• Nie Znaleziono Wyników

1. Introduction. In 1937, I. M. Vinogradov proved the famous three primes theorem. It states that for every sufficiently large odd integer N,

N/A
N/A
Protected

Academic year: 2021

Share "1. Introduction. In 1937, I. M. Vinogradov proved the famous three primes theorem. It states that for every sufficiently large odd integer N,"

Copied!
28
0
0

Pełen tekst

(1)

LXXIII.1 (1995)

On the Piatetski-Shapiro–Vinogradov Theorem

by

Chaohua Jia (Beijing)

1. Introduction. In 1937, I. M. Vinogradov proved the famous three primes theorem. It states that for every sufficiently large odd integer N,

(1) X

N =p1+p2+p3

1 = 1

2 (1 + o(1))C(N ) N

2

log

3

N , where

(2) C(N ) = Y

p|N



1 − 1 (p − 1)

2

 Y

p - N



1 + 1 (p − 1)

3

 .

Afterwards people have been looking for thin subsets of primes for which the three primes theorem still holds. In 1986, Wirsing [13] showed that there exists such a set S with the property that

X

p≤x p∈S

1  (x log x)

1/3

.

It is also interesting to find more familiar thin sets of primes which serve this purpose. An example is the set of Piatetski-Shapiro primes of type γ which are of the form [n

1/γ

]. We denote this set by P

γ

.

For the counting function of P

γ

, Piatetski-Shapiro [11] first showed that for 11/12 < γ ≤ 1 (the case γ > 1 is trivial),

(3) P

γ

(x) = X

p≤x p=[n1/γ]

1 = (1 + o(1)) x

γ

log x .

Heath-Brown [4] extended the range to 662/755 < γ ≤ 1. Further improve- ments were made by Kolesnik [8], Liu and Rivat [9].

Project supported by the Tian Yuan Item in the National Natural Science Foundation of China.

[1]

(2)

Jia Chaohua [7] was the first to apply the sieve method to the investi- gation of Piatetski-Shapiro primes and proved that, for 17/20 < γ ≤ 1 and sufficiently large x,

(4) P

γ

(x) ≥ %

0

x

γ

log x ,

where %

0

is a definite positive constant. Using the sieve method of Harman [3], Jia Chaohua [6] extended the range in (4) to 11/13 < γ ≤ 1.

Now we come back to the subject of this paper. In 1992, Balog and Friedlander [1] proved the Piatetski-Shapiro–Vinogradov theorem: If γ

1

, γ

2

, γ

3

are fixed subject to 0 < γ

i

≤ 1 and 9(1−γ

3

) < 1, 9(1−γ

2

)+6(1−γ

3

) < 1, 9(1 − γ

1

) + 6(1 − γ

2

) + 6(1 − γ

3

) < 1, then for every sufficiently large odd integer N,

(5) T (N ) = X

N =p1+p2+p3 pi∈Pγi

1

= (1 + o(1)) γ

1

γ

2

γ

3

Γ (γ

1

)Γ (γ

2

)Γ (γ

3

)

Γ (γ

1

+ γ

2

+ γ

3

) · C(N )N

γ123−1

log

3

N . From this theorem, there are two interesting corollaries:

Corollary 1. For any fixed 20/21 < γ ≤ 1, every sufficiently large odd integer N can be written as a sum of three Piatetski-Shapiro primes of type γ.

Corollary 2. For any fixed 8/9 < γ ≤ 1, every sufficiently large odd integer N can be written as a sum of one Piatetski-Shapiro prime of type γ and two primes.

In his doctoral thesis, J. Rivat extended the range 20/21 < γ ≤ 1 in Corollary 1 to 188/199 < γ ≤ 1.

In this paper, we shall apply the sieve method combined with the circle method to this problem and prove:

Theorem. If γ is fixed with 15/16 < γ ≤ 1, then for every sufficiently large odd integer N,

(6) T

1

(N ) = X

N =p1+p2+p3

pi∈Pγ

1 ≥ %

0

C(N )N

3γ−1

log

3

N , where %

0

is a definite positive constant.

Our Theorem improves Corollary 1 of Balog and Friedlander.

Throughout this paper, we always assume that N is a sufficiently large

odd integer and ε is a sufficiently small positive constant. Assume that c,

c

1

, c

2

are positive constants which have different values at different places.

(3)

m ∼ M means that there are positive constants c

1

and c

2

such that c

1

M <

m ≤ c

2

M. We also assume that γ is fixed with 15/16 < γ ≤ 20/21 and that (7) N (d) = [−d

γ

] − [−(d + 1)

γ

].

The author would like to thank Profs. Wang Yuan and Pan Chengbiao for their encouragement. He also thanks the referee for the information about Rivat’s thesis.

2. Some preliminary lemmas. In the following, we assume that

(8) H = N

1−γ+∆+8ε

.

By the discussion in [1], the asymptotic formula that for 0 ≤ ∆ ≤ 1 − γ,

(9) X

N/10<p≤N

N (p)e(αp) = γ X

N/10<p≤N

p

γ−1

e(αp) + O(N

γ−∆−5ε

), depends on the fact that for J ≤ H and 0 ≤ u ≤ 1,

(10) min



1, N

1−γ

J

 X

h∼J

X

n∼N

Λ(n)e(αn + h(n + u)

γ

)

 N

1−∆−6ε

. Lemma 1. Assume that N

1−γ+2∆+30ε

 M  N

5γ−4−6∆−120ε

and that a(m), b(k) = O(1). Then for J ≤ H and 0 ≤ u ≤ 1, we have

min



1, N

1−γ

J

 X

h∼J

X

m∼M

X

km∼N

a(m)b(k)e(αkm + h(km + u)

γ

)

 N

1−∆−10ε

. This is Proposition 2 of [1].

Lemma 2. Assume that M  N

4γ−3−5∆−50ε

, a(m) = O(1) and

(11) 6(1 − γ) + 19

3 ∆ < 1.

Then for J ≤ H and 0 ≤ u ≤ 1, we have min



1, N

1−γ

J

 X

h∼J

X

m∼M

a(m) X

km∼N

e(αkm + h(km + u)

γ

)

 N

1−∆−10ε

. This is Proposition 3 of [1].

Lemma 3. Assume that a(m), b(k) = O(1) and that for V  M  N/V , X

m∼M

X

km∼N

a(m)b(k)F (km)  ΦN

−10ε

, and for M  V

2

,

X

m∼M

a(m) X

km∼N

F (km)  ΦN

−10ε

.

(4)

Then X

n∼N

Λ(n)F (n)  ΦN

−6ε

. This can be deduced from Vaughan’s identity.

Lemma 4. Under the above assumptions, we have

(12) X

N/10<p≤N

N (p)e(αp) = γ X

N/10<p≤N

p

γ−1

e(αp) + O(N

3γ/2−1/2−5ε

).

P r o o f. In order to prove (12), we should prove (10) with ∆ =

12

(1 − γ).

Now, min



1, N

1−γ

J

 X

h∼J

X

n∼N

Λ(n)e(αn + h(n + u)

γ

)

= min



1, N

1−γ

J

 X

h∼J

ε(h, α, u) X

n∼N

Λ(n)e(αn + h(n + u)

γ

).

Let V = N

2(1−γ)+30ε

and F (n) = min



1, N

1−γ

J

 X

h∼J

ε(h, α, u)e(αn + h(n + u)

γ

).

Note that (11) is satisfied for 0 ≤ ∆ ≤ 1 − γ. By Lemmas 1–3, we can get X

n∼N

Λ(n)F (n)  N

3γ/2−1/2−6ε

. So Lemma 4 follows.

Lemma 5. Assume that |α − a/q| < 1/q

2

, (a, q) = 1. Then X

p∼N

e(αp) 

 N

q + p

N q + N

4/5



log

5

N.

We refer to Section 25 of [2].

Lemma 6. Let

d

r

(n) = X

n=n1...nr

1 and k be a positive integer. Then

X

n≤x

d

kr

(n)  x(log x)

rk−1

.

See Theorem 2 of [12].

(5)

Lemma 7. Let

(13) C(q, m) =

X

q (r,q)=1r=1

e

 rm q

 .

Then C(q, m) is a multiplicative function of q and

(14) C(q, m) = µ

 q (q, m)

 ϕ(q) ϕ

(m,q)q

 . See Lemma 1.2 of [10].

We define w(u) as the continuous solution of the equations

(15) w(u) = 1/u, 1 ≤ u ≤ 2,

(uw(u))

0

= w(u − 1), u > 2.

w(u) is called Buchstab’s function; it plays an important role in finding asymptotic formulas in the sieve method. In particular,

(16) (17)

w(u) =

 

 

 

 

1 + log(u − 1)

u , 2 ≤ u ≤ 3;

1 + log(u − 1)

u + 1

u

u−1

R

2

log(t − 1)

t dt, 3 ≤ u ≤ 4.

Lemma 8. We have the following bounds:

(i) w(u) ≥ 0.5607 for u ≥ 2.47;

(ii) w(u) ≤ 0.5644 for u ≥ 3;

(iii) w(u) ≤ 0.5672 for u ≥ 1.7631;

(iv) w(u) ≥ 0.5 for u ≥ 1.

P r o o f. (i) First assume 3 ≤ u ≤ 4. By (15), we have w

0

(u) = w(u − 1) − w(u)

u = 1

u

2

(uw(u − 1) − uw(u)).

Now we investigate the behaviour of the function

(18) h(u) = uw(u − 1) − uw(u).

We have

(19) h

0

(u) = ((u − 1)w(u − 1))

0

− (uw(u))

0

+ w

0

(u − 1)

= w(u − 2) − w(u − 1) + w(u − 2) − w(u − 1) u − 1

= u(1 − (u − 2) log(u − 2)) (u − 2)(u − 1)

2

. There is exactly one u

0

satisfying

1 − (u

0

− 2) log(u

0

− 2) = 0.

Calculation shows 3.7632 ≤ u

0

≤ 3.7633.

(6)

We have h

0

(u) > 0 to the left of u

0

, and h

0

(u) < 0 to the right of u

0

. Consequently, if u

0

≤ u ≤ 4, then h(u) ≥ h(4) = 4(w(3) − w(4)) > 0. Note that h(3) = 3(w(2) − w(3)) < 0 and that h(u) is an increasing function in the interval [3, u

0

]. So, h(u) has exactly one zero v

0

in the interval [3, 4].

Calculation shows 3.469 ≤ v

0

≤ 3.47. We have h(u) < 0 to the left of v

0

, and h(u) > 0 to the right of v

0

. The same holds for w

0

(u). Hence, w(u) ≥ w(v

0

).

We note that for 3 ≤ u ≤ 4,

 1 + log(u − 1) u



0

= 1 − (u − 1) log(u − 1) (u − 1)u

2

< 0.

The fact that for 2 ≤ t ≤ 3,

 log(t − 1) t



0

= t − (t − 1) log(t − 1) (t − 1)t

2

≥ 0, implies that for 3 ≤ u ≤ 4,

 1 u

u−1

R

2

log(t − 1) t dt



0

= 1 u

2

 u log(u − 2) u − 1

u−1

R

2

log(t − 1)

t dt



1 u

2

 u log(u − 2)

u − 1 (u − 3) log(u − 2) u − 1



≥ 0.

Therefore we have

w(v

0

) ≥ 1 + log(2.47)

3.47 + 1

3.469

2.469

R

2

log(t − 1)

t dt ≥ 0.5607.

From the above discussion, we get w(u) ≥ 0.5607 for 3 ≤ u ≤ 4.

Then we employ induction. Suppose that w(u) ≥ 0.5607 for 3 ≤ k ≤ u ≤ k + 1. For k + 1 ≤ u ≤ k + 2, we have

uw(u) = (k + 1)w(k + 1) +

u−1

R

k

w(t) dt ≥ 0.5607u.

By induction, we conclude that w(u) ≥ 0.5607 for u ≥ 3.

Now we turn to the case 2 ≤ u ≤ 3. Then

w

0

(u) = 1 − (u − 1) log(u − 1) (u − 1)u

2

has exactly one zero z

0

with 2.7632 ≤ z

0

≤ 2.7633.

We have w

0

(u) > 0 to the left of z

0

, and w

0

(u) < 0 to the right of z

0

. Therefore w(u) ≥ min(w(2.47), w(3)) ≥ 0.5607 for 2.47 ≤ u ≤ 3, and w(u) ≤ w(z

0

) ≤ (1 + log(1.7633))/2.7632 ≤ 0.5672 for 2 ≤ u ≤ 3.

(ii) The discussion in (i) implies that w(u) ≤ max(w(3), w(4)) ≤ 0.5644

for 3 ≤ u ≤ 4. By induction, it follows that w(u) ≤ 0.5644 for u ≥ 3.

(7)

(iii) The discussion in (i) shows that w(u) ≤ 0.5672 for 2 ≤ u ≤ 3. For 1.7631 ≤ u ≤ 2, we have w(u) = 1/u ≤ 0.5672.

(iv) It is easy to see that w(u) = 1/u ≥ 0.5 for 1 ≤ u ≤ 2. By induction, we get the same conclusion for all u ≥ 1.

The proof of Lemma 8 is complete.

Lemma 9. Assume that E = {n : x < n ≤ 2x} and that z ≤ x. Let P (z) = Y

p<z

p.

Then for sufficiently large x and z, we have S(E, z) = X

x<n≤2x (n,P (z))=1

1 =

 w

 log x log z



+ O(ε)

 x log z .

We refer to Lemma 5 of [6]. When (2x)

1/2

< z ≤ x, this is the prime number theorem.

3. Mean value formulas in the sieve method

Lemma 10. Assume that M, K  N

5/16

and that a(m), b(k) = O(1).

Let

(20) I(N ) = X

N =n1+n2+n3

N/10<n1,n2,n3≤N

γ

3

(n

1

n

2

n

3

)

γ−1

log n

2

log n

3

and

(21) ω(r) = Y

p|r p|N



1 + 1 p − 1

 Y

p|r p - N



1 − 1 (p − 1)

2

 .

Then X

m∼M

X

k∼K

a(m)b(k)

 X

N =mkl+p2+p3 N/10<mkl≤N N/10<p2, p3≤N

N (mkl)N (p

2

)N (p

3

) − ω(mk) mk I(N )



= O

 N

3γ−1

log

20

N

 . P r o o f. We have

Σ

1

= X

m∼M

X

k∼K

a(m)b(k) X

N =mkl+p2+p3 N/10<mkl≤N N/10<p2, p3≤N

N (mkl)N (p

2

)N (p

3

)

(8)

=

R

1 0

X

N/10<mkl≤N m∼M, k∼K

a(m)b(k)N (mkl)e(αmkl)

×

 X

N/10<p≤N

N (p)e(αp)



2

e(−αN ) dα.

Let

g(α) = X

N/10<mkl≤N m∼M, k∼K

a(m)b(k)N (mkl)e(αmkl),

f (α) = γ X

N/10<mkl≤N m∼M, k∼K

a(m)b(k)(mkl)

γ−1

e(αmkl).

By the discussion in [1], the asymptotic formula (22) g(α) = f (α) + O(N

2γ−1−5ε

)

depends on the fact that for J ≤ H

1

= N

2(1−γ)+8ε

and 0 ≤ u ≤ 1, Σ

2

= min



1, N

1−γ

J

 (23)

× X

h∼J

X

m∼M

X

k∼K

X

mkl∼N

a(m)b(k)e(αmkl + h(mkl + u)

γ

)

 N

γ−6ε

.

If either M or K is larger than N

3/16

, then by Lemma 1 with ∆ = 1 − γ, we obtain Σ

2

 N

γ−10ε

. If M, K ≤ N

3/16

, then KM  N

6/16

 N

9γ−8−50ε

. By Lemma 2 with ∆ = 1 − γ, we also get Σ

2

 N

γ−10ε

. Hence, (22) holds.

Let

D(α) = X

N/10<p≤N

N (p)e(αp), S(α) = γ X

N/10<p≤N

p

γ−1

e(αp).

From (12) and (22), it follows that

g(α)D

2

(α) − f (α)S

2

(α) = (g(α) − f (α))D

2

(α) + f (α)(D(α) − S(α))D(α) + f (α)S(α)(D(α) − S(α))

 N

2γ−1−5ε

|D(α)|

2

+ N

3γ/2−1/2−5ε

|f (α)D(α)|

+ N

3γ/2−1/2−5ε

|f (α)S(α)|.

Thus Σ

1

=

R

1 0

g(α)D

2

(α)e(−αN ) dα =

R

1 0

f (α)S

2

(α)e(−αN ) dα + Ψ,

(9)

where

Ψ  N

2γ−1−5ε

R

1 0

|D(α)|

2

dα + N

3γ/2−1/2−5ε

 R

1

0

|f (α)|

2



1/2

(24)

×

 R

1

0

|D(α)|

2



1/2

+ N

3γ/2−1/2−5ε

 R

1

0

|f (α)|

2



1/2

×

 R

1

0

|S(α)|

2



1/2

 N

3γ−1−4ε

,

where we note that N (p) = 0 or 1 and that p ∈ P

γ

is equivalent to N (p) = 1;

we also use the estimation P

p≤N

N (p) ≤ P

n≤N

N (n)  N

γ

. In the following we investigate

Σ

3

=

R

1 0

f (α)S

2

(α)e(−αN ) dα.

Let Q = N log

−80

N. We divide the interval [−1/Q, 1 − 1/Q) into two parts:

E

1

= {α : α ∈ [−1/Q, 1 − 1/Q), α = a/q + β, q ≤ log

80

N, 0 ≤ a ≤ q − 1, (a, q) = 1, |β| ≤ 1/(qQ)}, E

2

= [−1/Q, 1 − 1/Q) − E

1

.

Then

Σ

3

=

 R

E1

+ R

E2



f (α)S

2

(α)e(−αN ) dα.

For any α ∈ E

2

, there is one q (log

80

N < q ≤ Q) such that |α − a/q| <

1/(qQ). Lemma 5 yields S(α)  N R

γ

log

−35

N . Hence,

E2

f (α)S

2

(α)e(−αN ) dα

 N

γ

log

35

N

 R

1

0

|f (α)|

2



1/2

 R

1

0

|S(α)|

2



1/2

 N

3γ−1

log

20

N . If α = a/q + β ∈ E

1

, then

f (α) = X

N/10<rl≤N r∼R

j(r)(rl)

γ−1

e(αrl),

where R = M K and

j(r) = γ X

m∼M, k∼Kmk=r

a(m)b(k).

(10)

If q - b, then

X

l≤x

e(bl/q) = O(q).

From this and partial summation, we know that X

N/10<rl≤N r∼R, q - r

j(r)(rl)

γ−1

e(αrl)

= X

r∼Rq - r

j(r)r

γ−1

X

N/(10r)<l≤N/r

l

γ−1

e

 arl q + βrl



 N

γ−1

X

r∼R

d(r) log

80

N  N

γ−ε

. On the other hand,

X

N/10<rl≤N r∼R, q|r

j(r)(rl)

γ−1

e(αrl) = X

r∼Rq|r

j(r)r

γ−1

X

N/(10r)<l≤N/r

l

γ−1

e(βrl).

Now, X

N/(10r)<l≤N/r

l

γ−1

e(βrl)

=

N/r

R

N/(10r)

t

γ−1

e(βrt) d[t]

=

N/r

R

N/(10r)

t

γ−1

e(βrt) dt −

N/r

R

N/(10r)

t

γ−1

e(βrt) d({t})

= 1 r

γ

R

N N/10

u

γ−1

e(βu) du + O

 N r



γ−1

log

80

N



= 1 r

γ

X

N/10<s≤N

s

γ−1

e(βs) + O

 N r



γ−1

log

80

N

 . Thus,

(25) f (α) = X

r∼Rq|r

j(r) r

X

N/10<s≤N

s

γ−1

e(βs) + O(N

γ−ε

).

The prime number theorem for arithmetic progressions (refer to Section

22 of [2]) yields that, for q ≤ log

80

N, (l, q) = 1 and N/10 < t ≤ N,

(11)

(26) π(t; l, q) = X

N/10<p≤t p≡l (mod q)

1 = 1 ϕ(q)

R

t N/10

du

log u + O(N exp(−c p

log N )).

Now,

X

N/10<p≤N

p

γ−1

e(αp) = X

q (l,q)=1l=1

e

 al q

 X

N/10<p≤N p≡l (mod q)

p

γ−1

e(βp),

and so

X

N/10<p≤N p≡l (mod q)

p

γ−1

e(βp) =

R

N N/10

t

γ−1

e(βt) d(π(t; l, q))

= 1 ϕ(q)

R

N N/10

t

γ−1

e(βt) log t dt + O(N

γ

exp(−c

1

p log N ))

= 1 ϕ(q)

X

N/10<s≤N

s

γ−1

e(βs) log s + O(N

γ

exp(−c

1

p log N )).

Combining the above discussion with Lemma 7, we have X

N/10<p≤N

p

γ−1

e(αp) = µ(q) ϕ(q)

X

N/10<s≤N

s

γ−1

e(βs) log s (27)

+ O(N

γ

exp(−c

2

p log N )).

Altogether, we get Σ

4

= R

E1

f (α)S

2

(α)e(−αN ) dα

= X

q≤log80N q−1

X

(a,q)=1a=0

e



aN q



1/(qQ)

R

−1/(qQ)

f

 a q + β

 S

2

 a q + β



e(−βN ) dβ

= γ

2

X

q≤log80N

µ

2

(q)C(q, −N ) ϕ

2

(q)

X

r∼Rq|r

j(r) r

1/(qQ)

R

−1/(qQ)

 X

N/10<s≤N

s

γ−1

e(βs)



×

 X

N/10<s≤N

s

γ−1

e(βs) log s



2

e(−βN ) dβ + O

 N

3γ−1

log

20

N



.

(12)

Since

R

1/2 1/(qQ)

 X

N/10<s≤N

s

γ−1

e(βs)

 X

N/10<s≤N

s

γ−1

e(βs) log s



2

e(−βN ) dβ



R

1/2 1/(qQ)

N

3(γ−1)

β

3

 q

2

N

3γ−1

log

160

N , we obtain

Σ

4

= 1

γ I(N ) X

q≤log80N

µ

2

(q)C(q, −N ) ϕ

2

(q)

X

r∼Rq|r

j(r) r + O

 N

3γ−1

log

20

N

 ,

where

I(N ) = X

N =n1+n2+n3 N/10<n1,n2,n3≤N

γ

3

(n

1

n

2

n

3

)

γ−1

log n

2

log n

3

.

Let

Ω = X

q≤log80N

µ

2

(q)C(q, −N ) ϕ

2

(q)

X

r∼Rq|r

j(r) r

= X

r∼R

j(r) r

X

q≤log80N q|r

µ

2

(q)C(q, −N ) ϕ

2

(q) . Now,

X

r∼R

j(r) r

X

q>log80N q|r

µ

2

(q)C(q, −N )

ϕ

2

(q)  1 log

60

N

X

r∼R

d

2

(r)

r  1

log

50

N , so that

Ω = X

r∼R

j(r) r

X

q|r

µ

2

(q)C(q, −N ) ϕ

2

(q) + O

 1

log

50

N



= X

r∼R

ω(r)j(r)

r + O

 1

log

50

N



= γ X

m∼M

X

k∼K

a(m)b(k) ω(mk) mk + O

 1

log

50

N

 . Hence

Σ

4

= I(N ) X

m∼M

X

k∼K

a(m)b(k) ω(mk) mk + O

 N

3γ−1

log

20

N



.

(13)

Finally,

Σ

1

= I(N ) X

m∼M

X

k∼K

a(m)b(k) ω(mk) mk + O

 N

3γ−1

log

20

N

 .

The proof of Lemma 10 is complete.

Lemma 11. Assume that M, K  N

5/16

and that a(m), b(k) = O(1).

Let ω(r) be defined in (21). Let J

1

(N ) = X

N5/16<p1≤N1/2

1 p

1

X

N =n1+n2+n3

N/10<n1,n2,n3≤N

γ

3

(n

1

n

2

n

3

)

γ−1

log

np2

1

log n

3

, (28)

J

2

(N ) = X

N5/16<p1≤N1/3

X

p1<p2<

N/p1

1 p

1

p

2

(29)

× X

N =n1+n2+n3

N/10<n1,n2,n3≤N

γ

3

(n

1

n

2

n

3

)

γ−1

log

pn2

1p2

log n

3

. Then

X

m∼M

X

k∼K

a(m)b(k)

 X

N =mkl+p1p2+p3 N/10<mkl≤N N/10<p1p2,p3≤N

N5/16<p1≤N1/2 p1<p2

N (mkl)N (p

1

p

2

)N (p

3

)

ω(mk) mk J

1

(N )



= O

 N

3γ−1

log

20

N



and X

m∼M

X

k∼K

a(m)b(k)

 X

N =mkl+p1p2p3+p4

N/10<mkl≤N N/10<p1p2p3,p4≤N

N5/16<p1≤N1/3 p1<p2<p3

N (mkl)N (p

1

p

2

p

3

)N (p

4

)

ω(mk) mk J

2

(N )



= O

 N

3γ−1

log

20

N

 .

This can be proved in almost the same way as Lemma 10.

(14)

4. Sieve method. Assume that

A = {a : a = N − p

1

− p

2

, N (a) = N (p

1

) = N (p

2

) = 1, N/10 < p

1

, p

2

≤ N, p

1

+ p

2

< 9N/10},

B = {b : b = N − d − p

4

, N (b) = N (d) = N (p

4

) = 1,

N/10 < d, p

4

≤ N, d + p

4

< 9N/10, d = p

1

p

2

(N

5/16

< p

1

≤ N

1/2

, p

1

< p

2

) or d = p

1

p

2

p

3

(N

5/16

< p

1

≤ N

1/3

, p

1

< p

2

< p

3

)}

and that

P (z) = Y

p<z

p, S(A, z) = X

a∈A (a,P (z))=1

1, S(B, w) = X

b∈B (b,P (w))=1

1.

Note once again that p ∈ P

γ

is equivalent to N (p) = 1. Applying Buch- stab’s identity, we get

T

1

(N ) ≥ S(A, N

1/2

) (30)

= S(A, N

3/16

) − X

N3/16<p≤N5/16

S(A

p

, p)

X

N5/16<p≤N1/2

S(A

p

, p)

= S

1

− S

2

− S

3

. Using Buchstab’s identity again, we obtain

S

1

= S(A, N

2.5/16

) − X

N2.5/16<p≤N3/16

S(A

p

, p) (31)

= S(A, N

2.5/16

) − X

N2.5/16<p≤N3/16

S

 A

p

,

 N

10/16

p



1/5



+ X

N2.5/16<p≤N3/16

X

(N10/16/p)1/5<q<N5/16/p

S(A

pq

, q)

+ X

N2.5/16<p≤N3/16

X

N5/16/p<q<(N10/16/p)1/3

S(A

pq

, q)

+ X

N2.5/16<p≤N3/16

X

(N10/16/p)1/3<q<p

S(A

pq

, q)

= Φ

1

− Φ

2

+ Φ

3

+ Φ

4

+ Φ

5

. Next,

S

3

= X

N5/16<p≤N1/2

S(A

p

, p)

(32)

(15)

= #{d : d = N − p

4

− p

5

, N (d) = N (p

4

) = N (p

5

) = 1, N/10 < p

4

, p

5

≤ N, p

4

+ p

5

< 9N/10,

d = p

1

p

2

(N

5/16

< p

1

≤ N

1/2

, p

1

< p

2

)

or d = p

1

p

2

p

3

(N

5/16

< p

1

≤ N

1/3

, p

1

< p

2

< p

3

)}

= #{p

4

: p

4

= N − d − p

5

, N (p

4

) = N (d) = N (p

5

) = 1, N/10 < d, p

5

≤ N, d + p

5

< 9N/10,

d = p

1

p

2

(N

5/16

< p

1

≤ N

1/2

, p

1

< p

2

)

or d = p

1

p

2

p

3

(N

5/16

< p

1

≤ N

1/3

, p

1

< p

2

< p

3

)}

= S(B, N

1/2

).

Using Buchstab’s identity, we have S(B, N

1/2

) = S(B, N

2.5/16

) − X

N2.5/16<p≤N3/16

S(B

p

, p) (33)

X

N3/16<p≤N5/16

S(B

p

, p) − X

N5/16<p≤N1/2

S(B

p

, p)

≤ S(B, N

2.5/16

) − X

N2.5/16<p≤N3/16

S

 B

p

,

 N

10/16

p



1/5



+ X

N2.5/16<p≤N3/16

X

(N10/16/p)1/5<q<N5/16/p

S(B

pq

, q)

+ X

N2.5/16<p≤N3/16

X

N5/16/p<q<p

S(B

pq

, q)

X

N3/16<p≤N5/16

S(B

p

, p)

= Γ

1

− Γ

2

+ Γ

3

+ Γ

4

− Γ

5

. Lemma 12.

Φ

1

= S(A, N

2.5/16

) ≥ 3.515559Z(γ)C(N ) N

3γ−1

log

3

N , where C(N ) is defined in (2) and

(34) Z(γ) = γ

3

8/10

R

1/10

u

γ−11

du

1

9/10−u

R

1

1/10

u

γ−12

(1 − u

1

− u

2

)

γ−1

du

2

. P r o o f. Take

X = I(N ) = X

N =n1+n2+n3 N/10<n1,n2,n3≤N

γ

3

(n

1

n

2

n

3

)

γ−1

log n

2

log n

3

(16)

and

r(d) = #A

d

ω(d) d X, where ω(d) is defined in (21).

By Theorem 7.11 of [10], we have W (z) = Y

p<z



1 − ω(p) p



= C(N ) e

−γ

log z

 1 + O

 1 log z



, where γ is Euler’s constant.

Let z = N

2.5/16

, D = N

10/16

. By Iwaniec’s bilinear sieve method (see Theorem 1 in [5]), we obtain

Φ

1

C(N )X log z

 f

 log D log z



− O(ε)



X

m<N5/16

X

k<N5/16

a(m)b(k)r(mk),

where f (u) is a standard function. In particular,

f (u) =

 

 

 

  2

u log(u − 1), 2 ≤ u ≤ 4;

2 u



log(u − 1) +

u−1

R

3

dt t

R

t−1 2

log(s − 1)

s ds



, 4 ≤ u ≤ 6.

By Lemma 10, we have X

m<N5/16

X

k<N5/16

a(m)b(k)r(mk) = O

 N

3γ−1

log

10

N

 .

On the other hand, X = (1 + O(ε))γ

3

log

2

N

X

N =n1+n2+n3 N/10<n1,n2,n3≤N

(n

1

n

2

n

3

)

γ−1

= (1 + O(ε))γ

3

log

2

N

8N/10

R

N/10

t

γ−11

dt

1

9N/10−t

R

1

N/10

t

γ−12

(N − t

1

− t

2

)

γ−1

dt

2

= (1 + O(ε))γ

3

log

2

N N

3γ−1

8/10

R

1/10

u

γ−11

du

1

9/10−u

R

1

1/10

u

γ−12

(1 − u

1

− u

2

)

γ−1

du

2

.

Hence,

Φ

1

≥ 3.515559Z(γ)C(N ) N

3γ−1

log

3

N .

(17)

Lemma 13.

Φ

2

= X

N2.5/16<p≤N3/16

S

 A

p

,

 N

10/16

p



1/5



≤ 1.130791Z(γ)C(N ) N

3γ−1

log

3

N . P r o o f. Take

z(p) =

 N

10/16

p



1/5

, D(p) = N

10/16

p . By Iwaniec’s bilinear sieve method, we obtain

Φ

2

≤ (1 + O(ε))C(N )X X

N2.5/16<p≤N3/16

1 p log z(p) F

 log D(p) log z(p)

 + R

+

, where

R

+

= X

N2.5/16<p≤N3/16

X

h<N5/16/p

X

k<N5/16

c(h)b(k)r(phk), and F (u) is a standard function. In particular,

F (u) =

 

 

 

  2

u , 2 ≤ u ≤ 3;

2 u

 1 +

u−1

R

2

log(t − 1)

t dt



, 3 ≤ u ≤ 5.

In R

+

, let ph = m. By Lemma 10, we have R

+

= O

 N

3γ−1

log

10

N

 .

From the above discussion and the prime number theorem, we have Φ

2

≤ Z(γ)C(N ) N

3γ−1

log

2

N

X

N2.5/16<p≤N3/16

5F (5)

p log

N10/16p

+ O

 εN

3γ−1

log

3

N



= Z(γ)C(N ) N

3γ−1

log

3

N

3/16

R

2.5/16

2dt t

1016

− t 

 1 +

R

4 2

log(u − 1)

u du



+ O

 εN

3γ−1

log

3

N



≤ 1.130791Z(γ)C(N ) N

3γ−1

log

3

N .

(18)

Lemma 14.

Φ

4

= X

N2.5/16<p≤N3/16

X

N5/16/p<q<(N10/16/p)1/3

S(A

pq

, q)

≥ 0.011651Z(γ)C(N ) N

3γ−1

log

3

N . P r o o f. Take

D(p, q) = N

10/16

pq . By Iwaniec’s bilinear sieve method, we have Φ

4

≥ (1 + O(ε))C(N )X X

N2.5/16<p≤N3/16

X

N5/16/p<q<(N10/16/p)1/3

1 pq log q

× f

 log D(p, q) log q



− R

, where

R

= X

N2.5/16<p≤N3/16

X

N5/16/p<q<(N10/16/p)1/3

X

h<N5/16/p

X

g<N5/16/q

c(h)v(g)r(pqhg).

In R

, let ph = m, qg = k. By Lemma 10, we have R

= O

 N

3γ−1

log

10

N

 . Hence,

Φ

4

≥ Z(γ)C(N ) N

3γ−1

log

3

N

3/16

R

2.5/16

dt t

(10/16−t)/3

R

5/16−t

2 w

1016

− t − w 

× log



10

16

− t 

w − 2



dw + O

 εN

3γ−1

log

3

N



≥ 0.011651Z(γ)C(N ) N

3γ−1

log

3

N . Lemma 15.

Γ

1

= S(B, N

2.5/16

) ≤ 2.926882Z(γ)C(N ) N

3γ−1

log

3

N .

P r o o f. We take Y = J

1

(N ) + J

2

(N ), where J

1

(N ), J

2

(N ) are defined in (28) and (29) respectively, and

r(d) = #B

d

ω(d)

d Y.

(19)

By Iwaniec’s bilinear sieve method, we get Γ

1

C(N )Y

log N · 16

2.5 (F (4) + O(ε)) + X

m<N5/16

X

k<N5/16

a(m)b(k)r(mk).

Applying Lemma 11, we get X

m<N5/16

X

k<N5/16

a(m)b(k)r(mk) = O

 N

3γ−1

log

10

N

 . Hence,

Γ

1

≤ 3.671111 · C(N )Y log N . Now,

Y = (1 + O(ε))γ

3

log N

X

N =n1+n2+n3

N/10<n1,n2,n3≤N

(n

1

n

2

n

3

)

γ−1

 X

N5/16<p1≤N1/2

1 p

1

log

pN

1

+ X

N5/16<p1≤N1/3

X

p1<p2<

N/p1

1 p

1

p

2

log

pN

1p2



= (1 + O(ε))Z(γ) N

3γ−1

log

2

N

 R

1/2 5/16

dt t(1 − t) +

R

1/3 5/16

dt t

(1−t)/2

R

t

dw w(1 − t − w)



≤ 0.797274Z(γ) N

3γ−1

log

2

N . Therefore,

Γ

1

≤ 2.926882Z(γ)C(N ) N

3γ−1

log

3

N . Lemma 16.

Γ

2

= X

N2.5/16<p≤N3/16

S

 B

p

,

 N

10/16

p



1/5



≥ 0.898396Z(γ)C(N ) N

3γ−1

log

3

N .

P r o o f. Using Lemma 11, in almost the same way as in Lemma 13, we obtain

Γ

2

≥ (1 + O(ε))C(N )Y X

N2.5/16<p≤N3/16

5f (5) p log

N10/16p

= (1 + O(ε))Z(γ)C(N ) N

3γ−1

log

3

N

3/16

R

2.5/16

2 dt

t

1016

− t 

(20)

×



log 4 +

R

4 3

dt t

t−1

R

2

log(s − 1)

s ds



×

 R

1/2 5/16

dt t(1 − t) +

R

1/3 5/16

dt t

(1−t)/2

R

t

dw w(1 − t − w)



≥ 0.898396Z(γ)C(N ) N

3γ−1

log

3

N . Lemma 17.

Γ

4

= X

N2.5/16<p≤N3/16

X

N5/16/p<q<p

S(B

pq

, q)

≤ 0.194188Z(γ)C(N ) N

3γ−1

log

3

N .

P r o o f. Applying Lemma 11, in almost the same way as in Lemma 14, we get

Γ

4

X

N2.5/16<p≤N3/16

X

N5/16/p<q<p

S

 B

pq

,

 N

10/16

pq



1/3



≤ (1 + O(ε))C(N )Y X

N2.5/16<p≤N3/16

X

N5/16/p<q<p

3F (3) pq log

N10/16pq

= (1 + O(ε))Z(γ)C(N ) N

3γ−1

log

3

N

3/16

R

2.5/16

dt t

R

t 5/16−t

2 dw w

1016

− t − w 

×

 R

1/2 5/16

dt t(1 − t) +

R

1/3 5/16

dt t

(1−t)/2

R

t

dw w(1 − t − w)



≤ 0.194188Z(γ)C(N ) N

3γ−1

log

3

N . 5. Asymptotic formulas

Lemma 18. Assume that N

11/16

 M  N

13/16

, 0 ≤ a(m) = O(1) and that a(m) = 0 if m has a prime factor < N

ε

. Then

Σ = X

N =mp1+p2+p3

N/10<mp1,p2,p3≤N m∼M

a(m)N (mp

1

)N (p

2

)N (p

3

)

= (1 + O(ε))Z(γ)C(N ) N

3γ−1

N log

2

N

X

m∼M

a(m) X

N/m<p≤2N/m

1

+ O

 N

3γ−1

log

10

N



.

(21)

P r o o f. We have Σ =

R

1 0

X

N/10<mp1≤N m∼M

a(m)N (mp

1

)e(αmp

1

)

×

 X

N/10<p≤N

N (p)e(αp)



2

e(−αN ) dα.

Using the same reasoning as in Lemma 10, we get Σ = R

E1

g(α)S

2

(α)e(−αN ) dα + O

 N

3γ−1

log

10

N

 , where E

1

is defined in Lemma 10,

g(α) = γ X

N/10<mp1≤N m∼M

a(m)(mp

1

)

γ−1

e(αmp

1

)

and

S(α) = γ X

N/10<p≤N

p

γ−1

e(αp).

Note that if a(m) 6= 0 and q ≤ log

80

N, then (m, q) = 1. Thus, g(α) = γ

X

q (l,q)=1l=1

e

 al q

 X

m∼M

a(m)m

γ−1

X

N/(10m)<p1≤N/m mp1≡l (mod q)

p

γ−11

e(βmp

1

).

Let m be a number such that mm ≡ 1 (mod q). Using the discussion in Lemma 10, we have

X

N/(10m)<p1≤N/m mp1≡l (mod q)

p

γ−11

e(βmp

1

)

= X

N/(10m)<p1≤N/m p1≡ml (mod q)

p

γ−11

e(βmp

1

) =

N/m

R

N/(10m)

t

γ−1

e(βmt) d(π(t; ml, q))

= 1 ϕ(q)

N/m

R

N/(10m)

t

γ−1

e(βmt)

log t dt + O

 N m



γ

exp(−c p log N )



= m

−γ

ϕ(q)

R

N N/10

u

γ−1

e(βu)

log

mu

du + O

 N m



γ

exp(−c p log N )



Cytaty

Powiązane dokumenty

, then use Lemma 2.6 to add an r-graph with enough number of edges but sparse enough (see prop- erties 2 and 3 in this Lemma) and obtain an r-graph with the Lagrangian..

Condition (4) is an easy consequence of our construction: refining the curve, we have not affected the global convexity because every slope of the refinement stays strictly between

Using the classical mean value estimate instead of that of Des- houillers and Iwaniec, we can get the exponent 18 1.. Wang Yuan and Pan Chengbiao for

via Rubin’s theorem [R] and (4)), Corollaries 1 and 3 conditionally capture the orders of all the Tate–Shafarevich groups of rank 0 congruent number curves.. Therefore these

Heath- Brown [6] proved that there exist infinitely many arithmetic progressions of four different terms, three of which are primes and the fourth is P 2 (as usual, P r denotes

A smooth weight is used to control error terms, and this weight can in typical applications be removed from the final result.. Similar results are obtained for the tails of

(See the proof of Lemma 7 in [1].) For some N , making sufficiently many lin- ear equations obtained by equating the coefficients of powers of x, including positive powers, we are

In this way (Kohnen–) Kloosterman sums for weight 1/2 come into play by using the discrete Fourier transform identity (Theorem A below), and we will have a possibility of