• Nie Znaleziono Wyników

Relative Potency for the Multivariate Contaminated Normal Responses

N/A
N/A
Protected

Academic year: 2021

Share "Relative Potency for the Multivariate Contaminated Normal Responses"

Copied!
13
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

Z o f i a H a n u s z *

R E L A T IV E P O T E N C Y F O R T H E M U L T IV A R IA T E C O N T A M IN A T E D N O R M A L R E S P O N S E S

Abstract. In this paper we focus on the impact of responses o f contaminated normal distribution on the relative potency. For several values of the contamination parameters, the estimates of the relative potency, its goodness and the truthfulness of the hypotheses connected with the estimation of the relative potency are tabulated for the generated data sets.

1. INTRODUCTION

In biological assays, com paring tw o p rep aratio n s: sta n d a rd (know n) and test (new) we get the m u ltiv ariate responses. In this case the relative p o tency is frequently estim ated . In the m u ltiv a ria te settin g, to d eriv e the estim ato r o f the relative potency we have to assum e th a t the responses are norm ally d istributed. In practice, how ever, this assum ptio n is n o t necessarily fulfilled. It is o f interest to study how th e estim ates o f the relative potency differ from the tru e value o f the p aram eter in th e cases w here responses d o n o t fulfil th e n orm ality assu m p tio n. In this p ap e r, we co n c en trate only on the co n tam in ated m u ltiv ariate n o rm al d istrib u tio n o f the observations which is m o re frequently encountered. O n the generated d a ta sets, fo r several values o f the co n tam in atio n p aram eters, th e average estim ates o f the relative potency, stan d ard deviations o f these estim ates, p ro b a b ility o f acceptation and the hypotheses connected with th e estim atio n are tab u lated .

(2)

2. STATEMENT OF THE PROBLEM

In this section we recall the problem o f estim ation o f th e relative potency in the m ultiv ariate setting. Let us consider an experim ent w ith two p re p ara tio n s: S tan d ard denoted by S and T est d en oted by T. L et the p re p a ra tio n s be applied on vt (i = S , T ) doses: un , ui2, utvi, which arc repeated nn , ni2, ..., nivi times, respectively. F o r each dose o f the prep aration s, the sam e p-fcatures arc m easured as the p variate response. W ith o u t loss o f generality, we can assum e th a t the doses arc applied to h o m og eneo us units. T hen , it is well know n (see F i n n e y , 1978) th a t each response y iJk can be described as

Уу* = + ßtx ij + ey*» i — S, T, y = l , ..., vt; k = 1, Яц

w here ait /í, are ( p x l ) vectors o f intercepts and slopes, x,j is th e log arith m to base 10 o f the dose utJ. N ote th a t the relative potency, d en o ted by p, is defined as the ra tio o f the dose o f the S tan d ard p re p ara tio n s to the dose o f the T est p re p a ra tio n s which give the sam e m u ltiv ariate responses,

u r

so p — As y iik depends o n the logarithm s o f the doses so we also us

consider the logarithm o f the relative potency, deno ted by ц, w hich is the d istance betw een the logarithm s o f th e p ro p e r doses o f the p re p ara tio n s. T h e to tal m odel o f the experim ent thus defined can be w ritten as follows:

o f all Xij in the sam e o rd e r as the observations in the m a trix Y „ 1„, is th e

m a trix o f e rro rs w hose row s are m u tu a lly in d e p e n d e n t and n o rm ally d istrib u te d w ith null vecto r o f ex p ectatio n s and th e sam e co v a rian ce m atrix Yj- Before we get o n to the p re sen tatio n o f th e results o f estim atio n , we will briefly describe tw o fun d am en tal hypotheses co nnected w ith the estim ation o f the hypothesis about the parallel-line designs and th e hypothesis a b o u t th e relative potency.

Y = XB + E ( 1)

(3)

2.1. Hypothesis about a parallel-line design

T h e relative potency o f tw o p re p ara tio n s is derived in so th e called parallel-line designs, having the sam e vectors o f slopes: ß s and ß T. T h e equality o f the slopes is expressed as the follow ing hypothesis:

Hp : C 'B = 0' versus H lp : C 'B Ф 0' (2) w here C ' = (0, 1, 0, — 1). T o test (2) one can use Wilks' lambda statistic w hich is an F Snedecor statistic tak in g the form (see H a n u s z , 1998):

Fo _ ns + nr —r(X) —p + 1 (C' É ) S i1(C'fi)'

P ' C'(X'X)-ł C

w here В = (X 'X )~ l X' Y, S E = (Y — Xfi)'(Y - X fi), r(X) is the ra n k o f X. T h e hypothesis Щ in (2) has to be accepted to have parallel line design.

2.2. H ypothesis about the relative potency

U n d e r the tru th fu ln ess o f the null hypothesis in (2), the m od el (1) is rcp aram etrized to the follow ing m odel:

X = XB + E (3)

w here X = ^ В = (as , a r , ß)'; an d as , a r rem ain th e sam e as in the m odel (1) but ß is the co m m on vector o f the slopes. T h e m ain hypothesis a b o u t the logarithm o f the relative potency p. is w ritten in the form :

H ° : С ;В = 0' versus I I j, : C^B Ф 0' (4) w here = (1, — 1 ,/i). T h e hypo th esis is tested by W i l k s ’ lambda statistic tak in g the form (see, H a n u s z , 1995):

(4)

w here

(C ;B )S £-

4 c;fi)'

" C ;( X 'X j- ł Ć„ ’ ft = (X 'X )" ‘X'Y, S E = (Y - Xfi)'(Y - Xß).

C onsid ering the fact th a t I ns + n T — r(X ) — |ln( 1 + K„) has approxim ately x 2 distribution with (p — 1) degrees o f freedom (see W i l l i a m s ,

1988), we can test the null hypothesis in (4). T h e estim ato r o f the lo garith m o f the relative potency is such Д w hich m axim izes un d er the tru th fu ln ess o f the o f the null hypothesis in (4).

3. RESULTS FOR GENERATED DATA SETS FROM NORMAL DISTRIBUTION

T esting the hypotheses and estim ation o f th e relative potency presented in the previous section are carried o u t assum ing th a t all o b serv atio n s have a p -variate no rm al d istrib u tio n . In this section we illu strate the results o b tain ed for the generated d a ta sets, having the n o rm al d istrib u tio n . In o rd e r to get the estim ates o f the logarithm o f the relative potency and to observe the p robabilities o f the truthfulness o f th e null hypo th esis in (2) and (4), the follow ing p aram eters in the m odel (1) were fixed:

p — 3, vs = vT = 3, usj = и-n = 250, uS 2 — Мгг = 500, uS3 = U73 = 1000,

Let us notice th a t the values o f the m odel param eters are chosen in such a way th a t the logarithm o f the relative potency ц is equ al to one. N am ely, the difference a r — a s is the sam e as ß ( = ß s — ß T), so the p aram eter ц o f the null hypothesis in (4) has to be one. F o r the different n u m bers o f dose replications, calculations w ere repeated 100 tim es fo r the generated d a ta sets using M apleV package. T h e hypotheses were tested o n 5 percent o f the significant level. T h e results obtained by sim ulations are presented in T ab . 1.

(5)

Ta bl e 1 Probabilities of truthfulness hypotheses, average estimates of logarithm of relative potency and

standard deviation of estimates for the normally distributed data Dose replications o //j it ) 110 ii i) \ц — /21 < 0.2 i A U A Hi f t S, ns ® 5, H y 5 0.90 0.94 0.44 0.37 1.07 0.41 5, nr = 10 0.90 0.94 0.56 0.48 1.05 0.34 n , - 10, nr = 10 0.89 0.97 0.67 0.58 0.99 0.26 ns — 20, n,. — 20 0.92 0.91 0.85 0.72 1.02 0.14 n, - 25, n, = 25 0.95 0.94 0.88 0.78 1.02 0.13 ns = 30, nr = 30 0.95 0.97 0.90 0.82 1 .0 0 0 .1 1

T h e second and the third colum ns o f this T ab le enclose th e pro b ab ilities of the truthfulness o f the null hypotheses in (2) and (4). T h e fo u rth colum n co n tain s the prob ab ility th at th e estim ates o f the logarithm o f th e relative poten cy differ from the tru e value o f the logarithm o f the relative p oten cy less th a n by 0.2. The next colum n gives us the jo in t p ro b a b ility o f the con d itio n s oi the three previous colum ns. In the last tw o colum ns we can see the average estim ate o f ihe lo g arith m o f the relative potency and sta n d a rd deviation ol all estim ates obtain ed th ro u g h th e sim ulations. T ab le 1 show s th a t the estim ates are eloser to the p a ram eter w hen the n u m b er ol dose replicatio ns is bigger. R egarding the probabilities o f acceptan ce o f the null hypotheses a b o u t parallelism and the log arithm o f th e relative p otency we can notice th a t they arc high enough even for the sm all n u m b er of dose replications. L ooking a t the last two colum ns, it is easy to conclude th a t the estim ates o f the logarith m o f the relative potency are b etter w hen the n u m b er o f dose replications is higher.

4. RESULTS FOR THE CONTAMINATED NORMAL DISTRIBUTED DATA

A s we m e n tio n e d , in practice, how ever, the assu m p tio n a b o u t th e n o rm ality o f responses is n o t necessarily fulfilled. It is w o rth checking o u t w heth er th e estim ate o f the relative potency differs from th e tru e p a ra m e te r w hen som e o f the responses have an o th er d istrib u tio n . In this p ap e r we restrict o u r attention to the contam inated norm al distribution. W e concen trate o n the situ atio n where m ost o f the responses have the d istrib u tio n described in the m odel (1) but q percent o f the d a ta , chosen ran d o m ly , has th e no rm al d istribution with intercepts shifted by th e vector a and the covariance m a trix r l . R esults for the different q and r are enclosed in T a b . 2, 3,

(6)

Ta b l e 2 I'he estimates of the logarithm of the relative potency and probabilities of testing hypotheses

with r = 0.5

4 «■; 0 H ° , it) H ° i l l )|/i /2| <0.2 / л iiл iii ß

5 5 0.93 0.97 0.40 0.35 1.38 2.20 5 10 0.88 0.94 0.44 0.36 1.18 0.53 0.1 10 10 0.94 0.91 0.54 0.49 1.09 0.38 20 20 0.93 0.96 0.71 0.63 1.03 0.22 25 25 0.92 0.95 0.77 0.68 1.04 0.20 30 30 0.92 0.93 0.81 0.72 1.00 0.15 5 5 0.92 0.93 0.33 0.30 1.55 2.79 5 10 0.92 0.90 0.39 0.32 1.14 0.39 0.2 10 10 0.90 0.96 0.39 0.32 1.18 0.47 20 20 0.97 0.93 0.69 0.62 1.05 0.23 25 25 0.93 0.91 0.71 0.61 1.01 0.27 30 30 0.94 0.98 0.79 0.74 1.01 0.22 5 5 0.91 0.98 0.34 0.31 1.15 1.49 5 10 0.88 0.96 0.37 0.33 0.63 5.67 0.3 10 10 0.88 0.96 0.47 0.39 1.15 0.59 20 20 0.95 0.96 0.63 0.56 1.10 0.29 25 25 0.92 0.95 0.66 0.58 1.05 0.31 30 30 0.88 0.92 0.77 0.65 1.03 0.18 5 5 0.87 0.96 0.31 0.23 0.21 10.65 5 10 0.91 0.98 0.38 0.34 -0.38 14.80 0.4 10 10 0.95 0.98 0.43 0.42 1.12 0.52 20 20 0.95 0.95 0.59 0.53 1.08 0.30 25 25 0.93 0.96 0.65 0.58 1.00 0.25 30 30 0.90 0.94 0.73 0.61 1.04 0.19 5 5 0.95 0.97 0.29 0.27 0.37 5.58 5 10 0.98 0.97 0.40 0.39 1.53 2.90 0.5 10 10 0.90 0.95 0.33 0.27 1.11 0.49 20 20 0.99 0.95 0.63 0.58 1.06 0.24 25 25 0.97 0.96 0.59 0.56 1.07 0.25 1 30 30 0.94 0.99 0.67 0.64 1.03 0.22

(7)

T a b l e 3 The estimates of the logarithm of the relative potency and probabilities of testing hypotheses

with r — 1.5

«5 Лу 0 Щ ii) H° iii) \ p - fl\< 0 .2 1ЛIIA iii fl

5 5 0.91 0.96 0.37 0.34 1.59 3.13 5 10 0.87 0.94 0.43 0.35 1.19 0.57 0.1 10 10 0.93 0.92 0.50 0.45 1 .1 0 0.39 2 0 2 0 0.95 0.95 0.71 0.65 1.04 0.23 25 25 0.93 0.95 0.76 0.67 1.04 0 .2 0 30 30 0.93 0.92 0.83 0.74 1 .0 0 0.16 5 5 0.94 0.94 0.32 0.28 7.29 59.51 5 10 0.90 0.91 0.35 0.29 1.15 0.51 0 .2 10 10 0.96 0.96 0.39 0.31 1.23 1.15 2 0 2 0 0.95 0.94 0 .6 6 0.60 1.05 0.24 25 25 0.95 0.89 0.73 0.63 1 .0 2 0.30 30 30 0.93 0.95 0.76 0 .6 8 1.01 0.23 5 5 0.93 0.95 0.28 0.26 2.87 15.87 5 10 0 .8 8 0.95 0.33 0.29 1.35 3.18 0.3 10 10 0.90 0.93 0.46 0.39 1.18 0.64 2 0 2 0 0.94 0.95 0.60 0.53 1 .1 0 0.33 25 25 0.93 0.95 0.65 0.59 1.06 0.35 30 30 0 .8 8 0.92 0.77 0.65 1.03 0.18 5 5 0.89 0.96 0.30 0.24 0.69 5.27 5 10 0.91 0.97 0.35 0.31 1.40 3.09 0.4 10 10 0.95 0.98 0.45 0.42 1.15 0.65 2 0 2 0 0.94 0.95 0.60 0.54 1.09 0.34 25 25 0.93 0.94 0.64 0.56 1 .0 2 0.27 30 30 0.92 0.91 0.74 0.64 1.03 0.19 5 5 0.96 0.93 0.26 0 .2 2 0.85 2.06 5 10 0.96 0.97 0.39 0.37 1.31 1.17 0.5 10 10 0.90 0.98 0.36 0.30 1 .1 2 0.54 2 0 2 0 0.99 0.93 0.61 0.56 1.06 0.26 25 25 0.96 0.96 0.58 0.54 1.08 0.28 30 30 0.93 0.97 0.67 0.64 1.03 0.24

(8)

T a b l e 4 The estimates of the logarithm of the relative potency and probabilities of acceptance of the

hypotheses with r = 2 .0

4 пт 0 Щ ii) i r Hi) \ ц - fl\ <0 .2 t AÜ A Hi ß s ,

5 5 0.92 0.96 0.44 0.38 1.40 1.57 5 10 0.89 0.94 0.43 0.37 1.19 0.59 0.1 10 10 0.93 0.92 0.50 0.45 1 .1 0 0.39 20 2 0 0.95 0.96 0.70 0.64 1.04 0.24 25 25 0.93 0.94 0.77 0.67 1.04 0 .2 1 30 30 0.92 0.92 0.82 0.73 1 .0 0 0.16 5 5 0.92 0.95 0.27 0.23 0.80 6.73 5 10 0.90 0.93 0.33 0.28 1.16 0.56 0 .2 10 10 0.91 0.95 0.42 0.33 1.26 1.37 20 2 0 0.95 0.95 0 .6 6 0.60 1.05 0.25 25 25 0.95 0.90 0.67 0.58 1 .0 2 0.32 30 30 0.92 0.95 0.74 0.65 1.01 0.23 5 5 0 .8 6 0.97 0.34 0.29 1 .1 2 1.39 5 10 0 .8 8 0.95 0.32 0.27 1 .8 6 6.15 0.3 10 10 0.90 0.92 0.46 0.38 1.19 0 .6 8 20 2 0 0.95 0.95 0.58 0.52 1.11 0.35 25 25 0.94 0.96 0.63 0.57 1.07 0.37 30 30 0.91 0.90 0.73 0.60 1.03 0.19 5 5 0.91 0.92 0.30 0.25 -5.53 65.95 5 10 0.91 0.97 0.32 0.28 1.30 2.07 0.4 10 10 0.94 0.97 0.44 0.40 1.17 0.74 20 2 0 0.95 0.95 0.57 0.53 1 .1 0 0.36 25 25 0.93 0.94 0.61 0.53 1 .0 2 0.29 30 30 0.91 0.91 0.74 0.64 1.04 0 .2 1 5 5 0.92 0.97 0.28 0.25 -0.24 16.18 5 10 0.95 0.97 0.37 0.35 1.32 1.19 0.5 10 10 0.90 0.97 0.35 0.29 1.13 0.57 20 2 0 0.99 0.94 0.61 0.56 1.07 0.27 25 25 0.96 0.97 0.57 0.53 1.08 0.30 30 30 0.93 0.97 0.63 0.601.03 0.24

(9)

T a b l e 5 The estimates of the logarithm of the relative potency and probabilities of acceptance of the

hypotheses with r = 1 0 .0 4 "* n r 0 n°t U) H ° III) I/i —/21 < 0.2 1 л II л HI fl 5 5 0.95 0.95 0.36 0.34 0.63 6.79 5 10 0.90 0.94 0.43 0.39 1.28 0.83 0.1 10 10 0.95 0.91 0.48 0.43 1.15 0.54 2 0 2 0 0.94 0.95 0.61 0.56 1.08 0.37 25 25 0.93 0.96 0.67 0.59 1.04 0.23 30 30 0.92 0.93 0.75 0 .6 6 1 .0 0 0.18 5 5 0.93 0.95 0.33 0.28 2.71 8.99 5 10 0.93 0.94 0.31 0.27 1.30 1.21 0 .2 10 10 0.93 0.96 0.37 0.28 0.87 3.68 2 0 2 0 0.98 0.95 0.56 0.51 1.09 0.48 25 25 0.99 0 .8 8 0.55 0.48 1.04 0.50 30 30 0.92 0.94 0.64 0.56 1 .0 2 0.30 5 5 0.95 0.94 0.35 0.31 2.06 5.14 5 10 0.94 0.95 0.30 0.26 0.69 4.86 0.3 10 10 0.91 0.91 0.32 0.28 1.04 1.77 2 0 2 0 0.96 0.98 0.47 0.43 1.50 3.77 25 25 0.93 0.99 0.50 0.44 1.16 0.70 30 30 0.93 0.92 0.60 0.52 1.04 0.27 5 5 0 .8 6 0.97 0.25 0.19 1.47 2.70 5 10 0.92 0.96 0.28 0.26 1.26 1.99 0.4 10 10 0.94 0.97 0.38 0.34 1.63 6.97 2 0 2 0 0.99 0.95 0.41 0.39 1.24 0.83 25 25 0.92 0.92 0.47 0.38 1 .1 0 0.49 30 30 0.87 0.91 0.60 0.48 1.06 0.32 5 5 0.93 0.95 0 .2 2 0 .2 2 1.28 3.98 5 10 0.90 0.96 0.26 0 .2 2 4.82 18.59 0.5 10 10 0.92 0.96 0.23 0 .2 0 1.05 2.59 2 0 2 0 0.98 0.95 0.49 0.36 1.14 0.50 25 25 0.96 0.95 0.36 0.33 1.17 0.63 30 30 0.92 0.93 0.44 0.42 1.05 0.35

T h e outcom es fo r ten percent o f co n tam in atio n , enclosed in T a b . 2, 3, 4 and 5 concerning the jo in t probab ility o f the truthfulness o f the hypotheses Hp and H ° and th a t th e c o n d itio n — Д| < 0. 2 is satisfied (seventh colum n) are illustrated on Fig. 1. F ro m this figure we conclude th a t th e jo in t prob ab ility depends heavily on the dose replicatio ns b u t is alm o st the sam e fo r the different m u ltiplier r o f the covariance m atrix . By an alog y, on F ig. 2 the estim ates o f the logarithm o f the relative p otency is p lotted.

(10)

j o i n t pr ob 0.8 0.7 0 6 0 5 0.4 0 3 0.2 0.1 0

Fig. 1. Joint probability of the truthfulness of H° and H° and |/i — [i\ < 0.2

estimate 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 □ r = 0.5 ■ r = 1.5 □ r = 2 □ r = 10

an

10 20 25 30 dose replication

(11)

R egarding the percent q o f con tam in ated responses equals 10, 20, 30, 40 and 50 per cent, the jo in t probability is p lo tted in F ig. 3. T h is figure show s, th a t the jo in t probabilities decrease a little bit w here the percents o f co n tam in ated responses increase. T his pro b ab ility dep end s m o st on the dose replications for each q sim ilarly as in Fig. 1. T h e estim ates o f the logarithm o f the relative potency obtained for the d ifferent r and q enclosed in the p enultim ate colum n in T ab . 2, 3, 4 and 5 are illu strated in Fig. 4.

Fig. 4 shows th a t the estim ates are very far from the tru e value only fo r th e lowest nu m b er o f dose replications bu t fo r the do se rep licatio n s greater o r equ al to 1 0, the estim ates o f the logarithm o f the relative p o ten cy are very close to the real value o f the param eter. T h e estim ates d o n o t depend to o m uch on the value o f r, th e m ultiplier o f the co variance m atrix , and the p ro p o rtio n q o f the co n tam in ated d ata.

joint prob. 0.8 0.7 0.6 0.5-0.3 0.2 0.1 0 Q

Fig. 3. Joint probability of the truthfulness of 11° and H° and \p — £1 < 0 .2 for q = 0.1, 0.2, 0.3, 0.4 and 0.5

(12)

Estim ate

Fig. 4. The estimates of the logarithm of the relative potency for r = 0.5, 1.5, 2.0, 10 and

q = 0.1, 0.2, 0.3, 0.4 and 0.5

5. CONCLUSIONS

U sing th e results presented in Section 3 and 4 we can conclude th a t the n u m b er o f dose replications has the greatest influence o n the lo garith m o f the relative potency. In p articu lar, in the cases where responses do n o t have to be n orm ally d istrib u te d , the experim enters should rem em ber a b o u t it. W ith only a few dose replications, the estim ates are fa r from the tru e value o f the p aram eter, and stan d ard deviations o f the estim ates are big, so w ith the sam e problem one could o b tain the estim ates w hich would differ a lot one from another. As far as the contam inated n o rm al d istribu tion is regarded, T ab . 2, 3, 4, 5 as well as Fig. 1, 2, 3 an d 4 show th a t the m u ltip lier o f the covarian ce m atrix has a very sm all influence o n the estim ato r o f the logarithm o f the relative potency. T h e p ercen t o f the co n tam in ated d a ta sets influences th e estim ates b u t n o t in an essential way. Sum m arizing, the experim ents w here doses o f the p re p ara tio n s are applied to m an y units, give a good estim ate o f the relative potency, even w hen the responses are no t exactly o f the no rm al d istrib utio n.

(13)

REFERENCES

F i n n e y D. J. (1978), Statistical Methods in Biological Assays, Macmillan Publishing Co., New York.

H a n u s z Z. (1995), Relative Potency o f Two Preparations in Two-way Elimination o f

heterogeneity Designs with Multivariate Responses, “Biometrics” , 51, 1133-1139.

H a n u s z Z. (1998), Infiuence o f the Model Parameters for the Relative Potency Estimator in

Multivariate Setting, XXVIII Colloquium Biometryczne, 158-168.

W i l l i a m s D. A. (1988), An Exact Confidence Interval fo r the Relative Potency Estimated

Cytaty

Powiązane dokumenty

As shown, the relative value strategy can be a good method for increasing rates of return compared with the buy and hold one understood in such a way that the investor buys

Wyjaśnia zadanie, rozdaje karty pracy oraz karty true/false dla każdego ucznia, organizuje pracę (drużyny A i B o równej liczbie graczy), ustawia timer oraz monitoruje

Suppose, moreover, is a fixed subclass of the class $ of functions regular and univalent in K subject to the usual normalization. Under our assumptions on So, the set Qn has

следует закону 1'одип—р степеней свободы, где 8 = Х*Х, а 8п является блочной матрицей матрицы

Dlatego też w takich razach dopuszczalne jest — w oparciu o stosowaną w prawie angielskim ogólną zasadę słuszności (equity) — ustanowienie tenancy in common (przy któ­

Jest za m ało akadem ików oraz miejsc noclegowych, a także zbyt wysoka średnia ocen, jeżeli chodzi 0 przyznawanie stypendium ” (A nna Szeligowska); „Powinno być

In this paper I con- sider aspects of the grammar and logic of such relative terms, particularly in regard to several areas of general logico-philosophical interest:

Wywodzący się z polskiej rodziny Wyżewskich pi- sarz wprawdzie w roku 1909 nie zabrał głosu na temat Chłopów, ale kiedy jednak w roku 1910 Reymont ogłosił w Warszawie kolejną