• Nie Znaleziono Wyników

Aeroservoelastic Analysis and Optimization Framework for Morphing AWE Wings

N/A
N/A
Protected

Academic year: 2021

Share "Aeroservoelastic Analysis and Optimization Framework for Morphing AWE Wings"

Copied!
2
0
0

Pełen tekst

(1)

Multi-MW reference kite developed by TU Delft, DTU and ETH Zurich as part of the graduation research project or Dylan Eijkelhof

(2)

Urban Fasel Doctoral Candidate

ETH Zurich

Laboratory of Composite Materials and Adaptive Structures Leonhardstrasse21 8092 Zurich Switzerland faselu@ethz.ch www.structures.ethz.ch

Aeroservoelastic Analysis and Optimization Framework for Morphing AWE Wings

Urban Fasel, Paolo Tiso, Dominic Keidel, Paolo Ermanni

Laboratory of Composite Materials and Adaptive Structures, ETH Zurich, Switzerland Morphing wing AWE aircraft based on compliant internal

structures ś compared to aircraft equipped with discrete wing control surfaces ś show great potential in increas-ing the power production capabilities of AWE systems [1]. Potential benefits of morphing wings range from greater adaptability to different flight conditions to reducing the drag ś and therefore increasing the power harvesting fac-tor ś due to the smooth wing surface. Furthermore, a re-duction in parts count and complexity can be achieved, especially when applying novel additive manufacturing techniques. The greatest challenge in applying morphing to AWE are the contradicting requirements of high stiff-ness and strength to withstand the aerodynamic loads, while simultaneously maintaining compliance to allow for the desired shape adaptation. Therefore, it is of great importance in the design of morphing wings to consider the full system dynamics from an early stage.

In this work, a design methodology is presented that al-lows to concurrently analyze and optimize the control, structural, and aerodynamic design parameters of an AWE morphing aircraft. The numerical model presented in this work couples a dynamic system model, consisting of a ground station, tether, and aircraft dynamics model, with a two-way fluid structure interaction (FSI) simulation of the wing [2]. The FSI model consists of a detailed 3-D finite element model to assess the structural behavior, coupled with a 3-D panel method to calculate the aerody-namic characteristics of the wing.

To increase the computational efficiency of the simula-tion, reduced order modelling (ROM) techniques are ap-plied to the structural and aerodynamic model of the wing. The structural ROM relies on a mode

superposi-tion method, whereas the aerodynamic model relies on a Taylor-expansion of the aerodynamic influence coeffi-cient matrix in the direction of the structural modes. The Taylor-expansion can be efficiently computed using the Sherman-Morrison. This allows the ROM to deliver speed-up factors of about 180, when compared to the full simu-lation, at virtually no decrease in accuracy. The ROM is coupled to the dynamic system model and a flight troller consisting of an aircraft and ground station con-troller is included in the dynamic simulation, enabling the tethered aircraft to follow predefined trajectories. To identify the optimal system parameters, the intro-duced dynamic model is embedded in a genetic optimiza-tion framework [3]. With the proposed framework, opti-mizations can be performed, maximizing the power pro-duction capabilities of morphing AWE aircraft. Further-more, the framework is not limited to morphing wings, but can also be used for the design and optimization of conventionally actuated AWE aircraft of arbitrary size, with arbitrary flight trajectories and control strategies. References:

[1] Fasel, U., Keidel, D., Molinari, G., and Ermanni, P., łAerostructural Optimization of a Morphing Wing for Airborne Wind Energy Applica-tions,ž Smart Materials and Structures, 2017.

[2] Fasel, U., Tiso, P., Keidel, D., Molinari, G., and Ermanni, P., łRe-duced Order Dynamic Model of a Morphing Airborne Wind Energy Aircraft,ž AIAA Journal, 2019.

[3] Fasel, U., Keidel, D., Molinari, G., and Ermanni, P., łAeroservoe-lastic Optimization of Morphing Airborne Wind Energy Wings,ž AIAA SciTech Forum, 2019.

Cytaty

Powiązane dokumenty

instrumentacja głoskowa: „Dżdżownica z Madżongą” (madżonga to slangowe określenie skręta z marihuaną), „Łeblep” (tytuł może oznaczać skróconą i przestawioną

Celem jest więc próba skonfrontowania rysujących się założeń medioonomastyki z postulatami badawczymi mediolingwistyki, osadzenia badań nad nazwami w mediach w ramach

The method is restricted to such problems where the con- centration is nearly uniform over the cross-section and where density differences have a negligible effect on the

To verify the claim that the amplitude quadrature of the signal field is measured in a QND way by the mechanical oscillator [27], and actually that the meter variable well reports

[…] lalangue est ce qui fait qu’une langue n’est comparable à aucune autre, en tant que justement elle n’a pas d’autre, en tant aussi que ce qui la fait

Podjęto próbę wyznaczenia zależności kryterialnej określającej stopień zużycia materiału ogniotrwałe- go typu MgO-C, użytego do wyłożenia kadzi głównej stalowniczej,

Na podstawie tych badań oraz analizy podobieństwa gazów ziemnych dla po- zostałych złóż i gazu B14 można stwierdzić, że podstawo- we urządzenia gazowe stosowane w

Ze względu na obecność związków powierzchniowo czynnych w produktach oraz od- padach wiertniczych, a także biorąc pod uwagę obowiązujące regulacje prawne określające