1



j (K

j )G(p

j

j

;fK

j

;m;

j );

whereK

j

satis es

K

j K

j

1 (mod p

j

j

); j=1;:::;s:

It followsthat

jG(d;f;m;)j s

Y

j=1 jG(p

j

j

;fK

j

;m;

j )j=

s

Y

j=1 p

j=2

j

=k

1=2

:

This ompletes theproof ofthe lemma.

Lemma 7. Let djk and (m;k) = (f;k) = 1: Let also  0

modk be the

prin ipal hara ter. Thenfor (d;k=d)>1;

G(d;f;m; 0

)=0;

and for (d;k=d)=1;

G(d;f;m; 0

)=



k

d



e



fmt

d



;

wheret is de ned by tk=d1 (modd):

This isHilfssatz 2 ofRadema her [R℄orTheorem2.2 ofAyoub [A℄.

We an nowgive

Proof of Lemma 4. Let

(3:13) k =k

1 k

2

with (k

1

;k

2

)=1; k



jk

1

; and pjk

1

)pjk



:

Then formodk there exist a unique oupleof hara ters

1 modk

1 and

 0

2 modk

2

su hthat=

1

 0

2

;where 0

2 modk

2

is theprin ipal hara ter.

On noting that djk; we set d = d

1 d

2

with d

1 jk

1 and d

2 jk

2

: It therefore

follows from(3.12) that

G(d;f;m;)=

1 (k

2 )

0

2 (k

1 )G(d

1

;fk

2

;m;

1 )G(d

2

;fk

1

;m; 0

2 ):

The statement ofthelemma nowfollows from Lemmas6 and 7.

4. A mean-value estimate for exponential sums over primes.

Wolke [W℄wasthe rst to studythemean-valueestimate asinTheorem3.

He proved that Theorem3is truefor

1K =x 1=4

; =min(K 4

;L E

):

A tually,Theorem3wasre entlygivenbytheauthorsinanotherjointpaper

(14)

a gap in theproof of [ZL℄: the statement \h 00

( ) >0 for 1=2   1" on

p.365 of [ZL℄is notalwaystrue. The proof thereforeneeds orre tions.

In thisse tion we prove thefollowinggeneralresult, whi h ontains the

assertionof Theorem3. One an seefromtheproofofTheorem2 thatthis

generaltheorem is ne essary.

Theorem 4. Let z  1 be arbitrary. For any A > 0, there exists a

onstant E =E(A)>0 su h that if

(4:1) 1K z

2=3

x 1=3

L E

; =z 2

K 3

L E

;

then

X

qK max

yx max

(a;q)=1 max

jj

X

ny

(n)e



n



a

q +



(q)

'(q) X

ny e(n)

zxL A

:

We needsome lemmasto establishthisresult.

Lemma 8. Suppose that F(u) and G(u) are real fun tions de ned on

[a;b℄; and G(u) and 1=F 0

(u) are monotoni .

(i) If jF 0

(u)jm and jG(u)jM;then

b

\

a

G(u)e(F(u))duM=m:

(ii) If jF 00

(u)jr and jG(u)jM;then

b

\

a

G(u)e(F(u))duM=

p

r:

For the proof of these results, see Lemmas 3.3 and 3.4 in Tit hmarsh

[T℄.

Lemma 9. Let N(;T;) be the number of zeros % = +i of the

Diri hlet L-fun tion L(s;) in the re tangle    1; T   T:

Supposeq 1 and T 2: Then,for 1=21;we have

X

modq

N(;T;)(qT)

3(1 )=(2 )

(logqT) 9

:

This isTheorem12.1 inMontgomery[Mo℄.

Lemma 10. Let a

n

;n = 1;2;:::; be omplex numbers and modq a

hara ter. Then

X

qQ X



modq T

\

T0

X

nN a

n

(n)n it

2

dt(Q 2

T +N) X

nN ja

n j

2

for arbitrary Q, T

0

;and T:

(15)

Lemma 11. Let (s) bethe Riemann zeta-fun tion, and

F(s)= X

nU

(n)=n s

; G(s)= X

nU

(n)=n s

:

Then



 0



(s) F(s)



=G(s)(  0

(s)) F(s)G(s)(s)

((s)G(s) 1)



 0



(s) F(s)



:

This isVaughan'sidentity;for theproof,see [Va℄.

Nowwe an,usingtheideaduetoZhan[Zh℄,givetheproofofTheorem4.

Proof of Theorem 4. Introdu ingtheDiri hlet hara ters,theex-

ponentialsumunder onsiderationbe omes

X

ny

(n)e



n



a

q +



= 1

'(q) X

modq X

ny

(n)(n)e(n) q

X

h=1

(h)e



ah

q



+O(L 2

);

and onsequently,

(4:2)

X

qQ max

yx max

jj

max

(a;q)=1

X

ny

(n)e



n



a

q +



(q)

'(q) X

ny e(n)

 X

qK max

yx max

jj

max

(a;q)=1 1

'(q) X

modq

G(a;) X

ny

(n;)(n)e(n)

+KL

2

;

whereG(a;) isde nedasin x3,and

(n;)=



(n) for6= 0

,

(n) 1 for= 0

.

To estimate thesums on theright-hand sideof (4.2), one notes that if the

primitive hara ter modq indu es the hara ter modk; thenqjk; and

jG(a;q)j  q 1=2

for(a;q) =1: We now ombine all ontributions made by

an individualprimitive hara ter, so that the rst term on the right-hand

sideof(4.2) is

 X

qK max

yx max

jj

max

(a;q)=1 X

kK

qjk q

1=2

'(k) X



modq

X

ny

(n;)(n)e(n)

L X

max

yx max

jj

q 1=2

'(q) X



X

(n;)(n)e(n)

:

(16)

Hen e theassertionof thetheorem redu esto

(4:3) S :=

X

qD max

yx max

jj

X



modq

X

ny

(n;)(n)e(n)

zxD 1=2

L A 3

;

with1DK and K ;satisfying(4.1).

Theargumentleadingto(4.3)fallsnaturallyintotwo ases a ordingas

D is smallor large. For D L F

; where F is some positive onstant, one

usesthe lassi alzero-densityestimateandzero-freeregionfortheDiri hlet

L-fun tions. While for L F

< D  K ; one appeals to ontour integration,

thelargesieveinequalityand Vaughan'sidentity.

Case 1. DL F

;whereF isapositive onstant tobespe i edlaterin

terms ofA: Inthis ase, itsuÆ es to prove that

(4:4) :=

X

ny

(n;)(n)e(n)zxL

2F A 3

foryx, jj and any primitive hara ter modd:

To estimate;one appeals to theSiegel{Wal sztheorem ([D℄, x19):

X

nu

(n;)(n)e(n)= X

j jT u

%

%

+b()+O



u(loguqT) 2

T



where % = +i denotes nontrivial zeros of L(s;); b() is a onstant

depending on ; and T  2 is a parameter. Applying partial summation,

we have

= y

\

y=2

e(u)d



X

nu

(n;)(n)



(4:5)

= X

j jT y

\

y=2 u

% 1

e(u)du+O



(1+jjx) xL

2

T



:

Take T =x 2

;sothat theO-termis a eptable in(4.4). Sin e,foruy;

d

du



u+

2

logu



=+

2u

 min

uy

j +2uj

y

;

and

d 2

du 2



u+

2

logu



=

2u 2

 j j

y 2

;

we dedu efrom Lemma8thattheintegralontheright-handsideof(4.5)is

y

\

u 1

e



u+

2

logu



dumin



y

p

j j+1

;

y

min

uy

j +2uj



:

(17)

LetT

0

=4x; sothatforT

0

<j jx 2

and uy;

j +2ujj j 2uj j=2:

Then (4.5) be omes

  X

j jx 2

min



y

p

j j+1

;

y

min

uy

j +2uj



+O(xL

2F A 3

) (4:6)

 X

j jT0 x

p

j j+1 +

X

T0<j jx 2

x

j j

+O(xL

2F A 3

):

It is well known that for any modq there is a onstant

1

> 0 su h

thatL(s;)hasno zerointhe region

1

1

logq+log 4=5

(jtj+2)

;

ex ept the possible Siegel zero. But the Siegel zero does not exist in the

present situation,sin eqL F

:Therefore,one has

(4:7) x

1

exp



1 logx

logq+log 4=5

T



exp(

2 L

1=5

);

for some onstant

2

>0: Hen e the se ond sum on theright-hand sideof

(4.6) is a eptable.

To dealwiththe rstterm, one notes that

X

j jT

0 x

p

j j+1

xL max

T1T0 T

1=2

1

X

j jT

1 x

1

;

whi h is,on applyingLemma 9,

xL max

T

1

T

0 T

1=2

1

(logqT

1 )

9

max

1=21 (qT

1 )

(3 3)=(2 )

x

 1

xL F+11

max

T

1

T

0 max

1=21 exp



(1 )L+



3 3

2  1

2



logT

1



=:xL F+11

max

T

1

T

0 max

1=21 f(T

1

;);

say. Therefore, inview of(4.6), theestimate (4.4) redu esto

(4:8) max

T

1

T

0 max

1=21 f(T

1

;)zL

3F A 20

:

Suppose rst 4=51;sothat

3 3

2 

 1

2 :

It followsfrom (4.7) that

(4:9) max

T T

max

4=51 f(T

1

;) max

4=51

expf (1 )Lgexpf

2 L

1=5

g;

(18)

whi h isa eptable in(4.8). Nowwe turn to 3=5 4=5;whi hensures

that

3 3

2 

 1

2 :

Onnotingthat logT

1

L+O(1); and

max

3=54=5



( 1=2)

2 



= 3

70

;

one dedu esthat

(4:10) max

T

1

T

0

max

3=54=5 f(T

1

;)

 max

3=54=5 exp



(1 )L+



3 3

2  1

2



L



= max

3=54=5 exp



( 1=2)

2  L



x 3=70

;

and this is also a eptable in (4.8). Finally, we onsider 1=2    3=5:

Nowwehave

6

7



3 3

2  1

2

;

and onsequently,

max

T1T0

max

1=23=5 f(T

1

;)

 max

T1T0

max

1=23=5 exp



(1 )L+



3 3

2  1

2



logx



exp

 

3 3

2  1

2



log x

T

1



:

Sin e T

1

T

0

xxL E

;theabove quantityis

 max

1=23=5 exp



( 1=2)

2  L



exp



6

7

Eloglogx



(4:11)

L 6E=7

;

whi h isa eptable in(4.8) if E6F +2A+28:

Combining (4.9){(4.11) we get (4.8), hen e (4.4). This proves (4.3) in

Case1.

Case 2. L F

< D  K ; where F is a onstant to be spe i ed in the

following argument. In this ase, we use Vaughan's identity to establish

(19)

Estimation of the sum of type I.We rstshowthat

 0

:=

X

dD max

yx max

jj

X



modd

X

mny

mM

nN

a(m)b(n)(mn)e(mn)

(4:12)

zxD 1=2

L A 7

holdsfora(m)d(m) and b(n)d(n) withmM,nN and

(4:13) xMN x; M;N xD 1

L 2A 20

:

Let

f

1

(s;)= X

mM

a(m)(m)

m s

and f

2

(s;)= X

nN

b(n)(n)

n s

;

wheres=+itisa omplexvariable. Thenone sees that

(4:14) f

1 (s;)f

2

(s;)M 1 

N 1 

x 1 

uniformlyfor 2   2:Applying Perron's summation formula(see e.g.

Lemma3.12 in[T℄) and thenshiftingthe ontourto the left,one gets

X

mnu

mM

nN

a(m)b(n)(m)(n)

= 1

2i 1+"+ix

2

\

1+" ix 2

f

1 (s;)f

2 (s;)

u s

s

ds+O(L)

= 1

2i n

1=2 ix 2

\

1+" ix 2

+ 1=2+ix

2

\

1=2 ix 2

+ 1+"+ix

2

\

1=2+ix 2

o

f

1 (s;)f

2 (s;)

u s

s

ds+O(L):

By(4.14), theintegralson thehorizontalpartsare learlyO(L):Therefore,

X

mnu

mM

nN

a(m)b(n)(m)(n)

= 1

2

x 2

\

x 2

f

1



1

2

+it;



f

2



1

2

+it;



u 1=2+it

1=2+it

dt+O(L):

Now, by partialsummation,the innersum of  0

is

y

\

y=2

e(u)d n

X

mnu

mM

nN

a(m)b(n)(m)(n) o

= 1

2

x 2

\

x 2

f

1



1

2

+it;



f

2



1

2

+it;



1

1=2+it y

\

y=2 u

1=2+it

e(u)dudt

(20)

= 1

2

x

\

x 2

f

1



1

2

+it;



f

2



1

2

+it;



 1

1=2+it y

\

y=2 u

1=2

e



+ t

2

logu



dudt+O(xL);

whi h,bytheargumentleading to (4.6), isestimated as

x 1=2

\

jtjT

0

f

1



1

2

+it;



f

2



1

2

+it;



dt

p

jtj+1

+x 1=2

\

T

0

<jtjx 2

f

1



1

2

+it;



f

2



1

2

+it;



dt

jtj

+O(xL):

It thereforesuÆ es to show

(4:15)

X

dD X



modd T2

\

T2=2

f

1



1

2 +it;



f

2



1

2

+it;



dt

zx 1=2

D 1=2

T 1=2

2 L

A 8

for1T

2

T

0

;and

(4:16)

X

dD X



modd T3

\

T3=2

f

1



1

2 +it;



f

2



1

2

+it;



dt

zx 1=2

D 1=2

T

3 L

A 8

forT

0

T

3

x 2

:

The left-hand sideof(4.15) is,byCau hy'sinequalityandLemma 10,





X

dD X



modd T

2

\

T2=2

f

1



1

2

+it;



2

dt



1=2

(4:17)





X

dD X



modd T

2

\

T

2

=2

f

2



1

2

+it;



2

dt



1=2

(D 2

T

2 +M)

1=2

(D 2

T

2 +N)

1=2

L

fD 2

T

2 +DT

1=2

2 (M

1=2

+N 1=2

)+M 1=2

N 1=2

gL

zx 1=2

D 1=2

T 1=2

2 L

A 8

ifF 2A+20 and E2A+20:This yields(4.15).

(21)

Estimation of the sum of type II. Next we prove that

 00

:=

X

dD max

yx max

jj

X



modd

X

mny

mM

nN

b(n)(mn)e(mn)

(4:18)

zxD 1=2

L A 7

holdsforb(n)d(n)with nN andM;N satisfying

(4:19) xMN x; M DL

2A+20

:

Arguing as before, one sees that it suÆ es to show (4.15) and (4.16)

subje tto (4.19). Here f

1

(s;);f

2

(s;)are thesame asbefore ex eptthat

a(m) = 1 in the de nition of f

1

(s;): Sin e now M is large a ording to

(4.19), the above approa h to atta k the mean value of f

1

(s;) does not

work anymore;one thereforeneeds to treat f

1

(s;) di erently.

Let w=u+iv be a omplex variable. Then,applyingPerron's formula

and thenshiftingthelineof integration asbefore,one gets

f

1



1

2

+it;



= 1

2i 1+"+ix

2

\

1+" ix 2

L



1

2

+it+w;



M w

(M=2) w

w

dw+O(L)

= 1

2

x 2

\

x 2

L



1

2

+it+iv;



M iv

(M=2) iv

iv

dv+O(L)

 x

2

\

x 2

1

jvj+1

L



1

2

+it+iv;



dv+O(L):

Consequently,byCau hy'sinequality,

f

1



1

2

+it;



2





x 2

\

x 2

1

jvj+1 dv

 

x 2

\

x 2

1

jvj+1

L



1

2

+it+iv;



2

dv



+L 2

L x

2

\

x 2

1

jvj+1

L



1

2

+it+iv;



2

dv+L 2

:

It followsthat

X

dD X



modd T

2

\

T

2

=2

f

1



1

2

+it;



2

dt

L max

T

4

x 2

1

T

4 X

dD X



modd T

2

\

T =2 T

4

\

T =2

L



1

2

+it+iv;



2

dvdt+D 2

T

2 L

2

(22)

L max

T2<T4x 2

1

T

4 T2

\

T2=2 X

dD X



modd T4+t

\

T4=2+t

L

1

2

+i;

2

d dt

+L max

T

4

T

2 1

T

4 T

4

\

T

4

=2



X

dD X



modd T

2 +v

\

T

2

=2+v

L



1

2

+i;



2

d



dv

+D 2

T

2 L

2

:

Applyingthe lassi alestimate

X



modq T

\

0

L



1

2

+it;



2

dtqT(logqT) 2

;

thequantityabove is

D 2

T

2 L

3

+D 2

T

2 L

3

+D 2

T

2 L

2

D 2

T

2 L

3

:

Hen e bythe argument leadingto (4.17), one has

X

mnu

mM

nN

a(m)b(n)(m)(n)



X

dD X



modd T2

\

T2=2

f

1



1

2 +it;



2

dt



1=2





X

dD X



modd T

2

\

T2=2

f

2



1

2

+it;



2

dt



1=2

(D 2

T

2 L

3

) 1=2

(D 2

T

2 +N)

1=2

L 1=2

fD 2

T

2 +DT

1=2

2 N

1=2

gL 2

D 1=2

x 1=2

T 1=2

2 L

A 8

ifE 2A+20: Thisproves (4.15) underthe onditionof (4.19).

A similar argument gives (4.16). This ompletes the proof of (4.18)

subje tto (4.19).

Appli ation ofVaughan'sidentity. ByLemma11,oneseesthattheinner

sum ofS in(4.3) isequal to

X

ny

(n)(mn)e(mn)=S

1 S

2 S

3

;

where

S

1

= X

mny

mU

(m)(logn)(mn)e(mn);

S

2

= X

mny

2

a(m)(mn)e(mn);

(23)

S

3

=

mny

m>U

n>U

a(m)(logn)(mn)e(mn);

and a(m)d(m): Therefore,

S= X

qD max

yx max

jmodqj X



modq jS

1 j+

X

qD max

yx max

jmodqj X



modq jS

2 j (4:20)

+ X

qD max

yx max

jmodqj X



modq jS

3 j:

Taking U =DL 2A+20

in(4.20) andE 2A+20in (4.1),we have

U 2

=D 2

L 4A+40

xD 1

L 2A 20

:

Hen eea hofthethreetermsontheright-handsideof(4.20) anbedivided

into O(L 4

) sums of the form  0

or  00

: Now, in view of the hoi e of E;

(4.12)and(4.18) arebothvalid,fromwhi hthedesiredresult(4.3)forCase

2 followsinthe standardway. This ompletes theproof of thetheorem.

5. Preparation for the major ar s. Letq;r bepositive integersand

(5:1) (q;r)=h:

For(a;q)=1and (b;r)=1;de ne

(5:2) f(r;q;a;b) = 8

<

:

(q=h)

'(rq=h) e



abt

h



if(q=h;h)=1,tq=h1 (mod h),

0 if(q=h;h)>1.

AndforS( ;r;b) de ned by(2.4), let

E(r;q;a;b;)=S



a

q

+;r;b



f(r;q;a;b) X

nN e(n);

(5:3)

E



(r;q)= max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ)

jE(r;q;a;b;)j:

(5:4)

Thepurposeofthisse tionistoestablishthefollowingmean-valueestimate,

whi h plays animportant role inproving(2.5), hen eTheorem2.

Lemma 12. Let R , P and Q be de ned as in (2.1) and (2.2), while f,

E and E



as in (5.2), (5.3) and (5.4). Then for any A>0; there exists a

onstant C >0 su h that

X

rR X

qP E



(r;q)NL A

:

ThisestimatedependsonLemma13below, Lemma3ofx3,and (4.3)of

(24)

Lemma 13. Let r and q bepositiveintegers,and h,h

1 , h

2

bede ned as

in (2.10), (2.11) and (2.12) respe tively so that (2.13) holds. Then for xed

positive integers r



, q



;one has

(5:5)

X

rN1

r



jr=h

1 X

qN2

q



jq=h2

1

'(r=h

1 )'(q=h

2 )

 d(r



)

r



q

 log

3

N

1 log

2

N

2 :

Proof. Sin e n'(n)logn; one has

X

rN1

r



jr=h1 X

qN2

q



jq=h2

1

'(r=h

1 )'(q=h

2 )

logN

1 logN

2 X

rN1

r



jr=h1 X

qN2

q



jq=h2 h

1

r

 h

2

q :

For a xed pair r;h

1

;we set j

1

=r=h

1

:Toestimate thesums onthe right-

handside,oneneeds thenumberofpairsq;h

2

su h thatthequotientsq=h

2

assume thesame valuej

2

:Sin e h

2

ofthese pairs mustsatisfyh

2 jr=h

1

;the

requirednumberis obviously d(r=h

1

);whered(n) isthedivisorfun tion.

Hen e thedoublesumunder onsiderationis

X

rN1

r



jr=h1 X

qN2

q



jq=h2 h

1 h

2

rq

 X

j1N1

r



jj1

X

j2N2

(j2;j1)=1

q



jj

2 d(j

1 )

j

1 j

2

 d(r



)

r



q

 X

j1N1 d(j

1 )

j

1 X

j2N2 1

j

2

 d(r



)

r



q

 log

2

N

1 logN

2 :

Thisprovesthelemma.

We an nowestablishthemainresult of thisse tion.

Proof of Lemma 12. ByLemma 2 we have

(5:6) S



a

q

+;r;b



=

1

'(r=h

1 )'(q=h

2 )

X

modr=h

1

(b) X

modq=h

2

G(h;b;a;;q)

 X

nN

(n)(n)e(n)+O(L 2

)

=I+J +K+O(L 2

);

say,where I;J andK arethe sums orresponding to

(i)  = 0

modr=h

1 , =

0

modq=h

2

;

(j) = 0

modr=h

1

;6= 0

modq=h

2

;

(k)  6= 0

modr=h

1

(25)

It is easilyseenthat

I =

1

'(r=h

1 )'(q=h

2 )

X

=

0

modq=h

2

G(h;b;a;;q)

X

nN

=

0

modrq=h

(n)(n)e(n)

= 1

'(rq=h)

G(h;b;a; 0

q=h2 )





X

nN

e(n)+

X

nN

=

0

modrq=h

(n)((n) 1)e(n)+O



L 2

'(rq=h)



=f(r;q;a;b) X

nN

e(n)+O



1

'(rq=h) X

nN

((n) 1)e(n)



+O(L 2

);

where we have used Lemma 5 and (5.2). Taking maxima ever , b and a;

and thensummingoverq andr;one gets

(5:7)

X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ)

I f(r;q;a;b) X

nN e(n)

 X

rR 1

'(r) X

qP

max

jj1=(qQ)

X

nN

((n) 1)e(n)

+R PL 2

L X

kP

max

jj1=(kQ)

X

nN

((n) 1)e(n)

+R PL 2

:

We pro eedto estimate J:Onesees that

J =

1

'(r=h

1 )'(q=h

2 )

X

modq=h

2

G(h;b;a;;q) X

nN

 0

(n)(n)e(n)

=

1

'(r=h

1 )'(q=h

2 )

X

modq=h

2

G(h;b;a;;q) X

nN

(n)(n)e(n)+O(L 2

):

Consequently,one has

X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ) jJj

 X

rR 1

'(r=h

1 )

X

qP 1

'(q=h

2 )

 max

jj1=(qQ) X

modq=h

2

jG(h;b;a;;q)j

X

nN

(n)(n;)e(n)

+P

3=2

L 3

:

To estimate thesumson the right-hand sideabove,one appeals to Lemma

3, whi h ensures that if a primitive hara ter modk indu es a hara ter

modq=h ; then kjq=h and jG(h;b;a;;q)j k 1=2

:We now ombine all

(26)

ontributionsmadebyan individualprimitive hara ter, whi hgives

(5:8)

X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ) jJj

 X

kP



X

rR 1

'(r=h

1 )

X

qP

kjq=h

2 k

1=2

'(q=h

2 )



 max

jj1=(kQ) X



modk

X

nN

(n)(n;)e(n)

+P

3=2

L 3

L 5

X

kP 1

k 1=2

max

jj1=(kQ) X



modk

X

nN

(n)(n;)e(n)

+P

3=2

L 3

;

wherewehave used Lemma13 to estimatethesums inbra es.

We now turnto K :One hasbythede nitionofK ;

K =

1

'(r=h

1 )'(q=h

2 )

X

modr

6=

0

X

modq=h

G(h;b;a;;q) X

nN

(n)(n)e(n)



1

'(r=h

1 )'(q=h

2 )

 X

modr=h1

6=

0

X

modq=h2

jG(h;b;a;;q)j

X

nN

(n)(n)e(n)

:

Working analogously to theargument above,one sees that

X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ) jKj

 X

k

1

2R X

k

2

P

(k1;k2)=1



X

rR

k

1 jr=h

1 1

'(r=h

1 )

X

qP

k2jq=h2 k

1=2

2

'(q=h

2 )



 max

jj1=(k

2 Q)

X



1modk1



1 6=

0

1 X



2modk2

X

nN



1



2

(n)(n)e(n)

:

By Lemma13, thequantityinbra esis

 d(k

1 )k

1=2

2

k

1 k

2 L

5

R Æ

:

(27)

(5:9)

rR qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ) jKj

R Æ

X

k

1

2R X

k

2

P

(k

1

;k

2 )=1

1

k

1 k

1=2

2

 max

jj1=(k2Q)

X





1 modk

1

16=

0

1

X





2 modk

2

X

nN



1



2

(n)(n)e(n)

:

One thus on ludes from (5.6){(5.9)that

(5:10)

X

rR X

qP E



(r;q)

= X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ)

E(r;q;a;b) f(r;q;a;b) X

nN e(n)

 X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ)

I f(r;q;a;b) X

nN e(n)

+ X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ) jJj

+ X

rR X

qP max

(a;q)=1 max

(b;r)=1 max

jj1=(qQ)

jKj+R PL 2

+P 3=2

L 3

 L

9

R 1=2

X

kU

max

jj1=(UQ) X



modk

X

nN

(n)(n;)e(n)

+ R

Æ

R U 1=2

X

kUR

max

jj1=(UQ) X



modk

X

nN

(n)(n;)e(n)

+R PL 2

+P 3=2

L 3

;

where

(5:11) U P =R

2

L C

:

By (4.3) with z = 1, the rst term on the right-hand side of (5.10) is

admissibleif

(5:12) U N

1=3

L D

; 1

UQ

U 3

L D

:

1=2 Æ

(28)

sideof(5.10) isadmissibleif

(5:13) R U R 1=3 Æ

N 1=3

L D

; 1

UQ

R 1 Æ

(R U) 3

L D

:

In view of the de nitions of Q and U (see (2.2) and (5.11)), the optimal

hoi e ofR satisfying(5.12) and (5.13) is

RN 1=8 "

asstatedin(2.1). Thisproves thelemma.

6. The major ar s. In thisse tionwe give

Proof of (2.5). In the ourse of the proof, the following elementary

estimate willbe used: IfA

j

=B+C,j=1;2;3;then

(6:1) A

1 A

2 A

3

=B 3

+C(A 2

1 +B

2

+A

1

B)=B 3

+O(jCjjA

1 j

2

+jCjjBj 2

):

If 2E

1

(R ),thenforj =1;2;3;

(6:2) S( ;r;b

j

)=f(r;q;a;b

j )

X

nN

e(n)+O(E



(r;q)):

Applying(6.1),one has

I

1 (r):=

\

E1(R)

S( ;r;b

1

)S( ;r;b

2

)S( ;r;b

3

)e( N )d

= X

qP q

X

a=1

(a;q)=1



f(r;q;a;b

1

)f(r;q;a;b

2

)f(r;q;a;b

3 )e



aN

q





\

jj1=(qQ)



X

nN e(n)



3

e( N)d

+O



E



(r;q)

\

jj1=(qQ)

S



a

q

+;r;b

1



2

d



+O



E



(r;q)

' 2

(rq=h)

\

jj1=(qQ)

X

nN e(n)

2

d



:

Thethirdintegralontheright-hand sideabove istriviallyN:While the

se ond integral, when summedovera; an beestimated as

q

X

a=1

\

jj1=(qQ)

S



a

q

+;r;b

1



2

d 1

\

0

S



a

q

+;r;b

1



2

d N

r :

(29)

Onusingtheestimate

X

nN

e(n)min(N;1=kk);

one sees thatthe rstintegralis

1=2

\

1=2



X

nN e(n)



3

e( N)d+O

 1=2

\

1=(qQ)

 3

d



=

X

n

1 +n

2 +n

3

=N

1n

j

N

1+O((qQ) 2

)= 1

2 N

2

+O(N 2

L C

):

We thushave

I

1 (r)=



1

2 N

2

+O(N 2

L C

)



 X

qP q

X

a=1

(a;q)=1

f(r;q;a;b

1

)f(r;q;a;b

2

)f(r;q;a;b

3 )e



aN

q



+O



N

r X

qP E



(r;q)



:

We now onsiderthesingularseries

1

X

q=1 q

X

a=1

(a;q)=1

f(r;q;a;b

1

)f(r;q;a;b

2

)f(r;q;a;b

3 )e



aN

q



:

For (q=h;h) > 1; one has f(r;q;a;b

j

) = 0, j = 1;2;3, by (6.2), hen e the

series onverges absolutelyto 0. For(q=h;h)=1;the seriesredu es to

1

' 3

(r) 1

X

q=1

(q=h;h)=1

(q=h)

' 3

(q=h) q

X

a=1

(a;q)=1



a(b

1 +b

2 +b

3 )t

h

aN

q



:

It was proved by Radema her [R℄ that if N is odd and b 2 B(N;r); then

theaboveseries onverges absolutelyandequals(N;r)de nedasin(1.7).

One thereforehas

I

1

(r) (N;r) N

2

2

 N

2

' 2

(r)L C

+ N

r X

qP E



(r;q);

and onsequently,

(6:3)

X

rR

r max

(bj;r)=1

I

1

(r) (N;r) N

2

2

N 2

L A

;

(30)

A knowledgements. The authors would like to thank ProfessorPan

Chengdongfor onstanten ouragement. Also,weareindebtedtothereferee

forvaluablesuggestions.

Referen es

[A℄ R. Ayoub, On Radema her's extension of the Goldba h{Vinogradov theorem,

Trans.Amer.Math.So .74(1953),482{491.

[B℄ A.Balog,Theprimek-tuplets onje tureonaverage,in:Analyti NumberTheory

(AllertonPark,Ill.),Birkhauser,1990, 47{75.

[BP℄ A. Balog andA. Perelli, Exponential sums over primes in an arithmeti pro-

gression,Pro .Amer.Math.So .93(1985),578{582.

[D℄ H. Davenport, Multipli ative Number Theory, revised by H. L. Montgomery,

Springer,1980.

[HL℄ G. H. Hardy and J.E. Littlewood, Some problems of \partitio numerorum"

III:On the expression of a number asa sum of primes,A ta Math. 44(1923),

1{70.

[La℄ A.F.Lavrik,Thenumberofk-twinprimeslyingonanintervalofagivenlength,

Dokl.Akad.NaukSSSR136(1961),281{283(inRussian);Englishtransl.:Soviet

Math.Dokl. 2(1961),52{55.

[Li℄ J.Y.Liu,TheGoldba h{Vinogradovtheoremwithprimesinathinsubset,Chinese

Ann.Math.,toappear.

[LT℄ M.C.LiuandK.M.Tsang,Smallprimesolutionsoflinearequations,in:Theorie

desNombres,J.-M.DeKonin kandC.Levesque(eds.),deGruyter,Berlin,1989,

595{624.

[MP℄ H.MaierandC.Pomeran e,Unusuallylargegapsbetween onse utiveprimes,

Trans.Amer.Math.So .332(1990),201{237.

[Mi℄ H. Mikawa, On prime twins in arithmeti progressions, Tsukuba J. Math. 16

(1992),377{387.

[Mo℄ H. L.Montgomery, Topi s inMultipli ative Number Theory,Le tureNotesin

Math.227, Springer,1971.

[R℄ H.Radema her,



UbereineErweiterungdesGoldba hs hen Problems,Math.Z.

25(1926),627{660.

[T℄ E.C.Tit hmarsh,The Theory oftheRiemann Zeta-Fun tion,2nded.,revised

byD.R.Heath-Brown,OxfordUniv.Press,1986.

[Va℄ R. C. Vaughan, An elementary method in prime number theory, in: Re ent

Progress inAnalyti NumberTheory,H.Halberstam andC.Hooley (eds.),Vol.

1,A ademi Press, 1981,341{348.

[Vi℄ I. M. Vinogradov, Some theorems on erning the theory of primes, Mat. Sb.

(N.S.)2(1937),179{195.

[W℄ D. Wolke, Some appli ations to zero-density theorems for L-fun tions, A ta

Math.Hungar.61(1993),241{258.

[Zh℄ T. Zhan, On the representation of odd number as sums of three almost equal

primes,A taMath.Sini a(N.S.)7(1991),259{275.

[ZL℄ T. Zhanand J.Y. Liu,A Bombieri-type mean-value theorem on erning expo-

(31)

[Zu℄ A. Zulauf, Beweis einer Erweiterung des Satzes von Goldba h{Vinogradov, J.

ReineAngew.Math.190(1952),169{198.

DepartmentofMathemati s

ShandongUniversity

Jinan,Shandong250100

P.R.China

E-mail:zhantaosdu.edu. n

Re eivedon8.6.1996

andinrevisedformon6.12.1996 (3004)

Cytaty

Powiązane dokumenty

Let Z, N, Q be the sets of integers, positive integers and rational numbers respectively, and let P be the set of primes and prime powers. In this note we prove the following

Via the Crofton formulas the above inequality is a con- sequence of Milnor’s results concerning the Betti numbers of an algebraic variety (see [Mi1], [Mi2], in which the

It should be stressed here that the possibility of almost sure approximation of A by the multiples of orthog- onal projections in L 2 (µ) depends heavily on the properties of

Note that the result could be extended easily to general integers N in- stead of considering integers N of the special form (2.27); however, although the same argument goes through

For any fixed 20/21 &lt; γ ≤ 1, every sufficiently large odd integer N can be written as a sum of three Piatetski-Shapiro primes of type γ..

In general, even when there is a critical point of multiplicity d, a sharper upper bound than (1.16) is available by applying our result for pure exponential sums, Theorem 2.1,

The parameter σ α has appeared in many papers on exponential sums but we are not aware of an upper bound of the type (1.13) ever appearing before, even for the case of

Let E(x) denote the number of positive even integers not exceeding x which cannot be written as a sum of two prime numbers.. In this paper we prove the