• Nie Znaleziono Wyników

On the energy dissipation of jacket type offshore platforms with different pile-leg interactions

N/A
N/A
Protected

Academic year: 2021

Share "On the energy dissipation of jacket type offshore platforms with different pile-leg interactions"

Copied!
8
0
0

Pełen tekst

(1)

Applied Ocean Research 31 (2009) 82-89

ELSEVIER

C o n t e n t s lists a v a i l a b l e at ScienceDlrect

Applied Ocean Research

j o u r n a l h o m e p a g e : wvwv.elsevier.conn/locate/apor

On the energy dissipation of jacket type offshore platforms w i t h different

pile-leg interactions

p. Alanjari^ B. Asgarian^'*, M.R. Bahaari^ M.R. Honarvar''

K.N.Toosi University of Teclinoiogy, Islamic Republic of Iran

"School of Civil Engineering, University College of Engineering, University ofTeliran, Islamic Republic of Iran

A R T I C L E I N F O A B S T R A C T

Article history: Received 16 May 2008 Received in revised form 11 April 2009 Accepted 12 July 2009 Available online 26 July 2009

Keywords: Jacket Joint-can Energy dissipation Struts Joint fracture

In r e c e n t y e a r s , c o n s i d e r a b l e a m o u n t of effort has b e e n m a d e to design e a r t h q u a k e r e s i s t a n t offshore s t r u c t u r e s in s e i s m i c active areas. In o r d e r to a c h i e v e this objective, all c o m p o n e n t s of a typical s t r u c t u r e s h o u l d f u n c d o n p r o p e r l y to d i s s i p a t e s e i s m i c a l l y - i n d u c e d e n e r g y w i t h i n the m e m b e r s . A m o n g c o m p o n e n t s of an offshore i n s t a l l a t i o n , braces a r e of s i g n i f i c a n t i m p o r t a n c e as they c o n t r i b u t e s u b s t a n t i a l l y to total e n e r g y d i s s i p a t i o n of the s t r u c t u r e . B u c k l i n g in c o m p r e s s i o n and y i e l d i n g in t e n s i o n assist t h e p r o c e s s o f e n e r g y a b s o r p t i o n . N e v e r t h e l e s s , the f u n c t i o n a l i t y of b r a c e s is d e p e n d e n t u p o n their j o i n t s w h e r e j o i n t - c a n s are i n c l u d e d to avoid a n y brittle fracture a n d u n p r e d i c t e d f a i l u r e m e c h a n i s m s .

In this paper, s p e c i a l a t t e n t i o n is b e i n g p a i d to e n e r g y d i s s i p a t i o n of j a c k e t type offshore p l a t f o r m s w i t h t w o d i f f e r e n t p i l e - l e g i n t e r a c t i o n s . A c a s e study r e p r e s e n t i n g an offshore p l a t f o r m is s t u d i e d both a n a l y t i c a l l y a n d e x p e r i m e n t a l l y . A n a l y t i c a l m o d e l s are v a l i d a t e d step b y step b a s e d on a v a i l a b l e e x p e r i m e n t a l tests a n d o b s e r v a t i o n s o n i n d i v i d u a l m e m b e r s . S e v e r a l p a r a m e t e r s s u c h as c y c l i c b e h a v i o r , m a x i m u m b e a r i n g load a n d m o s t i m p o r t a n t l y energy d i s s i p a t i o n of t w o d i f f e r e n t 2 D f r a m e s are investigated. R e s u l t s p r o v i d e p r o m i s i n g insights into d e s i g n and f a b r i c a t i o n of f i x e d p l a t f o r m s w i t h d i f f e r e n t p i l e - l e g i n t e r a c t i o n s . © 2 0 0 9 E l s e v i e r Ltd. A l l rights r e s e r v e d . 1. I n t r o d u c t i o n P r o d u c i n g o i l a n d gas f r o m o f f s h o r e b y means o f f i x e d p l a t f o r m s has g a i n e d a t r e m e n d o u s m o m e n t u m i n t h e e n e r g y i n d u s t r y i n t h e past t e n years. D e s i g n o f s u c h s t r u c t u r e s is d e p e n d e n t u p o n l a t e r a l forces a p p l i e d b y e n v i r o n m e n t a l c o n d i t i o n s s u c h as w a v e s , c u r r e n t s , i m p a c t s as w e l l as s e i s m i c a l l y - i n d u c e d e x c i t a t i o n s . Severe l a t e r a l forces m a y cause c o n s i d e r a b l e d a m a g e t o l o a d c a r r y i n g m e m b e r s a n d e n d a n g e r o v e r a l l s t a b i l i t y o f t h e s t r u c t u r e . To c o u n t e r t h i s p r o b l e m , braces are d e s i g n e d t o w i t h s t a n d l a t e r a l e x c i t a t i o n s a n d dissipate e a r t h q u a k e i n p u t e n e r g y t h r o u g h b u c k l i n g i n c o m p r e s s i o n a n d y i e l d i n g i n t e n s i o n . Nonetheless, o b s e r v a t i o n s o f r e c e n t e a r t h q u a k e s f o r p o o r l y - d e s i g n e d o r d i n a r y s t r u c t u r e s p o i n t o u t t h a t j o i n t f r a c t u r e is e n c o u n t e r e d p r i o r to b u c k l i n g o f m e m b e r s a n d c o n s e q u e n t l y n o e n e r g y d i s s i p a t i o n occurs. T u b u l a r j o i n t s i n o f f s h o r e s t r u c t u r e s e x h i b i t d i f f e r e n t f a i l u r e m e c h a n i s m s s u c h as j o i n t r u p t u r e due t o t h e increase i n t h e size o f the h e a t a f f e c t e d zone (HAZ) and p u n c h i n g shear f a i l u r e d u e to excessive shear f o r c e s i n d u c e d i n c h o r d a n d brace i n t e r s e c t i o n . M o r e o v e r , l o c a l cyclic stresses m a y cause f a t i g u e p r o b l e m s i n j o i n t s

* Corresponding address: K.N.Toosi University of Technology, Department of Civil Engineering, Valiasr St., P.O.Box 15875-4416, 19967 Tehran, Islamic Republic of lran.Tel.:-r98 2188779623; fax:+98 2188779476.

E-mail address.-Asgarian®kntu.ac.ir(B. Asgarian).

V^ln^^Var' ' " ^ ^"""^ ""^^^^ ® 2 ° ° ^ ^isevier U d . All rights reserved. doi:10.1016/j.apor.2009.07.002 a n d r e s u l t i n g r a d u a l s t r e n g t h d e t e r i o r a t i o n o r s u d d e n f r a c t u r e o f c o n n e c t i o n s . I n o r d e r t o o v e r c o m e these d e f i c i e n c i e s , j o i n t - c a n s are i n c l u d e d to s t r e n g t h e n the j o i n t l o c a l l y so t h a t t h e w h o l e brace c a p a c i t y w i l l be u t i l i z e d . Recently, p i l e - l e g i n t e r a c t i o n has b e c o m e o f i n t e r e s t f o r m a n y designers i n o f f s h o r e i n d u s t r y [ 1 - 3 ] . S o m e t i m e s t h e gap b e t w e e n p i l e a n d l e g is f i l l e d w i t h g r o u t t o p r o v i d e a c o m p o s i t e s e c t i o n t e r m e d g r o u t e d s e c t i o n . On t h e o t h e r h a n d , t h e c o n n e c t i o n b e t w e e n p i l e a n d l e g m a y be p r o v i d e d t h r o u g h the use o f c o n n e c t i n g j o i n t s a n d s h i m plates a n d t h e r e b y an u n g r o u t e d i n t e r a c t i o n w o u l d be f o r m e d . H o n a r v a r et a l . [ 3 ] c o n d u c t e d an e x p e r i m e n t a l research i n w h i c h i t w a s s t a t e d t h a t u n g r o u t e d s t r u c t u r e is r e l a t i v e l y s u p e r i o r f r o m e n e r g y d i s s i p a r i o n p o i n t o f v i e w f o r p o o r l y - d e s i g n e d 2 D f r a m e s w h e r e j o i n t - c a n s w e r e n o t i n c l u d e d a n d braces w o u l d n o t c o n t r i b u t e i n t o t a l e n e r g y a b s o r p t i o n . T h e r e f o r e , m o r e i n v e s t i g a t i o n s o f the i n e l a s t i c b e h a v i o r o f g r o u t e d a n d u n g r o u t e d f r a m e s are n e e d e d .

Several researchers have i n v e s t i g a t e d t h e c y c l i c i n e l a s t i c b e h a v i o r o f steel o f f s h o r e p l a t f o r m s . Zayas et a l . [ 4 ] c o n d u c t e d e x t e n s i v e e x p e r i m e n t a l studies o n c y c l i c i n e l a s t i c p o s t - b u c k l i n g b e h a v i o r o f t u b u l a r braces as w e l l as o v e r a l l b e h a v i o r o f s m a l l -scale f r a m e m o d e l s [ 5 ] . F u r t h e r a n a l y t i c a l r e s e a r c h v e r i f i e d t h e i r e x p e r i m e n t a l e f f o r t s s u c h as K e y v a n i e t al. [ 6 ] a n d A s g a r i a n et a l . ( 2 0 0 5 ) [ 7 , 8 ] . G h a n a a t a n d C l o u g h [ 9 ] s t u d i e d the d y n a m i c elastic a n d i n e l a s t i c b e h a v i o r o f 5 / 4 8 t h scaled m o d e l o f a n

(2)

p. Alanjari et al./Applied Ocean Researcii 31 (2009) 82-89 83

Fig. 1. Comparison between analytical model and experimental test (strut 15 Blacker al. |12|); (a) analytical, (b) experimental.

Table 1

Geometric and material properties of the testspecimens of Zayas etal. |4) and Black etal. |12].

Strut / y ( M P a ) f 1st buckling load (kN) A(cm^) AISC buckling load (kN)

2 ( W 6 x 25) 290.76 40 1170.35 ' 47.35 1300 1 0 ( 2 - L 4 X 3 X 3 / 8 ) 286.62 120 432.54 34.45 470.05 15 (pipe 4 x 0.237) 327.27 80 489.5 18.08 592.29 2''(pipe 3.96 X 0.12) 213.59 54 194.46 9.41 185,56

Strut # 2 tested by Zayas et al, |4].

X - b r a c e d o f f s h o r e p l a t f o r m m a d e o f t u b u l a r braces. The e f f e c t s o f t u b u l a r j o i n t f l e x i b i l i t y o n t h e s t r u c t u r a l response o f o f f s h o r e s t r u c t u r e s w e r e e x a m i n e d b y B o u k a m p et a l . [ 1 0 ] . F u r t h e r m o r e , l o c a l SCF b e h a v i o r o f t u b u l a r j o i n t s w a s h i g h l i g h t e d b y B a h a a r i a n d M o l a e i [ 1 1 ] . H o n a r v a r et a l . [ 3 ] s t u d i e d t h e cyclic b e h a v i o r o f t w o s m a l l - s c a l e m o d e l s , r e p r e s e n t a t i v e o f a J a c k e t T y p e O f f s h o r e P l a t f o r m l o c a t e d i n t h e Persian Gulf, w i t h t w o d i f f e r e n t p i l e - l e g i n t e r a c t i o n s . T h e y also p r e s e n t e d a n a l y t i c a l m o d e l i n g o f p i l e - l e g i n t e r a c t i o n s as w e l l as b r i t t l e j o i n t b e h a v i o r a n d c o n c l u d e d t h a t j o i n t r u p t u r e is e n c o u n t e r e d i n g r o u t e d m o d e l p r i o r t o u n g r o u t e d f r a m e due t o g r e a t e r s t i f f n e s s a n d s t r e n g t h o f g r o u t e d legs. F o l l o w i n g t h e w o r k o f H o n a r v a r e t a l . [ 3 ] , e n e r g y d i s s i p a t i o n o f JTOPs are s t u d i e d i n t h i s paper. A n a l y t i c a l m o d e l s o f i n d i v i d u a l m e m b e r s are p r e s e n t e d a n d v e r i f i e d w i t h a v a i l a b l e e x p e r i m e n -t a l s-tudies i n -t h e l i -t e r a -t u r e . Special a -t -t e n -t i o n is p a i d -t o b u c k l i n g l o a d p r e d i c t i o n a n d e n e r g y d i s s i p a t i o n o f s t r u t s due t o t h e i r c o n t r i b u t i o n i n o v e r a l l b e h a v i o r o f JTOPs. V a l i d a t e d a n a l y t i c a l m o d -els are u s e d s u b s e q u e n t l y t o f o r m 2 D b r a c e d f r a m e s w i t h d i f f e r e n t p i l e - l e g i n t e r a c t i o n s . P r e v i o u s l y - d o n e e x p e r i m e n t a l r e s e a r c h [ 3 ] is a p p l i e d a c c o r d i n g l y t o r e a c h u s e f u l c o n c l u s i o n s a b o u t p e r f o r m a n c e o f g r o u t e d a n d u n g r o u t e d b r a c e d f r a m e s . 2 . B e h a v i o r of i n d i v i d u a l s t r u t s A n o f f s h o r e s t r u c t u r e is m a i n l y m a d e o f s t r u t s , piles, legs a n d j o i n t s . S t r u t s p l a y a n i m p o r t a n t r o l e i n t o t a l e n e r g y d i s s i p a t i o n a n d l a t e r a l l o a d c a r r y i n g c a p a c i t y o f t h e p l a t f o r m . T h e p u r p o s e o f t h i s s e c t i o n is t o s t u d y t h e b e h a v i o r o f i n d i v i d u a l s t r u t s u p o n b u c k l i n g i n c o m p r e s s i o n a n d y i e l d i n g i n t e n s i o n as w e l l as t h e i r a b i l i t y t o dissipate e n e r g y i n c o n s e c u t i v e cycles. Zayas et a l . [ 4 ] a n d Black et al. [ 1 2 ] c o n d u c t e d e x p e r i m e n t a l tests o n i n d i v i d u a l m e m b e r s w i t h v a r i o u s cross sections a n d p r o v i d e d s e v e r a l o b s e r v a t i o n s r e g a r d i n g cyclic b e h a v i o r , b u c k l i n g l o a d i n c o n s e c u t i v e cycles, e n e r g y d i s s i p a t i o n p e r cycle a n d c u m u l a t i v e d i s s i p a t e d energy. T h e i r w o r k m a y be u t i l i z e d as a v e r i f i c a t i o n f r a m e w o r k f o r s u b s e q u e n t a n a l y t i c a l s i m u l a t i o n s w h i c h w o u l d be used i n m o d e l i n g o f n o t o n l y o f f s h o r e p l a t f o r m s b u t also f o r a n y t y p e o f s t r u c t u r e . I n o r d e r t o s u m m a r i z e t h e i r results, o n e p i p e s p e c i m e n o u t o f s i x p i n - e n d e d s t r u t s tested b y Zayas e t a l . [ 4 ] , a n d 3 o u t o f 2 4 p i n - e n d e d s a m p l e s t r u t s (i.e. W s e c t i o n , d o u b l e a n g l e a n d p i p e s e c t i o n ) t e s t e d b y B l a c k et a l . [ 1 2 ] , w e r e m o d e l e d b y a n a l y t i c a l b e a m - c o l u m n e l e m e n t s [ 1 3 ] . Table 1 lists t h e s t r u t s a n d c o r r e s p o n d i n g p a r a m e t e r s i n c l u d i n g g e o m e t r i c a n d m a t e r i a l p r o p e r t i e s . I n o r d e r t o s t u d y t h e b e h a v i o r o f s t r u t s a n a l y t i c a l l y , r e l e v a n t f i n i t e e l e m e n t m o d e l s s h o u l d be c o m p o s e d o f r o b u s t a n d w e l l -t e s -t e d e l e m e n -t s -to e n s u r e r e a l i s -t i c responses. N o n l i n e a r f i n i -t e e l e m e n t p r o g r a m OpenSees [ 1 4 ] is u s e d h e r e i n t o s t u d y t h e b e h a v i o r o f t h e s t r u c t u r e a n d i t s c o m p o n e n t s . H o n a r v a r et al. [ 3 ] s u m m a r i z e d m o d e l i n g t e c h n i q u e s f o r s i m u l a t i n g the b e h a v i o r o f i n d i v i d u a l m e m b e r s a n d 2 D f r a m e s t o e n s u r e b o t h accuracy a n d e f f i c i e n c y . U n i a x i a l b e a m - c o l u m n e l e m e n t s i n c o m b i n a t i o n w i t h f i b e r sections are used h e r e a f t e r t o m o d e l t h e e x p e r i m e n t a l specimens. A d d i t i o n a l l y , c o r o t a t i o n a l t r a n s f o r m a t i o n is used t o a c c o u n t f o r g e o m e t r i c n o n l i n e a r i t i e s a n d m o d e l i n g o f p o s t -b u c k l i n g -b e h a v i o r o f s t r u t s as a c c u r a t e l y as p o s s i -b l e .

2.1. Cyclic behavior

A n i n c r e m e n t a l c y c l i c l o a d p a t t e r n is a p p l i e d o n a l l m o d e l s a n d results are p r e s e n t e d h e r e i n . To s u m m a r i z e t h e results, o n l y s t r u t 15 (i.e. t u b u l a r s e c t i o n ) is c o m p a r e d t o a n a l y t i c a l m o d e l . Figs. 1(a) a n d ( b ) i l l u s t r a t e t h e e x c e l l e n t a g r e e m e n t a n d s u p e r b a b i l i t y o f a n a l y t i c a l m o d e l t o s i m u l a t e t h e b e h a v i o r o f e x p e r i m e n t a l s p e c i m e n . B u c k l i n g i n c o m p r e s s i o n a n d y i e l d i n g i n t e n s i o n , s t r e n g t h d e t e r i o r a t i o n d u e t o B a u s c h i n g e r e f f e c t a n d p a r t i a l y i e l d i n g o f t h e cross s e c t i o n is m o d e l e d a c c u r a t e l y .

2.2. Prediction of buclcling load

T h e p e r f o r m a n c e o f a s t r u t s u b j e c t e d to c y c l i c l o a d i n g , is a f f e c t e d b y d e t e r i o r a t i o n o f c o m p r e s s i v e s t r e n g t h o f m e m b e r . B a u s c h i n g e r e f f e c t is r e s p o n s i b l e f o r t h i s p h e n o m e n o n . A n a l y t i c a l m o d e l is able t o c a p t u r e t h i s e f f e c t t h r o u g h t h e use o f s u i t a b l e steel s t r e s s - s t r a i n c u r v e i n w h i c h B a u s c h i n g e r e f f e c t is i n c o r p o r a t e d .

Fig. 2 i l l u s t r a t e s t h e a b i l i t y o f c u r r e n t m o d e l t o p r e d i c t b u c k l i n g l o a d i n c o n s e c u t i v e cycles. B u c k l i n g loads o f s t r u t 10 are p l o t t e d a g a i n s t cycle n u m b e r a n d c o m p a r e d t o t h e e x t r a c t e d b u c k l i n g loads f r o m a n a l y t i c a l b e a m - c o l u m n e l e m e n t [ 1 4 ] cyclic p l o t . I t is o b s e r v e d t h a t m o d e l p r e d i c t i o n s f a i r l y agree w i t h t h e b u c k l i n g loads o f t h e e x p e r i m e n t a l s p e c i m e n . I t s h o u l d be n o t e d t h a t t h e f i r s t b u c k l i n g l o a d o c c u r r e d i n test w a s 4 3 2 . 5 4 1 k N , w h e r e a s AISC f o r m u l a [ 1 5 ] p r e d i c t s t h e a m o u n t o f 4 7 0 . 0 5 k N based o n a c t u a l y i e l d i n g stress (i.e. Oy = 2 8 6 . 6 2 4 M P a ) a n d a n a l y t i c a l m o d e l p r e d i c t i o n is 4 5 0 . 2 5 1 k N w h i c h p r o v e s t h e r e a s o n a b l e accuracy o f t h e b e a m - c o l u m n e l e m e n t . M o r e o v e r a p o s t - b u c k l i n g analysis w a s p e r f o r m e d f o r a series o f d o u b l e angle s t r u t s w i t h d i f f e r e n t ' s l e n d e r n e s s r a t i o s a n d b u c k l i n g loads w e r e also c a l c u l a t e d a c c o r d i n g t o AISC f o r m u l a [ 1 5 ] . Fig. 3

(3)

84 P. Alanjari et al./Applied Ocean Researcii 31 (2009) 82-89

3 4 5 Cycle no.

10

- T e s t Analytical model]

Fig. 2. Buckling loads inconsecutive cycles for strut 10 Black etal. 112|.

300 ^ 250 ^ 200 w w OJ ^ 150 D I

I

100 m 50 0 0 20 40 60 80 100 120 140 160 180 KLVr

| - ^ A I S C fonnuia -=^-Analylical model]

Fig. 3. Prediction of buckling load by analytical model and AISC formula |15|.

RIGID P L A S T I C

S T R U T

Fig. 4. Comparison o f p - S curves for a rigid plastic element and an axially loaded strut (Zayas e t a l . | 4 | ) .

s h o w s t h e b u c k l i n g loads p r e d i c t e d b y b e a m - c o l u m n e l e m e n t a n d AISC f o r m u l a [ 1 5 ] . I t is o b s e r v e d t h a t t h e b u c k l i n g loads are p r e d i c t e d a c c u r a t e l y b y t h i s e l e m e n t .

2.3. Energy dissipation

As m e n t i o n e d earlier, e n e r g y d i s s i p a t i o n c o n t r i b u t e s s i g n i f i c a n t l y i n inelastic c y c l i c b e h a v i o r o f s t e e l s t r u t s since these m e m -bers are m a i n l y d e s i g n e d to dissipate e a r t h q u a k e energy. One can c a l c u l a t e e n e r g y d i s s i p a t e d d u r i n g a l l l o a d i n g cycles f o r a n a x i a l l y l o a d e d m e m b e r f r o m i t s a x i a l l o a d a x i a l d i s p l a c e m e n t g r a p h . D i v i d i n g e n e r g y d i s s i p a t i o n per cycle b y e n e r g y d i s s i p a t i o n o f n o n -b u c k l i n g , r i g i d - p e r f e c t l y plastic e l e m e n t , "RP", n o r m a l i z e d energy d i s s i p a t i o n w o u l d be o b t a i n e d . T h e r i g i d - p e r f e c t l y plastic e l e m e n t (Fig. 4 ) , has t h e same y i e l d loads a n d c y c l e d t h r o u g h the same d i s -p l a c e m e n t s .

Zayas et a l . [ 4 ] r e f e r to this n o r m a l i z e d q u a n t i t y as e n e r g y d i s s i p a t i o n e f f i c i e n c i e s o f a s t r u t and d e f i n e i t as a m e a n s o f q u a n t i f y i n g t h e d e t e r i o r a t i o n o f t h e capacity o f a s t r u t t o d i s s i p a t e e n e r g y w i t h cycles. To o b t a i n t h e energy d i s s i p a t e d per cycle f o r r i g i d - p e r f e c t l y plastic m a t e r i a l , t h e f o l l o w i n g e q u a t i o n is u s e d [ 4 ] .

RPi = Py ( S E I + 2Sa + S ^ ) .

Figs. 5 ( a ) - ( c ) s h o w t h e e n e r g y d i s s i p a t i o n e f f i c i e n c i e s f o r s t r u t s 2 a n d 10 t e s t e d b y Black et al. [ 1 2 ] a n d s t r u t 2 t e s t e d b y Zayas et al. [ 4 ] , a l o n g w i t h t h e results p r o v i d e d b y c o r r e s p o n d i n g a n a l y t i c a l m o d e l s .

It s h o u l d be n o t e d t h a t at the f i r s t cycle o f t e s t i n g , t e s t s p e c i m e n s s h o w g r e a t e r a m o u n t o f e n e r g y d i s s i p a t i o n d u e t o n o n l i n e a r i t i e s t h a t n o r m a l l y occur u n d e r t h e e x p e r i m e n t a l c o n d i t i o n s u n l i k e t h e a n a l y t i c a l m o d e l i n w h i c h f i r s t cycles are a l m o s t l i n e a r . A l t h o u g h b o t h b u c k l i n g a n d tensile loads o f t h e test a n d t h e a n a l y t i c a l m o d e l are a l m o s t t h e same, n o n l i n e a r i t i e s i n t h e test s t r u t s have n o t b e e n c a p t u r e d t h r o u g h t h e use o f m o d e l i n g p r o c e d u r e . Fig. 5(c) p o i n t s o u t a n i n t e r e s t i n g p h e n o m e n o n r e g a r d i n g the c y c l i c b e h a v i o r o f s t r u t s h a v i n g s l e n d e r a n d s e m i - c o m p a c t cross sections. One can see t h a t as t h e n u m b e r o f cycles increases, e n e r g y d i s s i p a t i o n e f f i c i e n c i e s o f t h e t e s t s p e c i m e n d e t e r i o r a t e s d u e t o l o c a l b u c k l i n g d a m a g e r e s u l t i n g f r o m l o w - c y c l i c f a t i g u e . Since t h i s f a c t o r has n o t b e e n i n c l u d e d i n t h e a n a l y t i c a l m o d e l , s e p a r a t i o n o f t h e t w o curves o c c u r s i n last cycles. It s h o u l d be n o t e d t h a t n o r m a l l y f o r c o m p a c t o r s t o c k y cross sections, t h i s r a t e o f d e t e r i o r a t i o n is n o t obsei-ved [ 1 6 ] .

C u m u l a t i v e s u m o f cycle d i s s i p a t i o n e f f i c i e n c i e s m a y be c o m p u t e d to f a c i l i t a t e t h e s t u d y o f energy d i s s i p a t i o n . Figs. 6 ( a ) - ( c ) s h o w t h e a b i l i t y o f a n a l y t i c a l m o d e l t o p r e d i c t t h e a m o u n t o f c u m u l a t i v e cycle e f f i c i e n c i e s f o r a l l t h r e e s t r u t s . As can be seen, i n last cycles b o t h curves a l m o s t c o i n c i d e a n d FE m o d e l gives t h e s a m e a m o u n t w h i c h w o u l d have b e e n d i s s i p a t e d b y a real m e m b e r , i n a n average sense. Since c u m u l a t i v e cycle e f f i c i e n c y can be r e g a r d e d as a n i m p o r t a n t f a c t o r f r o m s t r u c t u r a l d e s i g n s t a n d p o i n t , i t can be c o n c l u d e d t h a t p r e s e n t FE m o d e l is able t o e f f e c t i v e l y p r e d i c t t h e real b e h a v i o r óf t e s t s p e c i m e n , b e f o r e d a m a g e d u e t o l o w - c y c l i c f a t i g u e can cause loss o f e n e r g y d i s s i p a t i o n . Zayas et al. [ 4 ] t e s t e d t u b u l a r s t r u t s w i t h f i x e d - e n d c o n d i t i o n s a n d e n c o u n t e r e d d a m a g e d u e t o l o w - c y c l i c f a t i g u e i n l a t e r cycles a n d c o n c l u d e d t h a t f i x e d - e n d c o n d i t i o n s m a y p r o d u c e a y i e l d p l a t e a u a n d d e l a y t h e d a m a g e . It can be i n f e r r e d f r o m t h e i r r e s u l t s t h a t a w e l l - d e s i g n e d m e m b e r w i t h l o w " D / f " r a t i o a n d p r o p e r e n d c o n d i t i o n s (i.e. f i x e d - e n d c o n d i t i o n s e q u i p p e d w i t h j o i n t - c a n s w h i c h n o r m a l l y e x i s t i n o f f s h o r e braced s t r u c t u r e s ) , c o u l d d e l a y t h e d a m a g e r e s u l t i n g f r o m l o w - c y c l i c f a t i g u e . As a r e s u l t , p r e s e n t m o d e l m a y be p r o p e r l y used f o r m o d e l i n g o f t u b u l a r s t r u t s i n o f f s h o r e p l a t f o r m s . 3. 2 D j a c l t e t f r a m e s A f t e r v e r i f i c a t i o n o f t h e b e h a v i o r o f i n d i v i d u a l s t r u t s w h i c h are basically r e s p o n s i b l e f o r c a r r y i n g l a t e r a l loads, o n e c a n use t h e m i n m o d e l i n g o f 2 D or 3 D s t r u c t u r e s . H o n a r v a r et a l . [ 3 ] c o n d u c t e d a n e x p e r i m e n t a l test o n t w o d i f f e r e n t 2 D f r a m e s n a m e l y g r o u t e d a n d u n g r o u t e d . T h e y d i d n o t d e s i g n j o i n t - c a n s i n b o t h f r a m e s d e l i b e r a t e l y t o e n c o u n t e r b r i t t l e f r a c t u r e o f t h e j o i n t s d u e t o p u n c h i n g shear f a i l u r e a n d / o r increase i n t h e size o f t h e H A Z . I n t h i s section, v u l n e r a b l e ( w i t h o u t j o i n t - c a n s ) f r a m e s o f H o n a r v a r e t al. [ 3 ] are c o m p a r e d w i t h f r a m e s r e i n f o r c e d w i t h j o i n t - c a n s (i.e. g r o u t e d a n d u n g r o u t e d ) , f o r w h i c h braces are capable o f b u c k l i n g a n d d i s s i p a t i o n o f e n e r g y .

To m o d e l t h e j o i n t - c a n s , b e a m - c o l u m n e l e m e n t s [ 1 4 ] (i.e. d a s h e d lines i n Fig. 7 ) are u s e d w h o s e t u b u l a r s e c t i o n s are d i s c r e t i z e d w i t h t h e a i d o f f i b e r e l e m e n t s a n d r e l e v a n t s t e e l s t r e s s - s t r a i n r e l a t i o n s h i p s are assigned a c c o r d i n g l y .

(4)

p. Alanjari et al./Applied Ocean Research 31 (2009) 82-89

Cycle no.

I^^Anaiyticaj models HK^-Test specimens |

Fig. 5. Energy dissipation efficiency; comparison between analytical and experimental models; (a) strut 2, (b) strut 10, (c) strut 2 (Zayas et al. |4]).

Cycle no. a

|-*-Analytical models - * - T e 5 t specimens]

(5)

86 P. Alanjari et al./Applied Ocean Research 31 (2009) 82-89

Table 2

Details of used sections in the experimental frames.

Member name Section O.D. (mm) W.T. (mm)

Fig. 7. Analytical modeling of joint-cans with the aid of fiber sections.

I D

B r a c e s

Fig. 8. Joint-offset in connections of a frame.

U s i n g t h e s a m e a p p r o a c h b r i t t l e b e h a v i o r o f j o i n t s m a y be m o d -e l -e d w i t h t h -e a i d o f z -e r o - l -e n g t h -e l -e m -e n t s i n plac-e o f b -e a m - c o l u m n e l e m e n t s . U l t i m a t e s t r a i n is assigned t o s t r e s s - s t r a i n r e l a t i o n s h i p t h r o u g h t h e use o f e x p e r i m e n t a l data o f f a b r i c a t e d a n d tested s p e c i m e n s e x t r a c t e d f r o m j o i n t r e g i o n [ 3 , 1 6 ] . Because o f t h e r e l -a t i v e l y s m -a l l t h i c k n e s s o f t h e br-aces, incre-ase i n t h e size o f the H A Z a f f e c t t h e u l t i m a t e s t r a i n o f t h e m a t e r i a l . K n o w i n g t h i s fact, a s e g m e n t o f t h e w e l d e d x - j o i n t is e x p e r i m e n t a l l y t e s t e d a n d n e w steel s t r e s s - s t r a i n r e l a t i o n s h i p is e x t r a c t e d to be u s e d i n ana-l y t i c a ana-l i n o d e ana-l s u b s e q u e n t ana-l y . U s i n g e x p e r i m e n t a ana-l resuana-lts, H o n a r v a r e t al. [ 3 ] c o n c l u d e d t h a t this t y p e o f m o d e l i n g m a y be u t i l i z e d to m o d e l the f r a c t u r e o f j o i n t s a n d c o n s e q u e n t l y t o d e a c t i v a t e t h e braces i n e n e r g y d i s s i p a t i o n . It s h o u l d be n o t e d t h a t t h e e f f e c t s o f p r o g r e s s i v e o v a l i z i n g a n d local b u c k l i n g as w e l l as local j o i n t f l e x -i b -i l -i t y at j o -i n t s a n d plast-ic h-inges have n o t b e e n a c c o u n t e d f o r -i n t h e c u r r e n t s t u d y .

Each o f t h e s e m o d e l s is d i v i d e d i n t o g r o u t e d a n d u n g r o u t e d f r a m e s to s t u d y n o t o n l y the e f f e c t o f s t r u t s i n e n e r g y a b s o r p t i o n , b u t also t h e e f f e c t o f g r o u t o n response o f o f f s h o r e p l a t f o r m s i n g l o b a l sense. Some i m p o r t a n t c o r r e l a t i o n s t u d i e s are c a r r i e d o u t s u c h as c y c l i c b e h a v i o r , f r a m e m a x i m u m l a t e r a l l o a d c a p a c i t y t h r o u g h cycles, brace a x i a l loads a n d m o s t i m p o r t a n t l y , e n e r g y d i s s i p a t i o n f o r a l l f r a m e s . C o n c e n t r i c j o i n t s i n o f f s h o r e j a c k e t s m a y have a r e l a t i v e j o i n t o f f s e t . M o s t l y , i n t e r s e c t i o n o f brace a n d c h o r d c e n t e r l i n e s does n o t c o i n c i d e w i t h t h e n o m i n a l j o i n t l o c a t i o n . Fig. 8 d e p i c t s t h e l o w e r -l e f t c o n n e c t i o n o f the p -l a t f o r m w h i c h is t o be m o d e -l e d a n a -l y t i c a -l -l y . To a c c o u n t f o r t h i s e c c e n t r i c i t y , j o i n t o f f s e t o p t i o n is used i n FE m o d e l a n d r e l e v a n t o f f s e t o f each a n d e v e r y j o i n t is o b t a i n e d a n d i n t r o d u c e d t o t h e p r o g r a m . Pile Pipe 141 5 Leg Pipe 165 5

Lower brace Pipe 77 2

Upper brace Pipe 60 2

Deck Box (mm)

250 X 250 X 20

-

-Joint-can (Analytical model) Pipe , ^'^ Upper ^ Lower

64 81

4 4

Total deck weighl=521.5 kg

Fig. 9. Frame fabrication and details; units (mm).

3.3. Experimental setup A b r i e f d e s c r i p t i o n o f e x p e r i m e n t a l s e t u p is r e v i e w e d h e r e i n . T w o o n e - t w e l f t h scale m o d e l s o f a r e c e n t l y d e s i g n e d a n d i n s t a l l e d j a c k e t i n the Persian G u l f w e r e s i m p l i f i e d a n d a d j u s t e d as p e r a v a i l a b l e l a b o r a t o r y f a c i l i t i e s , c o n s t r u c t e d a n d t e s t e d u n d e r l a t e r a l quasi-static d i s p l a c e m e n t - c o n t r o l l e d histories, r e p r e s e n t a t i v e o f severe m o t i o n s [ 3 ] . O n l y a p l a n a r r o w w a s tested a n d t h e e f f e c t o f h o r i z o n t a l braces i n t h e p r o t o t y p e , p e r p e n d i c u l a r t o t h e m o d e l e d face, w a s c o n s i d e r e d as l a t e r a l (i.e. o u t o f p l a n e ) c o n s t r a i n t s o n legs. Table 2 s h o w s t h e d e t a i l s o f used sections i n s p e c i m e n f r a m e s .

A n a l y t i c a l m o d e l s o f f r a m e s r e i n f o r c e d w i t h j o i n t - c a n s are c o n d u c t e d and t e s t e d against e x p e r i m e n t a l a n d a n a l y t i c a l m o d e l s o f f r a m e s w i t h o u t j o i n t - c a n s . Table 2 also s h o w s t h e size a n d t h i c k n e s s o f d e s i g n e d j o i n t - c a n s t o be i n c l u d e d i n t h e m o d e l . Fig. 9 i l l u s t r a t e s a g e n e r a l v i e w o f t h e f r a m e i n w h i c h sizes a n d l e n g t h s o f t h e m e m b e r s are g i v e n . P i l e - l e g i n t e r a c t i o n is t r e a t e d i n t w o d i f f e r e n t w a y s as m e n t i o n e d p r e v i o u s l y . I n t h e case o f g r o u t e d f r a m e , t h e a n n u l u s b e t w e e n leg a n d p i l e m a y be f i l l e d w i t h g r o u t so n e w s e c t i o n is

(6)

p. Alanjari et al./Applied Ocean Researcii 31 (2009) 82-89 87 Ai(miu) 250 200 150 100 ^ 50 ^ 0 "^-50 - 1 0 0 - 1 5 0 - 2 0 0 - 2 5 0 1 -- 2 5 0 -- 2 0 0 -- 1 5 0 -- 1 0 0 -- 5 0 0 50 100 150 200 250 |—Frame with jolnlons —Frame v/iHiout joint-cans |

Fig. 10. Cyclic behavior; comparison between frames with antl without joint-cans (ungrouted models).

g e n e r a t e d to a c c o u n t f o r c o m p o s i t e a c t i o n o f t h e g r o u t e d p o r t a l . N o i n t e r n a l c o n s t r a i n t s are d e f i n e d i n t h i s case except f o r w e l d e d p i l e a n d l e g w h e r e a s c o n n e c t i o n b e t w e e n p i l e a n d leg is a v a i l a b l e t h r o u g h t h e use o f s h i m plates i n the case o f u n g r o u t e d i n t e r a c t i o n .

3.2. Hysteretic behavior

Cyclic a n d p r o g r e s s i v e l y - i n c r e a s i n g l a t e r a l load is a p p l i e d o n a n a l y t i c a l f r a m e m o d e l s (i.e. w i t h a n d w i t h o u t j o i n t - c a n s ) a n d results are s h o w n i n Fig. 10. As can be seen, t w o s i g n i f i c a n t s t i f f n e s s r e d u c t i o n s are d i s t i n g u i s h e d i n f r a m e w i t h o u t j o i n t - c a n s w h i c h c o r r e s p o n d t o t w o r e s p e c t i v e j o i n t f r a c t u r e s . It s h o u l d be n o t e d t h a t results o f a n a l y t i c a l m o d e l f o r f r a m e w i t h o u t j o i n t - c a n s h a v e b e e n v a l i d a t e d w i t h e x p e r i m e n t a l tests i n p r e v i o u s research [ 3 ] . F u r t h e r m o r e , n o a p p r e c i a b l e change i n o v e r a l l s t r e n g t h a n d s t i f f n e s s o f t h e f r a m e s c a n be seen p r i o r t o j o i n t f r a c t u r e b u t as s o o n as first f r a c t u r e is e n c o u n t e r e d , b o t h s t r e n g t h a n d s t i f f n e s s are r e d u c e d c o n s i d e r a b l y d u e t o e l i m i n a t i o n o f l a t e r a l l o a d c a r r y i n g e l e m e n t s . S m o o t h d e t e r i o r a t i o n o f s t i f f n e s s is o b s e r v e d i n t h e case o f f r a m e w i t h j o i n t - c a n s d u e t o b u c k l i n g o f braces a n d c o r r e s p o n d i n g d a m a g e r e s u l t e d f r o m c o n s e c u t i v e b u c k l i n g . I t s h o u l d be m e n t i o n e d t h a t o c c u r r e n c e o f l o c a l b u c k l i n g d u e t o l o w - c y c l i c f a t i g u e is l i k e l y i n t h i s m o d e l a n d m a y be a c c o u n t e d f o r t h r o u g h t h e use o f a s u i t a b l e d a m a g e m o d e l s p e c i a l i z e d f o r u n i a x i a l m a t e r i a l s a n d e l e m e n t s b u t t h e d e t e r i o r a t i o n o f s t r e n g t h is a s s u m e d t o be m i n o r i n t h i s s t u d y as discussed a n d r e a s o n e d i n p r e v i o u s sections. I n a n analogous w a y t o c o m p a r a t i v e studies o f H o n a r v e r et a l . [ 3 ] , one can i n v e s t i g a t e t h e e f f e c t o f g r o u t o n o v e r a l l b e h a v i o r o f t h e f r a m e s t h r o u g h c o m p a r i n g t h e c y c l i c response o f g r o u t e d a n d u n g r o u t e d f r a m e s . As can be seen i n Fig. 1 1 , g r o u t e d f r a m e is g e n e r a l l y s t i f f e r i n first f e w cycles. This coincides w i t h t h e r e s u l t s o b t a i n e d b y H o n a r v a r e t a l . [ 3 ] b u t as t h e a m o u n t o f i n p u t l a t e r a l d i s p l a c e m e n t is increased, n o s i g n i f i c a n t change i n s t i f f n e s s is seen. I n h i g h l a t e r a l d i s p l a c e m e n t s , c r u s h i n g occurs i n e n t r a p p e d g r o u t a n d i t does n o t c o n t r i b u t e i n s t i f f n e s s o f t h e s t r u c t u r e .

3.3. Frame maximum loaiis in consecutive cycles

Closer i n v e s t i g a t i o n is c a r r i e d o u t o n s t r e n g t h a n d l a t e r a l l o a d c a r r y i n g c a p a c i t y o f t h e f r a m e s i n c o n s e c u t i v e cycles. Fig. 12 s h o w s 4 g r a p h s r e p r e s e n t i n g t h e average m a x i m u m loads (i.e. average o f p u s h a n d p u l l i n each c y c l e ) t h a t t h e f r a m e s can c a r r y w h e n t h e y are s u b j e c t e d t o c y c l i c l o a d i n g . As can be seen, f r a m e w i t h o u t j o i n t - c a n s s h o w s s i g n i f i c a n t loss o f s t r e n g t h a f t e r t e a r i n g a n d

f r a c t u r e o f j o i n t s w h e r e a s f r a m e w i t h j o i n t - c a n s p r o v i d e s s m o o t h d e t e r i o r a t i o n o f s t r e n g t h as t h e l o a d increases. IVloreover, s t r e n g t h s o f b o t h f r a m e s are s i m i l a r b e f o r e b u c k l i n g o r f r a c t u r e takes place. I n a s i m i l a r f a s h i o n t o c y c l i c l o a d i n g , o n e can s t u d y t h e e f f e c t o f d i f f e r e n t p i l e - l e g i n t e r a c t i o n a n d observe t h a t a l m o s t t h e s a m e - 1 5 0 - 2 0 0 - 2 5 0 -250 - 2 0 0 - 1 5 0 - 1 0 0 - 5 0 0 50 100 150 200 250

Ungrouted frame - G r o u t e d frame

Fig. 11. Cyclic behavior; comparison between grouted and ungrouted frames (frames with joint-cans).

— -Grouled, v/ZojoinKans - - Ungrouted. w/o}Qlnt.cans ^ " G r o u t e d , w j o i n t - c a n s — U n g r o t i t e d . vr Joint-cans 25 30 Cycle no.

Fig. 12. Maximum lateral load carrying capacity of frames in consecutive cycles.

Fig. 13. Fracture of a joint in the frame without joint-cans (Honarvar et al. [2]).

Strength is o b t a i n e d i n last 10 cycles d u e t o c r u s h i n g o f g r o u t w h i c h h i g h l i g h t s the f a c t t h a t g r o u t does n o t c o n t r i b u t e i n o v e r a l l s t r e n g t h o f t h e p l a t f o r m w h e n excessive l a t e r a l loads are a p p l i e d . G e n e r a l l y g r o u t e d f r a m e is s t i f f e r n o t o n l y i n f r a m e w i t h j o i n t - c a n s w h e r e braces h a v e t h e c a p a b i l i t y t o b u c k l e i n c o m p r e s s i o n , b u t also i n f r a m e w i t h o u t j o i n t - c a n s f o r w h i c h f r a c t u r e o f j o i n t s takes place (Fig. 1 2 ) . This j o i n t f r a c t u r e can be seen i n Fig. 13.

3.4. Axial force in struts

As m e n t i o n e d earlier, s t r u t s c o n s t i t u t e t h e m a i n l a t e r a l l o a d c a r r y i n g m e m b e r i n a n o f f s h o r e p l a t f o r m . A x i a l f o r c e i n s t r u t s

(7)

88 P. Alanjari et ai. I Applied Ocean Research 31 (2009) 82-89

— Frame V/ )olnt-cans, lensloii — Frame v;/ololnl-cans, leiislon

— Frame v/jolrit-caiis, c o m p r e s s i o n — Frame vr/o joint-cans, c o m p r e s s i o n

Fig. 14. Brace axial force in brace no. 101-202; showing the effect of joint-cans (grouted frame). -150 — U n g r o u t e d - l e n s l o n — Grouted-tenslon *=^Unprouted-compresslon — Grouted-conipression

Fig. 15. Brace axial force in brace no. 101-202; showing the effect ofgi out (grouted and ungrouted-frames with joint-cans).

m a y be m e a s u r e d t o o b t a i n i n s i g h t s i n t o t h e a m o u n t o f t h e i r c o n t r i b u t i o n i n c a r r y i n g t o t a l i n p u t l o a d as w e l l as t h e rate o f l o a d d e t e r i o r a t i o n w h i c h w o u l d o c c u r d u r i n g r e p e a t e d l o a d i n g . Fig. 14 s h o w s axial f o r c e i n one o f t h e l o w e r p a n e l braces o f f r a m e s w i t h a n d w i t h o u t j o i n t - c a n s b o t h i n t e n s i o n a n d c o m p r e s s i o n . O b v i o u s l y , braces do n o t s h o w a n y resistance a f t e r cycle n o . 13 i n f r a m e w i t h o u t j o i n t - c a n s since t h e i r j o i n t s are f r a c t u r e d a n d c o n s e q u e n t l y t h e y do n o t c o n t r i b u t e i n o v e r a l l resistance o f t h e s t r u c t u r e w h e r e a s i n f r a m e w i t h j o i n t - c a n s , s m o o t h d e t e r i o r a t i o n i n a x i a l c o m p r e s s i v e r e s i s t i n g forces is o b s e r v e d w h i c h h i g h l i g h t s t h e b u c k l i n g l o a d d e t e r i o r a t i o n d u e t o B a u s c h i n g e r e f f e c t . E f f e c t o f g r o u t o n p l a t f o r m s t i f f n e s s m a y be f u r t h e r p r o n o u n c e d i n Fig. 15. H o w e v e r , as t h e s t r u c t u r e s are b o t h c y c l e d t h r o u g h excessive l a t e r a l d i s p l a c e m e n t , g r o u t e d a n d u n g r o u t e d f r a m e s t r a n s f e r a l m o s t t h e s a m e a m o u n t o f l o a d t o s t r u t s d u e t o t h e c r u s h i n g o f g r o u t . 3.5. Energy dissipation W h e n o f f s h o r e s t r u c t u r e s are s u b j e c t e d to l a t e r a l s e i s m i c forces, t h e y n e e d t o d i s s i p a t e i n p u t e n e r g y w i t h t h e aid o f e n e r g y d i s s i p a t i n g m e m b e r s . As m e n t i o n e d p r e v i o u s l y , s t r u t s are r e s p o n s i b l e f o r e n e r g y a b s o r p t i o n a n d w h e n t h e y d o n o t f u n c t i o n p r o p e r l y w h a t e v e r t h e cause, the e f f i c i e n c y o f t h e w h o l e s t r u c t u r e is e n d a n g e r e d . C o m p a r a t i v e s t u d y b e t w e e n f r a m e s w i t h a n d w i t h o u t j o i n t - c a n s m a y r e v e a l s o m e i m p o r t a n t facts a b o u t t h e e f f e c t o f b u c k l i n g o f braces. Fig. 16 i l l u s t r a t e s t h e s i g n i f i c a n t s u p e r i o r i t y o f f r a m e w i t h j o i n t - c a n s , due t o b u c k l i n g o f braces, o v e r f r a m e w i t h o u t j o i n t - c a n s , w h e r e braces lose f u n c t i o n a l i t y , a n d p o r t a l s (i.e. piles a n d legs) are m a i n l y i n charge o f e n e r g y d i s s i p a t i o n . Since a c c u r a t e e s t i m a t i o n o f energy d i s s i p a t i o n is

)•!

0 5 10 15 20 2 f t v c l e n c i ? 0

-\

Frame v/ joint-cans, grouted Frame vWo joinl-cans, grouted

— - Frame w joint-cans, ungrouted — -Frame w/o joint-cans, ungrouted

Fig. 16. Cumulative energy dissipation of frames.

Table 3

Cumulative energy dissipation of the frames (kJ).

Cycle no. Frame with joint-cans Frame without joint-cans

Grouted Ungrouted Grouted Ungrouted

0 0.00 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 3 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 7 0.01 0.00 0.01 0.00 8 0.29 0.00 0.58 0.00 9 0.75 0.00 1,21 0-00 10 3.73 0.01 3.52 0.01 11 8.62 0.11 8.26 0.14 12 15.25 1.77 11.43 2.37 13 24.29 5.68 11.48 6.39 15 35.55 11.07 11.62 11.31 16 49.26 18.16 11.97 12.47 17 65.04 28.09 12.71 12.87 18 82.54 40.72 14,10 13.70 19 104.01 58.16 19.76 15.91 20 128.67 79.40 30.38 20.53 22 155.70 103.59 35.99 29.73 23 185.61 130.72 36.38 44.22 24 217.74 160.51 36.94 50,51 25 251.61 192.48 37.68 51,27 26 291.58 230.20 38.83 52.46 27 336.76 273.10 40,46 54.20 29 386.52 321.15 42.64 56,54 30 437.89 372.25 45.19 58,50 v e r y c r u c i a l , a n a p p r o p r i a t e a n a l y t i c a l s t r u t m o d e l s i m i l a r t o w h a t w a s i n t r o d u c e d i n p r e v i o u s sections [ 3 ] , m a y be u t i l i z e d t o c a p t u r e t h e a m o u n t o f energy d i s s i p a t i o n as a c c u r a t e l y as possible. C o r r e s p o n d i n g t a b u l a t e d data f o r energy d i s s i p a t i o n o f b o t h f r a m e s is s h o w n i n Table 3. D i s r e g a r d i n g t h e f i r s t f e w cycles, s i g n i f i c a n t i m p r o v e m e n t o f e n e r g y a b s o r p t i o n o f f r a m e w i t h j o i n t - c a n s is q u i t e m a r k e d . M o r e o v e r , c o m p a r i s o n b e t w e e n g r o u t e d a n d u n g r o u t e d m o d e l s o f f r a m e w i t h j o i n t - c a n s s h o w s t h e b e t t e r e f f i c i e n c y o f g r o u t e d m o d e l r a t h e r t h a n u n g r o u t e d p i l e - l e g i n t e r a c t i o n f r o m e n e r g y d i s s i p a t i o n p o i n t o f v i e w . As f o r f r a m e w i t h o u t j o i n t - c a n s , s i t u a t i o n is q u i t e d i f f e r e n t since u n g r o u t e d m o d e l s h o w s m o d e s t l y s u p e r i o r e f f i c i e n c y . This is i n a g r e e m e n t w i t h t h e r e s u l t s o b t a i n e d b y H o n a r v e r et a l . [ 2 ] i n w h i c h t h e y o n l y s t u d i e d t h e b e h a v i o r o f f r a m e w i t h o u t j o i n t - c a n s b o t h e x p e r i m e n t a l l y a n d a n a l y t i c a l l y . One can c o n c l u d e t h a t w h e n j o i n t - c a n s are i n c l u d e d a n d s t r u t s f u n c t i o n p r o p e r l y , a g r o u t e d f r a m e dissipates e n e r g y b e t t e r t h a n a n u n g r o u t e d one because i t s h o w s n o n l i n e a r b e h a v i o r sooner; h o w e v e r , i t s s u p e r i o r i t y is a b s o l u t e l y d e p e n d e n t u p o n t h e p r o p e r p e r f o r m a n c e o f braces. A p r o p e r l y d e s i g n e d s t r u t ( s t r u t w i t h a c o m p a c t cross s e c t i o n ) r e i n f o r c e d w i t h j o i n t - c a n s m a y d e l a y t o t a l

(8)

p. Alanjari et al./Applied Ocean Researcii 31 (2009) 82-89 89

brace f a i l u r e due t o l o w cyclic f a t i g u e a n d helps t h e d e f o r m a b i l i t y o f w h o l e s t r u c t u r e .

4. C o n c l u s i o n

Cyclic i n e l a s t i c b e h a v i o r o f JTOPs a n d e n e r g y d i s s i p a t i o n o f 2 D o f f s h o r e f r a m e s w i t h d i f f e r e n t p i l e - l e g i n t e r a c t i o n w e r e s t u d i e d i n t h i s p a p e r . B u c k l i n g a n d p o s t - b u c k l i n g b e h a v i o r o f steel s t r u t s w e r e discussed a n d v a l i d a t e d against a v a i l a b l e e x p e r i m e n t a l tests. F o l l o w i n g p r e v i o u s r e s e a r c h [ 3 ] , s o m e g l o b a l and local b e h a v i o r o f g r o u t e d a n d u n g r o u t e d 2 D f r a m e s w a s i n v e s t i g a t e d a n d t h e f o l l o w i n g c o n c l u s i o n s c a n be r e a c h e d : • A p p r o p r i a t e a n d v a l i d a t e d a n a l y t i c a l m o d e l o f s t r u t s m a y be used t o c a p t u r e t h e n o n l i n e a r b e h a v i o r o f o f f s h o r e s t r u c t u r e s as p r e c i s e l y as p o s s i b l e . I t w a s s h o w n t h a t available n o n l i n e a r f o r c e d - b a s e d b e a m - c o l u m n e l e m e n t is capable o f e s t i m a t i n g t h e a m o u n t o f c u m u l a t i v e e n e r g y d i s s i p a t i o n o f steel s t r u t s q u i t e accurately. A l t h o u g h t h e accuracy o f the results p r o v i d e d b y u s i n g t h i s e l e m e n t is d e p e n d e n t u p o n t h e slenderness o f t h e cross s e c t i o n , i t w a s s h o w n t h a t f o r c o m p a c t a n d stocl<y cross sections, a n a l y t i c a l m o d e l is able t o c a l c u l a t e t h e a m o u n t o f e n e r g y d i s s i p a t i o n s a t i s f a c t o r i l y .

• W h e n j o i n t - c a n s are i n c l u d e d , s t r u t s are capable o f b u c k l i n g a n d t h e y c o n t r i b u t e s i g n i f i c a n t l y i n o v e r a l l l a t e r a l l o a d c a r r y i n g c a p a c i t y o f f r a m e s w h e r e a s w h e n j o i n t - c a n s are n o t d e s i g n e d , j o i n t s are s u s c e p t i b l e t o f r a c t u r e a n d s t r u t s are i m m e d i a t e l y e l i m i n a t e d f r o m t h e s t r u c t u r a l s y s t e m . • G r o u t e d p i l e - l e g i n t e r a c t i o n m a k e s t h e w h o l e s t r u c t u r e s t i f f e r a n d t h e r e b y b u c k l i n g o f s t r u t s a n d r e s u l t i n g n o n l i n e a r b e h a v i o r o f t h e f r a m e are e n c o u n t e r e d s o o n e r t h a n t h o s e o f u n g r o u t e d f r a m e , h o w e v e r , w h e n c r u s h i n g o f g r o u t takes place, b o t h f r a m e s behaves a n a l o g o u s l y a l m o s t i n e v e r y aspect. • A w e l l - d e s i g n e d f r a m e e q u i p p e d w i t h j o i n t - c a n s dissipates e n e r g y m u c h m o r e e f f e c t i v e l y i n c o m p a r i s o n w i t h a p o o r l y -d e s i g n e -d f r a m e w i t h o u t j o i n t - c a n s . F u r t h e r m o r e , c o n s i -d e r i n g a f r a m e w i t h j o i n t - c a n s , g r o u t e d m o d e l is m o r e e f f i c i e n t f r o m e n e r g y d i s s i p a t i o n p o i n t o f v i e w r a t h e r t h a n u n g r o u t e d s t r u c t u r e . The l a t t e r is s t r i c t l y d e p e n d e n t u p o n the d e s i g n o f s t r u t s a n d j o i n t - c a n s since i t d i r e c t l y a f f e c t s t h e d e f o r m a b i l i t y o f t h e s t r u c t u r e . T h a t is, i f a n e n g i n e e r is able to d e s i g n a s t r u t f o r w h i c h l o c a l b u c k l i n g d u e t o l o w - c y c l i c f a t i g u e is n o t e n c o u n t e r e d i n early l o a d i n g cycles, n o s t r e n g t h d e t e r i o r a t i o n o r d i s c o n n e c t i o n due t o a c c u m u l a t e d f a t i g u e d a m a g e is e n c o u n t e r e d a n d g r o u t e d p i l e - l e g i n t e r a c t i o n w o u l d be m o r e e f f e c t i v e f r o m s e i s m i c d e s i g n s t a n d p o i n t . R e f e r e n c e s

|1 j Etterdal B, Askhelm D, Grigorian H, Gladso R. Strengthening of offshore steel components using high-strength grout: Component testing and analytical methods. In: Proc OTC, Paper 13192. 2001.

|2] Honarvar MR, Bahaari MR, Asgarian B. Effect of grouting in jacket type offshore platforms pile-leg interaction in nonlinear range of deformation. Journal of Offshore Mechanics and Arctic Engineering 2007; Paper No. OMAE 07-1007, in press |doi:10.ni5/1.2904586].

| 3 | Honarvar MR, Bahari MR, Asgarian B, Alanjari P. Cyclic inelastic behavior and analytical modeling of pile-leg interaction in jacket type offshore platform. Journal of Applied Ocean Research 2008.

[4] Zayas VA, Popov EP, Mahin SA. Cyclic inelastic buckling of tubular steel Braces.

Report no. UCB/EERC-80/16. Berkeley (CA): University of California; 1980. [5] Zayas VA, Mahin SA, Popov EP. Cyclic inelastic behavior of steel offshore

struc-tures. Report no. UCB/EERC-80/27. Berkeley (CA): University of California; 1980.

[6| Kayvani K, Barzegar F. Modelling of tubular members in offshore steel

jackets under severe cyclic loading. UNICIV report no. R-324. School of Civil Engineering, The University of New South Wales; December 1993. |7] Asgarian B, Aghakouchak A, Bea R. Nonlinear analysis of jacket-type offshore

platforms using fibre elements. Journal of Offshore Mechanics and Arctic Engineering 2006; 128( August).

[81 Asgarian B, Aghakouchak A, Bea R. Inelastic post-buckling and cyclic behavior

of tubular braces. Journal of Offshore Mechanics and Arctic Engineering 2005; 127(August).

|9] Ghanaat Y, Clough RW. Shaking table tests of a tubular steel frame model.

Report no. UCB/EERC-82/02. Berkeley: Earthquake Engineering Research Center. Univ. of California; 1980.

(10) Bouwkamp JG. et al. Effects of joint fiexibility on the response of offshore towers. In: Proc. O T C Paper 3901.1980.

[11] Bahaari B, Molaei. Numerical analysis of stress concentration factors for KK multiaxial tubular connections. Journal of Faculty of Engineering 2003;37(1): 1-12. University of Tehran, Serial # 79.

[12| Black RG, Wenger WAB, Popov EP. Inelastic buckling of steel strut under cyclic load reversals. Rep. no. UCB/EERC-80/40. Berkeley (CA): Earthquake Engineering Research Center. Univ. of California; 1980.

[131 be Souza R. Forced-based finite element for large displacement inelasric analysis of frames. Ph.D. dissertation. Berkeley (CA): Univ. of California; 2000.

[14] Mazzoni S, McKenna F, Scott M, Fenves G. OpenSees command language

manual. 2006.

[15] American Institute of Steel. AISC specification for design and erection of structural steel for buildings. Chicago; 1969.

[161 Uriz Patxi. Towards earthquake resistant design of concentrically braced steel structures. Doctoral dissertation. Berkeley: Structural Engineering, Mechanics, and Materials, Department of Civil and Environmental Engineering, University of California; December 2005.

Cytaty

Powiązane dokumenty

Convolutional weights are parameters of the model, so they are adjusted during the training process to filter out the most frequent features found in the data..

We stimulate neural networks with input data (usually affecting neurons in the input layer), for which neurons in subsequent layers make calculations until we obtain results (in

Train, dev (validation), and test sets should be set up in such a way that they share data of all distributions in the same way (be representative for the solved problem) to

a subset of training examples consisting of a defined number of training examples. In this case, training process is a compromise between the stability and speed, much better

Based on the results presented in Volatile fatty acids production during mixed culture fermentation – The impact of substrate complexity and pH (Jankowska E.,

The Numerical Simulation o f Green Water Loading Including Vessel Motions and the Incoming Wave Field [OMAE2005-67448] Modeling Two-Phase Flow With Offshore Applications

Offshore Technology Structures, Safety and Reliability Materials Technology Pipeline and Riser Technology Ocean Space Utilization

Qualification of Welding Procedures for ExxonMobil High Strain Pipeline [OIVIAE2006-92503].. A Finite-Element Computation for Three-Dimensional Problems of Sloshing in LNG Tank