• Nie Znaleziono Wyników

Z. K amont and W. P awelski (Gdansk)

N/A
N/A
Protected

Academic year: 2021

Share "Z. K amont and W. P awelski (Gdansk)"

Copied!
4
0
0

Pełen tekst

(1)

ANNA L ES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X I X (1976) RO CZN IK I POLSKIEGO TOW ARZYSTW A MATEMATYCZNEGO

Séria I: PEACE MATEMATYCZNE X I X (1976)

Z. K amont and W. P awelski (Gdansk)

O n a special case oî asymptotic stability in a uniform manner with respect to the initial conditions

Assume th a t y = y

0

is a solution of the differential equation

(1) dy dx

In [1] (Theorem 4, p. 236) sufficient conditions for asymptotic stab­

ility of this solution in a uniform manner with respect to the initial conditions have been given.

In the present paper we give a generalization of Theorem 4 from [1]

(cf. Bemark I I in [1], p. 238). The proof of our theorem is more simple an d much shorter than th a t of Theorem 4 in [1].

T heorem . Let us suppose that

1° the function f(x, y ) is defined and continuous in the plane set D = {(a?, y): x t <a, -f °o), ye (y

9

— a, 0O+ <*)}>

where a > 0 (in particular, it may be a — -f со),

2° /(а?, У) < 0 for (x, y)e D x and f(x, у) > 0 for (x, y)e I>2, where A = {(я, У)' xe <«> + °°), У* (У оу Уо + а)},

= {(x, y): Xe <a, + oo), ye (y

0

- a , yQ)}

(in Theorem 4 of [1] we suppose that f(x, y) < 0 inside Dx and f(x, y) > 0 inside B 2),

3° there exist the limits

lim f( x , y) = ô, d < 0 for every jje (y0, y

0

+ a),

X-* + co

v \ y

lim f( x , у) = y , у > 0 for every ÿ € (y

0

- a , y0),

x->+oo

v / v

4° for every ÿe (y0— a, y0 + a ) ^ ie reaI function и defined by the formula u(x) = If(x, у )I is non-decreasing for xe Ла — (a, +oo).

6 — R oczniki PTM — P race M atem atyczn e X IX

(2)

82

Z. K a m o n t and W. P a w e l s k i

Under these assumptions the solution y — y

0

of equation (1) is asymp­

totically stable in a uniform manner with respect to the arbitrary initial con­

ditions, which means that

1. the integral y = y

0

is asymptotic stable in Aa,

2. for every e > 0 there exists a number A > О (depending only on s) such that for every x

0

> a and a fixed value fie (

0

, a) an arbitrary solution у = tp(x) of equation (1) starting at a segment

К = {{x, у): x = x 0, ye (Уо- f i , Уо + fi»

satisfies the inequality \<p(x) — y

0

1< e for x > x

0

-\-A.

P ro o f. I t follows from assumptions l° -3 ° and from Theorem 3 of [1]

(p. 235) th a t the solution у — y

0

of equation (1) is asymptotic stable in Aa. Therefore condition 1 is satisfied.

We shall now show th a t condition 2 holds. It follows from Theorem 3 of [1] th a t for a fixed x 0e Aa and fie (0, a) there exists a number A > 0 such th a t the inequality

(2) \<р(я0) - У о К Р

implies the inequality

(3) \<p(x)—y0\ < e

for x > X q + A and for an arbitrary solution у = <p(x) satisfying the initial inequality (2).

We shall now show th a t for the same values e and A the inequality и ^ ) — Уо\ < e

is satisfied for every + x x > x

0

and for an arbitrary solution y = (p{x) of equation (1) satisfying the initial inequality

(4) l9»(®i)—УоК /?•

Let у — ip{x) be a maximum solution of equation (1) satisfying the initial condition

(5) V(®i) =Уо + Р,

where xx > x

0

. We shall prove th a t

( 6 )

for x > x x + A.

—2/0l < e

(3)

Asymptotic stability 83

For this purpose we denote by y = Ф{х) the maximum solution of equation (1) satisfying the initial condition

( 7 )

Ф(%о)

= 2/o + / ?-

Let W(x) be the function defined by the formula

(8) W(x) = y)(æ-\-h),

where

(9) h = x ± — x 0.

I t follows from (5), (7) and (8) that

(10) W(a>0) = Ф(х0) +

Assumption 4° and condition (8) imply dW(x)

(11) + V(® + ^)) + Щ = f(x,'F{x))

f or x ^ x 0.

Since

$Ф(х)

dx = f(x, Ф{х))

or x ^ x 0, it follows from (10), (11) and from Theorem 9.6 of [2] (p. 27) th a t

Ч*(х) < Ф(х) for x > x 0. Therefore

у){х + 1ъ) < Ф(х)

for x > x 0.

As

the function у = Ф(х) satisfies inequality (3) for x > æ 0 + A it follows th a t

\y>{x + h) — y Q\ = y>(x + h) — y 0^ Ф { х ) - у 0< e

for x > Хъ + А. By this condition and by (9) we have (6) for x > хг + А.

In a similar way we can prove th a t the inequality

(12) \tp(x)—y0\ < e

is satisfied for x > х г + A, where у = y)(x) is a minimal solution of equation

(1) such th a t

(4)

84 Z. K a m o n t and W. P a w e l s k i

From inequalities (6), (12) and from Lemma 1 of [1] (p. 234) it follows th a t the inequality

И®) — y0\ < e

is satisfied for æ > mx + A and for arbitrary solution у = <p (at) of equation (1) starting at a segment

K x = {(Я, y): SG = ®1} ÿe <y0- ^ 0.. + 0 M-

The both conditions 1° and 2° are satisfied, therefore the proof of theorem is completed.

References

[1] W . P a w e lsk i, On a simple case of asymptotic stability, Comm. Math. 13 (1970), p. 233-239.

[2] J. S zarski, Differential inequalities, Warszawa 1965.

Cytaty

Powiązane dokumenty

Powyższe wymaganie nie dotyczy urządzeń, które można łatwo zdemontować w celu oczyszczenia (z wyjątkiem, nagrzewnic i chłodnic). Między otworami rewizyjnymi nie

Anna Igielska – Centrum Rozwiązywania Problemów Dzieci i Młodzieży MZPiTU ……….... *na oryginale właściwe podpisy

Oświadczam, że projekt przebudowy drogi powiatowej w miejscowości Aleksandrów gmina Jakubów został sporządzony zgodnie z obowiązującymi przepisami oraz

 stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości walca.  rozwiązuje zadania o podwyższonym stopniu trudności

Projekt wykonawczy przebudowy mostu drogowego ciągu drogi wojewódzkiej nr 212 w m... Projekt wykonawczy przebudowy mostu drogowego ciągu drogi wojewódzkiej nr 212

[r]

blachodachówka na rąbek stojący firmy Ruukki płyta poszycia dachu- Steico Uniwersal 35mm kontrłaty 22x45, łaty 45x36. Rynny metalowe 125mm ,powlekane

Mo˙zna rozwa˙za´c wiele dalszych reguł wnioskowania w KRP. Niech interpretacj ˛ a tego predykatu w zbiorze wszystkich liczb naturalnych b˛edzie relacja &lt; mniejszo´sci..